
z/OS

DFSMSrmm Implementation

and Customization Guide

SC26-7405-07

���

z/OS

DFSMSrmm Implementation

and Customization Guide

SC26-7405-07

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

511.

Eighth Edition, September, 2007

This edition applies to Version 1 Release 9 of z/OS® (5694-A01) and to all subsequent releases and modifications

until otherwise indicated in new editions.

This edition replaces SC26-7405-06.

IBM® welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or

you may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xv

Tables . xix

About This Document . xxi

How to Use this Document . xxi

How to Find Samples in this Document xxii

Required product knowledge xxii

Referenced documents . xxii

Accessing z/OS DFSMS information on the Internet xxiii

Using LookAt to look up message explanations xxiv

Using IBM Health Checker for z/OS xxiv

Notational conventions . xxiv

How to read syntax diagrams xxv

How to abbreviate commands and operands xxvii

How to use continuation characters xxvii

Delimiters . xxvii

Character sets . xxvii

Summary of Changes . xxix

Summary of Changes for SC26-7405-07 z/OS Version 1 Release 9 xxix

New Information . xxix

Changed Information . xxix

Summary of Changes for SC26-7405-06 z/OS Version 1 Release 8 xxx

New Information . xxx

Changed Information . xxx

Summary of Changes for SC26-7405-05 z/OS Version 1 Release 7 xxxi

New Information . xxxi

Changed Information . xxxi

Summary of Changes for SC26-7405-04 z/OS Version 1 Release 6 xxxi

New Information . xxxi

Changed Information . xxxii

Summary of Changes for SC26-7405-03 z/OS Version 1 Release 5 xxxii

New Information . xxxii

Changed Information . xxxii

Summary of Changes for SC26-7405-02 z/OS Version 1 Release 3 xxxii

New Information . xxxii

Changed Information . xxxii

Summary of Changes for SC26-7405-01 z/OS Version 1 Release 3 xxxiii

New Information . xxxiii

Changed Information . xxxiii

Moved Information . xxxiii

Chapter 1. Introducing DFSMSrmm 1

What is a RMMplex? . 1

What Libraries and Locations Can DFSMSrmm Manage? 1

What Is in a Removable Media Library? 2

What Is in a System-Managed Tape Library? 2

What Is in a Non-System-Managed Tape Library? 3

What Is in a Storage Location? 3

How Does DFSMSrmm Manage These Libraries and Locations? 4

Setting Up Your Installation Options 4

Defining Retention and Movement Policies 5

© Copyright IBM Corp. 1992, 2007 iii

Running DFSMSrmm Utilities 8

What Resources Does DFSMSrmm Manage? 9

Shelf Locations . 9

Volumes . 11

Data Sets . 15

Year 2000 Support . 15

Software Products . 15

Owner Information . 15

How Does DFSMSrmm Help You Create Reports? 16

Using DFSMSrmm Report Generator 16

Using DFSMSrmm ISPF Dialog and RMM TSO Subcommands 16

Using the EDGAUD and EDGRPTD Report Utilities 16

Using the DFSMSrmm EDGRRPTE Exec 17

Using the DFSORT ICETOOL Utility 17

Using the DFSMSrmm Application Programming Interface 17

How Does DFSMSrmm Authorization and Security Work? 17

What Tape Usage Does DFSMSrmm Support? 18

How Does DFSMSrmm Validate Tape Mounts? 18

Why Does DFSMSrmm Reject Tape Volumes? 20

Rejects Caused by Installation Controls 20

Rejects Caused by Validation Failure 20

Rejects Caused by DFSMSrmm Rules 21

Who Can Use DFSMSrmm and How? 21

General User . 21

Tape Librarian . 22

Storage Administrator . 22

Application Programmer . 22

System Programmer . 22

Operator . 23

Using DFSMSrmm . 23

Chapter 2. Implementing DFSMSrmm 25

Step 1: Preparing to Implement DFSMSrmm 26

Step 2: Running the Installation Verification Procedure (Optional) 26

Step 3: Updating JES3 (Optional) 26

Step 4: Updating Installation Exits 27

Step 5: Updating SYS1.PARMLIB Members 27

Updating IEFSSNxx . 28

Updating IKJTSOxx to Authorize DFSMSrmm Commands 29

Updating IFGPSEDI When the Enhanced Data Integrity Function is Activated 30

Updating SMFPRMxx (Optional) 30

Updating GRSRNLxx (Optional) 31

Enabling DFSMSrmm . 33

Step 6: Using the Problem Determination Aid Facility (Optional) 33

Step 7: Setting Up DFSMSrmm Disposition Processing (Optional) 33

Step 8: Updating the Procedure Library 34

Step 9: Assigning DFSMSrmm a RACF User ID 37

Step 10: Defining Parmlib Member EDGRMMxx 38

Step 11: Tailoring Parmlib Member EDGRMMxx 38

Step 12: Creating the DFSMSrmm Control Data Set 39

Roadmap for Creating the Control Data Set 39

Defining the DFSMSrmm Control Data Set 40

Calculating DASD Space for the DFSMSrmm Control Data Set 40

Placing the DFSMSrmm Control Data Set 41

Allocating Space for the Control Data Set 42

Protecting the Control Data Set 43

iv z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Initializing the Control Data Set 43

Backing Up the Control Data Set 43

Step 13: Creating the Journal 44

Roadmap for Creating the Journal 44

Calculating DASD Space for the Journal 44

Placing the Journal . 45

Allocating Space for the Journal 46

Protecting the Journal . 46

Backing Up the Journal . 46

Step 14: Authorizing Users . 47

Step 15: Making the DFSMSrmm ISPF Dialog Available to Users 47

Adding DFSMSrmm to an ISPF Selection Panel 47

Modifying an ISPF Selection Panel 48

Enabling ISPF Data Set List (DSLIST) Support 49

Step 16: Restarting z/OS with DFSMSrmm Implemented 51

Step 17: Tailoring DFSMSrmm Set Up 51

Step 18: Starting DFSMSrmm 52

Stopping DFSMSrmm . 53

Quiescing DFSMSrmm . 54

Restarting DFSMSrmm . 54

Checking DFSMSrmm Status 54

Step 19: Defining Resources . 55

Defining Shelf Locations . 55

Defining Owner Information to DFSMSrmm 55

Defining Volumes . 56

Defining Vital Record Specifications 58

Step 20: Updating the Operational Procedures 59

Step 21: Initializing the DFSMSrmm Subsystem and Tape Recording 59

Enabling the DFSMSrmm Subsystem Interface 59

Changing the DFSMSrmm Running Mode 59

Activating the Tape Volume Interface 60

Restarting the DFSMSrmm Subsystem 60

Step 22: Setting Up DFSMSrmm Utilities 60

Step 23: Setting Up DFSMSrmm Web Service (Optional) 61

Step 24: Setting Up DFSMSrmm Common Information Model (CIM) Provider

(Optional) . 61

Step 25: Installing PTFs and the SMP/E Maintenance to DFSMSrmm 62

Chapter 3. Setting Up DFSMSrmm Client and Server Systems 63

Implementing DFSMSrmm Client and Server Systems 64

Using the DFSMSrmm Client and Server Systems 65

Managing Catalogs in an RMMplex 66

Chapter 4. Setting Up DFSMSrmm Web Service 69

Implementing the DFSMSrmm Web Service 69

Using the DFSMSrmm Web Service Sample Client 69

Setting the Memory Limit for Returned XML Data 70

Debugging the DFSMSrmm Web Service 71

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM)

Provider . 73

Implementing the DFSMSrmm CIM provider 75

Pegasus CIM server prerequisites 75

Installation of the Java 2 Standard Edition SDK 76

DFSMSrmm CIM provider files 76

Required Java libraries . 77

Contents v

First Time Setup . 77

XML schema file adaptions 78

DFSMSrmm specific environment variables 78

Customer options . 78

Pretests . 78

Start and stop the CIM server 79

Export of environmental variables 79

DFSMSrmm CIM provider properties file: rmm.properties 81

DFSMSrmm CIM provider properties file: rmmcust.properties 82

Diagnostic log properties: rmmlog.properties 85

WBEMCLI CIM command line client for Linux 87

cimcli command line client for z/OS 88

Set program control flag . 88

Java client for use with invokeMethod 89

Using the DFSMSrmm CIM Provider with DFSMSrmm Web Service 91

Common tasks for the DFSMSrmm CIM provider 92

Chapter 6. Organizing the Removable Media Library 97

Organizing the Library by Pools 97

Pooling Overview . 97

Pooling Considerations . 99

Calculating Pool Size . 100

Defining Pools in Parmlib Member EDGRMMxx 101

Changing Pool Definitions 102

Designing Rack Pools . 103

Designing Scratch Pools . 103

Requesting and Using Scratch Pools 104

Using SMS Tape Storage Groups for DFSMSrmm Scratch Pooling 105

Making an ACS Storage Group Assignment 106

A Pooling Example . 107

Managing Pools with Job Name and Data Set Name 109

Assigning Policies . 109

Using SMS Management Class to Retain Non-System-Managed Volumes 110

Managing Volumes with Special Dates 112

Using Volumes with Special Expiration Dates 112

Using Management Class to Retain System-Managed Volumes 113

Using the SMS Pre-ACS Interface 115

Managing Volumes with Duplicate Volume Serial Numbers 115

Using Volumes with Duplicate Volume Serial Numbers 116

Changing Duplicate Volume Serial Numbers 117

Adding a Duplicate Volume into a System-Managed Tape Library 117

Managing Undefined Volume Serial Numbers 118

Segregating WORM tapes in separate scratch pools 118

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 119

Using DFSMSrmm with System-Managed Tape Libraries 119

Associating Volumes and System-Managed Libraries 120

Cartridge Entry Processing 120

Manual Cartridge Entry Processing 121

Managing Scratch Pools . 121

Ejecting Volumes from System-Managed Libraries 121

Returning Volumes to the System-Managed Library 123

Volume-Not-In-Library Processing 123

Confirming Volume Movement for System Managed Libraries 125

Defining System-Managed Volume Information 126

Initializing Scratch Volumes in System-Managed Libraries 127

vi z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

||

Using Storage Group Names 128

Using DFSMSrmm with the IBM TotalStorage Peer-to-Peer Virtual Tape Server

(PtP VTS) . 128

Defining Logical Volumes in a Virtual Tape Server Library 129

Logical Volume Cartridge Entry Processing 129

Managing Stacked Volumes 131

Deleting Stacked Volume Information 133

DFSMSrmm Support for Stacked Volumes When Stacked Volume Support

Is Enabled . 133

DFSMSrmm Support for Stacked Volumes When Stacked Volume Support

Is Not Enabled . 137

Enabling Stacked Volume Support 139

Performing a Virtual Export of Logical Volumes 140

Recovering a Logical Volume from an Exported Stacked Volume 141

Setting Up DFSMSrmm for the System-Managed Tape Library 142

Using the System-Managed Tape Library With New Volumes 142

Using the System-Managed Tape Library with Volumes Already Defined in

DFSMSrmm . 142

Using the System-Managed Tape Library with Existing Volumes 143

Using DFSMSrmm with an Existing Automated Tape Library 144

Returning Volumes to Scratch Status 144

Partitioning System-Managed Tape Libraries 145

Sharing a System-Managed Library and a BTLS-Managed Library 146

Moving from a Non-System-Managed to a System-Managed IBM Automated

Tape Library . 147

Chapter 8. Running DFSMSrmm with BTLS 149

Setting Up Scratch Pools for BTLS-Managed Volumes 149

Running DFSMSrmm Inventory Management with BTLS 150

Running EDGINERS for BTLS-managed Volumes 151

Restrictions . 151

Defining Volume Information for BTLS-managed Volumes 152

Returning BTLS-managed Volumes to Scratch 152

Chapter 9. Managing Storage Locations 155

Types of Storage Locations . 155

Defining Storage Locations . 156

Implementing Installation Defined Storage Locations 156

Implementing Storage Locations As Home Locations 158

Managing Shelf Space for Home Locations 159

Reusing Bins in Storage Locations 159

Moving Volumes to Storage Locations 159

Moving Volumes by Location 159

Moving Volumes by Media Shape 159

Moving Volumes Manually 161

Assigning Bins in Storage Locations 162

Changing Storage Locations 162

Deleting Storage Locations . 163

Switching Volumes to Installation Defined Storage Locations 164

Converting from Built-In Storage Locations 164

Going Back to Built-In Storage Locations 165

Chapter 10. Using the Parmlib Member EDGRMMxx 167

Defining Storage Locations: LOCDEF 168

LOCDEF Command Syntax 168

LOCDEF Command Operands 169

Contents vii

|
||

Defining Mount and Fetch Messages: MNTMSG 172

MNTMSG Command Syntax 173

MNTMSG Command Operands 174

Defining System Options: OPTION 175

OPTION Command Syntax 176

OPTION Command Operands 178

Defining Tapes Not Available on Systems: REJECT 200

REJECT Command Syntax 201

REJECT Command Operands 201

Defining Security Classes: SECCLS 202

SECCLS Command Syntax 204

SECCLS Command Operands 204

Defining Pools: VLPOOL . 205

VLPOOL Command Syntax 206

VLPOOL Command Operands 207

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 213

Protecting DFSMSrmm Resources with RACF Profiles 213

Creating Profiles . 215

Setting the Level of Access for the DFSMSrmm Resources 216

Authorizing Resources . 221

General User Functions . 223

Storage Administrator Functions 224

System Programmer Functions 225

Librarian Functions . 226

Inventory Management Functions 226

Operator Functions . 226

Using the Tape Relabeling Resources 227

Creating Audit Trails . 228

Control Data Set Information 228

SMF Audit Information . 228

RACF Audit Information . 229

Using Security Classification Processing 229

Preventing the Use of IEHINITT 229

Controlling RACF Tape Profile Processing 229

Recommendations for Tape Security 233

Recommendations for Using RACF Tape Profile Processing 233

Rejecting Volumes on Specific Systems in a System Complex 234

Maintaining the User Access List 235

Using RACF With DFSMSrmm 235

DFSMSrmm RACF Tape Security Support 235

DFSMSrmm Automatic Tape Security Support Processing 236

Data Set Profile Processing Implications 236

RACF Installation Exit Conversion 236

Using RACF Options for Authorizing RMM TSO Subcommands 237

Using the SAF Interface . 238

SAF Calls for Authorization Checking 238

SAF and RACF Calls for Creating, Updating and Deleting Security Profiles 241

Chapter 12. Using DFSMSrmm Programming Interfaces 245

Releasing Tapes: EDGTVEXT 245

Invocation . 246

Input . 246

Output . 246

Processing . 246

Environment . 246

viii z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Managing DFSMShsm Tapes: EDGDFHSM 247

Invocation . 247

Input . 247

Output . 247

Processing . 248

Environment . 248

Managing System-Managed Tape Library Volumes: EDGLCSUX 248

Input . 249

Output . 249

Processing . 252

Environment . 262

Processing Fetch and Mount Messages: EDGMSGEX 262

Input . 262

Output . 262

Processing . 262

Environment . 262

Processing JES3 Messages: EDG3X71 262

Input . 263

Output . 263

Processing . 263

Environment . 263

Setting Up Parallel Processing 263

Setting Up Parallel Processing Using SMP/E 264

Setting Up Parallel Processing Outside of SMP/E 265

Chapter 13. Using DFSMSrmm Installation Exits 267

Using the DFSMSrmm EDGUX100 Installation Exit 267

Planning to Manage Scratch Pools with EDGUX100 267

Managing Scratch Pools . 269

Using EDGUX100 to Ignore Duplicate or Undefined Volume Serial Numbers 271

Using Vital Record Specification Management Values to Retain Tape

Volumes . 274

Using the EDGUX100 Installation Exit from Pre-ACS Processing 277

Creating Sticky Labels . 277

Modifying DFSMSrmm Label Output 281

Controlling Tape Volume Data Set Recording 282

Changing Location Information with EDGUX100 284

EDGUX100 Exit Routine Processing 284

Setting Up the EDGUX100 Routine Environment 290

Installing the EDGUX100 Routine 291

Removing the EDGUX100 Routine 292

Writing the EDGUX100 Routine 292

EDGUX100 Installation Exit Return Codes 297

Using the DFSMSrmm EDGUX200 Installation Exit 297

EDGUX200 Exit Routine Processing 297

Setting Up the EDGUX200 Routine Environment 298

Installing the EDGUX200 Exit Routine 298

Removing the EDGUX200 Routine 299

Writing the EDGUX200 Exit Routine 299

EDGUX200 Installation Exit Return Codes 301

Chapter 14. Running DFSMSrmm with DFSMShsm 303

Defining DFSMShsm to RACF 303

Authorizing DFSMShsm to DFSMSrmm Resources 303

Authorizing ABARS to DFSMSrmm Resources 304

Setting DFSMSrmm Options When using DFSMShsm 304

Contents ix

Setting DFSMShsm Options When using DFSMSrmm 306

Setting DFSMShsm System Options 306

Setting DFSMShsm Dump Definitions 306

DFSMSrmm Support for DFSMShsm Naming Conventions 306

DFSMSrmm Support for Retention and Pooling 306

Retaining DFSMShsm Tapes using Expiration Dates 307

Defining Vital Record Specifications to Manage DFSMShsm Tapes 307

Retaining All DFSMShsm Tapes 308

Retaining Open Data Sets 308

Retaining Single File Format Migration Tapes 309

Retaining Multifile Format Migration Tapes 310

Retaining Single File Format Backup Tapes 310

Retaining Multifile Format Backup Tapes 310

Retaining and Moving TAPECOPY Tapes or DUPLEX Tapes 311

Retaining and Moving Dump Tapes 312

Retaining and Moving Tapes Written by ABARS 314

Retaining and Moving ABARS Accompany Tapes 315

Retaining DFSMShsm Control Data Set Backup Tapes 316

Retaining Cycles of Dump Tapes 316

Retaining DFSMShsm Tapes Extra Days Retention 318

Disaster Recovery Using DFSMShsm Alternate Tapes with DFSMSrmm . . . 318

Securing Tapes When Running DFSMShsm and DFSMSrmm 319

Recommendations for Using DFSMSrmm and DFSMShsm 319

Chapter 15. Running DFSMSrmm with JES3 321

Preventing JES3 from Validating Volumes 321

Updating JES3 Fetch and Mount Messages 321

Steps for Using the EDG3UX71 USERMOD 321

Using the EDG3IIP1 USERMOD 322

Using the EDG3LVVR USERMOD 322

Using the EDG3UX62 USERMOD to Create and Mount No Label Tapes . . . 323

Chapter 16. Performing Inventory Management 325

Scheduling DFSMSrmm Utilities 325

Running Inventory Management 327

Inventory Management Considerations 327

DFSMSrmm Inventory Management Considerations when Client/Server

Support is Enabled . 328

Allocating Data Sets for Inventory Management 329

Creating an Extract Data Set 331

JCL for EDGHSKP . 333

EXEC Parameters for EDGHSKP 333

SYSIN File for the EDGHSKP EXPROC Utility 338

EDGSPLCS File for the EDGHSKP Utility 340

Running Vital Record Processing 341

JCL for Vital Record Processing 341

Using the Vital Records Retention Report 342

Using the Inventory Management ACTIVITY File 347

How Vital Record Processing Works 348

Running Storage Location Management Processing 353

JCL for Storage Location Management Processing 353

How Storage Location Management Processing Works 353

Running Expiration Processing 355

JCL for Expiration Processing 356

How Expiration Processing Works 356

Running DFSMSrmm Catalog Synchronization 359

x z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

||
||

||

DFSMSrmm Catalog Processing 361

JCL for Catalog Synchronization 361

Synchronizing the DFSMSrmm Control Data Set with User Catalogs in a

Fully Shared Catalog Environment 362

Synchronizing the DFSMSrmm Control Data Set with User Catalogs When

Catalogs Are Not Fully Shared 362

Confirming Global Volume Movement 364

Confirming Global Release Actions 365

Backing Up the Control Data Set 365

JCL for Backing Up the Control Data Set and Journal 367

Backing Up the Journal . 368

JCL for Backing Up the Journal 368

Steps for Automating Control Data Set Backup and Journal Clearing 369

Return Codes for EDGHSKP 369

Chapter 17. Maintaining the Control Data Set 371

DFSMSrmm Considerations when Client/Server Support is Enabled 372

Using EDGBKUP . 373

JCL for EDGBKUP . 373

EXEC Parameters for EDGBKUP 374

DD Statements for EDGBKUP 375

Return Codes for EDGBKUP 376

Additional EDGBKUP Return Code Information 376

Customizing the DSSOPT DD Statement 377

Backing Up the Control Data Set 378

Backing Up the DFSMSrmm Control Data Set and Journal 378

Restoring the Control Data Set 379

Controlling the Control Data Set Recovery Point 379

Restoring the Control Data Set with Forward Recovery 380

Restoring the Control Data Set without Forward Recovery 381

Forward Recovering the Control Data Set 381

Restoring the Control Data Set at a Recovery Site 382

Using Non-DFSMSrmm Utilities to Restore the Control Data Set 383

Reorganizing the Control Data Set 384

Monitoring the Space Used by the Control Data Set 385

Changing the Size of the Control Data Set And Journal 385

Recovering from Control Data Set Update Failures 385

Recovery Processing . 386

Handling I/O Requests Following a Failure 386

Moving the Control Data Set and Journal to a Different Device 387

Steps for Moving the Control Data Set and Journal Using the DFSMSrmm

EDGHSKP Utility with the PARM=’BACKUP’ Parameter 388

Steps for Moving the Control Data Set and Journal Using DFSMSrmm Utility

EDGHSKP Utility with the PARM=’BACKUP(DSS)’ Parameter 389

Moving the Journal using DFSMSrmm Utilities 390

Steps for Moving the Control Data Set using Non-DFSMSrmm Utilities 391

Using EDGUTIL for Tasks Such as Creating and Verifying the Control Data Set 392

JCL for EDGUTIL . 393

EXEC Parameters for EDGUTIL 393

SYSIN File for VERIFY and MEND Processing 397

How EDGUTIL Performs VERIFY and MEND Processing for Volumes 399

Creating or Updating the Control Data Set Control Record 400

Verifying the Contents of the Control Data Set 403

Verifying the Control Data Set and Tape Configuration Database 405

Synchronizing the Contents of the Control Data Set 406

Mending the Control Data Set 406

Contents xi

||
||

Setting up DFSMSrmm Stacked Volume Support 407

Setting up DFSMSrmm Common Time Support 408

Enabling Extended Bin Support 409

EDGSPLCS File for the EDGUTIL Utility 410

Return Codes for EDGUTIL 410

Using EDGSPLCS to Issue Commands to OAM for System-Managed Volumes 411

EXEC Parameters for EDGSPLCS 411

INDD Input File . 412

OUTDD Output File . 413

Return Codes for EDGSPLCS 414

Sharing the DFSMSrmm Control Data Set 414

Running DFSMSrmm Inventory Management When Sharing the Control

Data Set . 414

Running EDGINERS When Sharing the Control Data Set 414

Defining Volume Information When Sharing the Control Data Set 415

Confirming Volume Movement When Sharing the Control Data Set 415

Returning Volumes to Scratch When Sharing the Control Data Set 415

Chapter 18. Initializing and Erasing Tape Volumes 417

Replacing IEHINITT with EDGINERS 418

Using EDGINERS . 418

Initializing and Erasing Volumes Automatically 419

Initializing and Erasing Volumes Manually 419

Initializing and Erasing Volumes Using Multiple Tape Drives 420

JCL for EDGINERS . 420

Using EDGINERS with System-Managed Tape Libraries 430

Controlling Access to EDGINERS 433

How DFSMSrmm Selects an ISO/ANSI Label Version 433

Producing Label Symmetry 433

How EDGINERS Processing Works 434

Return Codes for EDGINERS 435

EDGINERS Examples . 435

Example 1: Write IBM Standard Labels on Three Tapes 435

Example 2: Write an ISO/ANSI Label on a Tape 435

Example 3: Place Two Groups of Serial Numbers on Six Tape Volumes 436

Example 4: Place Serial Numbers on Eight Tape Volumes 436

Example 5: Relabel a Volume 437

Example 6: Automatically Initialize or Erase 3480 Volumes 437

Example 7: Initialize and Erase Volumes in a System-Managed Library 438

Example 8: Initialize 50 Scratch Enhanced Capacity Cartridges 438

Example 9: Erase a Volume 438

Example 10: Initialize Volumes Using Multiple Tape Drives 439

Example 11: Labeling Duplicate Volumes Using EDGINERS 439

Example 12: Selecting EHPCT Volumes for Processing Automatically . . . 439

Chapter 19. Customizing DFSMSrmm 441

Changing the Initial Entry Point to the DFSMSrmm Dialog 441

Adding Local Dialog Extensions 442

Customizing the Local Dialog with ’U’ Line Command 443

Changing the ADD Product Volume Defaults 443

Customizing DFSMSrmm Messages for Report Titles and User Notification 444

Customizing DFSMSrmm Report Titles 444

Customizing Notification Messages and Notes 445

Managing VM Tape Volumes 452

Replenishing Scratch Volumes in a System-Managed Library 453

Automating Backup . 454

xii z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

||
||
||
||
||

Using the LABEL Procedure 454

Processing NL Label Tapes: EDG019VM 455

Input . 455

Output . 455

Processing . 455

Environment . 455

Chapter 20. Using the Problem Determination Aid Facility 457

Roadmap for Using the Problem Determination Aid 457

Planning to Use the PDA Facility 458

Determining How Long to Keep Trace Information 458

Short-Term Trace History . 458

Long-Term Trace History . 458

Determining Problem Determination Aid (PDA) Log Data Set Size 458

Enabling the Problem Determination Aid (PDA) Facility 459

Allocating the Problem Determination Aid (PDA) Log Data Sets 459

Archiving the Problem Determination Aid (PDA) Log Data Sets 460

Copying the Problem Determination Aid (PDA) Log Data Sets to Tape 460

Printing the Problem Determination Aid (PDA) Log Data Sets 460

Chapter 21. Setting Up DFSMSrmm Disposition Processing 461

Implementing DFSMSrmm Disposition Control File Processing 461

Modifying the Contents of the Disposition Control File 462

Selecting the Method Used for Label Processing 465

Modifying Tape Labels . 465

Chapter 22. Running DFSMSrmm with the IBM Tivoli Workload Scheduler

for z/OS . 467

Using a Tivoli Special Resource When Running DFSMSrmm with the IBM

Tivoli Workload Scheduler for z/OS 467

Setting Up DFSMSrmm to Use the IBM Tivoli Workload Scheduler for z/OS 468

Descriptions of DFSMSrmm Jobs to Run with the IBM Tivoli Workload

Scheduler for z/OS . 469

IBM Tivoli Workload Scheduler for z/OS Applications for DFSMSrmm . . . 471

Customizing the IBM Tivoli Workload Scheduler for z/OS Batch Loader

Statements . 473

Setting Up IBM Tivoli Workload Scheduler for z/OS Workstations 473

Event Triggered Tracking . 473

Appendix A. DFSMSrmm Installation Verification Procedures 475

Preparing to Run the IVP . 475

Running the IVP . 477

Appendix B. DFSMSrmm Mapping Macros 481

General-use Programming Interface Mapping Macros 481

OAM Interface: EDGLCSUP 481

Product-sensitive Programming Interface Mapping Macros 486

Installation Exit Mapping Macro: EDGPL100 487

Installation Exit Mapping Macro: EDGPL200 492

Sticky Label Data: EDGSLAB 493

Appendix C. Using DFSMSrmm Samples 499

Appendix D. Evaluating Removable Media Management Needs 503

Contents xiii

Appendix E. Problem Determination Aid Log Data Set Size Work Sheet for

Long-Term Trace History 505

Appendix F. Problem Determination Aid Log Data Set Size Work Sheet for

Short-Term Trace History 507

Appendix G. Accessibility . 509

Using assistive technologies 509

Keyboard navigation of the user interface 509

z/OS information . 509

Notices . 511

Programming interface information 512

Trademarks . 512

Glossary . 513

Index . 527

xiv z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Figures

 1. Defining a Vital Record Specification Chain . 7

 2. Example of a List of Volumes Owned by a Single User 16

 3. Defining DFSMSrmm to z/OS through IEFSSNxx With Subsystem Inactive 28

 4. Updating IKJTSOxx to Authorize RMM Commands 29

 5. Updating IKJTSOxx to Call DFSMSrmm through TSO 29

 6. Converting the SYSTEMS Enqueue to a Local SYSTEM Enqueue 31

 7. Changing an existing definition from SPECIFIC to GENERIC 31

 8. Converting the RESERVE to a SYSTEMS Enqueue 32

 9. Changing an existing SPECIFIC definition to GENERIC 32

 10. Creating a Procedure in SYS1.PROCLIB Using the Recommended JCL 34

 11. Creating a Procedure in SYS1.PROCLIB Using Additional Parameters 34

 12. Allocating DASD Space for the Control Data Set 42

 13. Initializing the Control Data Set . 43

 14. Allocating Space for the Journal . 46

 15. Adding DFSMSrmm to ISPF . 48

 16. Enabling ISPF Data Set List (DSLIST) Support . 50

 17. Starting DFSMSrmm . 52

 18. Starting DFSMSrmm with Additional Parameters 52

 19. Stopping DFSMSrmm . 53

 20. Disabling the DFSMSrmm Subsystem Interface 53

 21. Quiescing the DFSMSrmm Subsystem Interface 54

 22. Defining Minimum Volume Information . 56

 23. Defining Volumes in a System-managed Library 57

 24. Defining Volumes in a Manual Tape Library . 57

 25. Changing SYS1.PARMLIB IEFSSNxx . 59

 26. Restarting the DFSMSrmm Subsystem . 60

 27. Message EDG0103D . 60

 28. Example of DFSMSrmm Common Information Model (CIM) 75

 29. Exports (demo) for LINUX . 80

 30. Exports (demo) for z/OS . 81

 31. The DFSMSrmm CIM Provider Properties File, rmm.properties 82

 32. The DFSMSrmm CIM Provider Properties File, rmmcust.properties 83

 33. The Diagnostic Log Properties, rmmlog.properties 86

 34. Sample enumeration commands against DFSMSrmm resources 88

 35. Sample commands to request DFSMSrmm resources 88

 36. Default VLPOOL Command . 101

 37. Defining Pools with the DFSMSrmm EDGRMMxx Parmlib VLPOOL Command 106

 38. Sample Management Class Routine . 107

 39. Storage Group Routine Sample . 107

 40. Defining Pools with VLPOOL Commands . 108

 41. Defining Vital Record Specifications for Non-System-Managed Volumes 111

 42. Sample Management Class Routine for Managing Non-System-Managed Volumes 112

 43. Assigning Management Class to Data Sets on Tape 114

 44. Special Date 99000 Vital Record Specification 114

 45. Managing Management Classes Using a Data Set Name Mask 115

 46. Specifying a Library Name for a Volume . 120

 47. Requesting the Eject of a Volume . 122

 48. Contents of the shipped table: TAPEUNITS . 124

 49. Changing Volume Type . 129

 50. Searching the Required Location for Logical Volumes 134

 51. Confirming Volume Moves for Exported Volumes 135

 52. Building a List of Stacked Volumes to be Imported from a Single Stacked Volume 136

 53. Building a List of Logical Volumes to be Imported from a Single Stacked Volume 136

© Copyright IBM Corp. 1992, 2007 xv

||
||
||
||

||

||

54. Building a List of Logical Volumes to be Imported from Multiple Stacked Volumes 136

 55. Creating a Volume Export List . 137

 56. Confirming Volume Moves for Exported Volumes 138

 57. Creating a Volume Import List . 139

 58. Converting A Logical Volume to a Physical Volume 141

 59. Reusing Volume Information for a Recovered Volume 141

 60. Sample JCL to Return Volumes to Scratch . 152

 61. Using Media Name to Control Volume Movement 161

 62. Keeping Volumes On-site . 161

 63. Sending a Volume to Another System . 162

 64. Returning a Volume from Another System . 162

 65. Identifying an Installation Defined Storage Location 164

 66. Parmlib Member EDGRMMxx LOCDEF Command Example 168

 67. Parmlib Member EDGRMMxx LOCDEF Command for Defining Storage Locations 168

 68. Parmlib Member EDGRMMxx LOCDEF Command for Defining Shelf and System-Managed

Libraries . 168

 69. Using a Medianame Not Defined in the LOCDEF Command 170

 70. Parmlib Member EDGRMMxx MNTMSG Command Examples for 4-digit Devices 173

 71. Parmlib Member EDGRMMxx MNTMSG Command Syntax 173

 72. Parmlib Member EDGRMMxx OPTION Command Examples 176

 73. Parmlib Member EDGRMMxx OPTION Command Syntax 176

 74. Parmlib Member EDGRMMxx REJECT Command Examples 201

 75. Parmlib Member EDGRMMxx REJECT Command Syntax 201

 76. Parmlib Member EDGRMMxx SECCLS Command Examples 203

 77. Parmlib Member EDGRMMxx SECCLS Command Syntax 204

 78. Parmlib Member EDGRMMxx VLPOOL Command Examples 206

 79. Parmlib Member EDGRMMxx VLPOOL Command Syntax 206

 80. Creating a RACF Profile . 215

 81. Creating a RACF Profile with Audit Options . 216

 82. Limiting the Use of IEHINITT . 229

 83. Using the REJECT Parmlib Option . 235

 84. Creating an ACEE for a User Defined to RACF 239

 85. Creating an ACEE for a User Not Defined to RACF 239

 86. Checking Authorization . 244

 87. Sample USERMOD for Setting Up Running Exits in Parallel 264

 88. Sample JCL for Setting Up Running Exits in Parallel 266

 89. Sample JCL for Setting Up Running Exits in Parallel 266

 90. Defining Pools for a Specific Application . 270

 91. Managing Special Date 99000 with Vital Record Management Value 275

 92. Specifying Data Set Masks for Vital Record Management Values 275

 93. Sample EDGUX100 Installation Exit Sticky Label Support 279

 94. Sample EDGUX100 Installation Exit Sticky Label Support 280

 95. Sample EDGUX100 Installation Exit Sticky Label Support Location 280

 96. Sample EDGUX100 Installation Exit Sticky Label Support Own Labels 280

 97. Sticky Label Area . 281

 98. Addressing the Sticky Label Area . 282

 99. Mapping a Custom Sticky Label . 282

100. Sample Table for Controlling Data Set Recording 283

101. Sample EDGUX100 Pool Selection Table . 288

102. Sample EDGUX100 Installation Exit System Name Table 290

103. Pool Selection Table for System 3 . 290

104. Building an SMP/E USERMOD to Apply the Updated EDGUX100 Exit 291

105. Building an SMP/E USERMOD to Apply the Updated EDGUX200 Exit 299

106. Retaining DFSMShsm Tapes that Require No Movement 308

107. Retaining DFSMShsm Tapes with the DFSMShsm and ABARS Procedure Name 309

108. Keeping All Single File Format Migration Tapes 309

xvi z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

109. Keeping Multifile Format Migration Tapes . 310

110. Keeping Single File Format Backup Tapes . 310

111. Keeping Multifile Format Backup Tapes . 310

112. Keeping Tapes Created by the DFSMShsm TAPECOPY Command and DUPLEX Tape Feature 311

113. Keeping Tapes Used for Dump . 312

114. Managing Cycles of Dumps . 313

115. Retaining and Moving Volumes by Cycles . 313

116. Keeping ABARS Tapes . 315

117. Keeping ABARS Accompany Tapes . 315

118. Keeping DFSMShsm Control Data Set and Journal Backup Tapes 316

119. Moving Dumps to Storage Locations . 316

120. Keeping ABARS Backup Tapes Using GDG Names 317

121. JCL for Adding a DD Statement to the EDGHSKP Job Step 330

122. JCL for Specifying the Extract Data Set . 332

123. JCL for Creating an Extract Data Set . 332

124. Example of JCL for EDGHSKP . 333

125. EDGHSKP EXEC Parameters . 334

126. EDGHSKP SYSIN File . 339

127. Sample JCL for Allocating the EDGSPLCS File prior to EDGHSKP Processing 341

128. Example of JCL for Vital Record Specification Processing 341

129. Example of JCL for Trial Run Vital Record Specification Processing 341

130. Sample Vital Records Retention Report . 343

131. Example of JCL for Storage Location Management Processing 353

132. Example of JCL for Storage Location Management Processing Using the LOCATION,

INSEQUENCE, and REASSIGN Parameters . 353

133. Automatically Ejecting Volumes from System-managed Libraries 354

134. Example of JCL for Expiration Processing . 356

135. Example of JCL for Expiration Processing . 356

136. Expiration Processing Report . 358

137. Example of JCL for Catalog Synchronization Processing 361

138. Example of JCL for Trial Run Catalog Synchronization Processing 361

139. Example of JCL for Backing Up the Control Data Set and the Journal to Tape 367

140. Example of JCL for Backing Up the Control Data Set and Journal to DASD 368

141. Example of JCL for Backing Up and Clearing the Journal 368

142. JCL Example for EDGBKUP . 374

143. EDGBKUP EXEC Parameters . 374

144. DFSMSdss Commands that are Issued by DFSMSrmm 377

145. Restoring the Control Data Set with Forward Recovery 380

146. JCL Example for Backing Up the Control Data Set and Journal 391

147. Creating the Control Data Set . 393

148. Updating the Control Data Set . 393

149. Verifying the Contents of the Control Data Set 393

150. Mending the Control Data Set . 393

151. EDGUTIL EXEC Parameters . 394

152. EDGUTIL SYSIN File . 397

153. EDGUTIL SYSIN Commands . 401

154. Example of JCL for VERIFY(STORE) . 403

155. Sample EDGUTIL SYSPRINT Output . 404

156. Sample JCL for Verifying the Control Data Set and the TCDB 406

157. Changing Volume Type and Volume Location . 407

158. Sample JCL for Allocating the EDGSPLCS File during EDGUTIL Processing 410

159. EDGSPLCS EXEC Parameters . 411

160. JCL for EDGINERS Automatic Processing . 420

161. JCL for EDGINERS Manual Processing . 420

162. JCL for Initializing Volumes with ISO/ANSI Version 4 VOL1 and HDR1 Labels 421

163. EDGINERS EXEC Parameters . 422

Figures xvii

||

||
||

||
||

||
||

||
||

||

164. EDGINERS SYSIN Commands . 427

165. Defining Scratch Volumes to be Initialized . 431

166. Changing the Initialization Action for a Volume 432

167. Using IEBGENER . 433

168. Writing IBM Standard Labels on Three Tapes . 435

169. Writing an ISO/ANSI Label on a Tape . 436

170. Numbering Tape Volumes . 436

171. Placing Serial Numbers on Eight Tape Volumes 437

172. Relabeling a Volume . 437

173. Automatically Initialize or Erase 3480 Volumes 437

174. Initialize and Erase Volumes in a System-Managed Library 438

175. Initialize 50 Scratch Enhanced Capacity Cartridges 438

176. Erase a Volume . 438

177. Initialize Volumes Using Multiple Tape Drives . 439

178. Labeling Duplicate Volumes Using EDGINERS 439

179. Selecting Volumes for Automatic Processing . 439

180. RMMISPF Exec Syntax Diagram . 441

181. Adding DFSMSrmm Librarian Option to ISPF . 442

182. Before Modifying the Trailer 1 for EDGRPTD . 444

183. After Modifying the Trailer 1 for EDGRPTD . 444

184. Notify Owner Messages . 446

185. Default Notification Text . 446

186. Modified Messages . 446

187. Modified Notification Text . 447

188. Notifying Product Owner . 447

189. Notify Product Owner Messages . 447

190. Customizing Message Numbers 2450-2463 for Release Notification 449

191. Example of Customizing Message Numbers 2450-2463 for Release Notification 450

192. Customizing Message Numbers 2720-2739 for Product Notification 451

193. Example of Customizing Message Numbers 2720-2739 for Product Notification 452

194. EDGXPROC Procedure . 454

195. Example BACKUPPROC procedure . 454

196. Sample Label Procedure . 455

197. Disposition Control File Record Format . 462

198. Sample JCL to Request Disposition Processing 465

199. Default Label Format for a Tape Cartridge . 465

200. Default Label Format for a Round Tape . 466

201. Overriding Vital Record Specification Management Processing with the RMM CHANGEDATASET

TSO Subcommand . 469

202. DFSMSrmm Primary Option Menu . 477

203. DFSMSrmm Volume Menu . 478

204. DFSMSrmm Add Scratch Volumes Panel . 478

205. Sample Data Set Information . 479

206. JCL for Allocating and Cataloging PDA Log Data Sets 507

xviii z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Tables

 1. Character Sets . xxviii

 2. Special Characters Used in Syntax . xxviii

 3. DFSMSrmm Movement Priority . 8

 4. How the DFSMSrmm Running Mode Affects Tape Mount Validation 19

 5. DFSMSrmm Resource Symbolic Names . 32

 6. Data Sets Requiring Access by the DFSMSrmm RACF User ID 37

 7. Creating DFSMSrmm Parmlib Definitions . 38

 8. DFSMSrmm Control Data Set DASD Space Requirements 40

 9. DFSMSrmm Journal DASD Space Requirements 45

10. Default Libraries to Concatenate . 49

11. Libraries needed for DFSMSrmm Web service . 70

12. Libraries Needed for DFSMSrmm CIM Provider 77

13. Common tasks for the DFSMSrmm CIM provider 92

14. DFSMSrmm Volumes in a Pool Determined by Pool Prefix 100

15. SMS Read-only Variables Set by DFSMSrmm 106

16. SMS Read-only Variables Set by DFSMSrmm . 111

17. DFSMSrmm Entry Processing Decisions . 130

18. Differences between Built-in and Installation Defined Storage Locations 156

19. Storing Media of the Same Shape . 160

20. Storing Media of Different Shapes . 160

21. How OPMODE Honors the Settings of Various Options 189

22. How OPMODE Value Affects System-Managed Tape Library Support 190

23. Resources You Protect with RACF Profiles . 213

24. Authorized Functions . 216

25. Suggested Resource Access to Limit Scope of Tasks 221

26. Suggested Resource Access Without Limited Tasks 222

27. General User Functions . 223

28. Storage Administrator Functions . 224

29. System Programmer Functions . 225

30. Librarian Functions . 226

31. Inventory Management Functions . 226

32. Operator Functions . 227

33. RACF Processing Performed by DFSMSrmm . 231

34. Installation Exits Used by DFSMSrmm . 245

35. OAM Installation Exits . 248

36. EDGLCSUX Return and Reason Codes Returned in Register 15 and Register 0 250

37. EDGLCSUX Return and Reason Codes Based on DFSMSrmm Reason Code Setting 250

38. Processing for the Change Use Attribute, Cartridge Entry and Cartridge Eject Parameter List 253

39. Processing for the Change Use Attribute Parameter List 259

40. Processing for the Cartridge Entry Parameter List 259

41. Processing for the Cartridge Eject Parameter List 259

42. Processing for the Volume-Not-In-Library Parameter List 260

43. DFSMSrmm OAM Return Codes from EDGLCSUX Register 15 261

44. EDGUX100 Installation Exit Return Codes . 297

45. EDGUX200 Installation Exit Return Codes . 301

46. Authorization Required to Use Scratch Tapes with DFSMShsm 304

47. Authorization Required to Use DFSMShsm with a DFSMShsm Scratch Pool 304

48. Authorization Required to Use DFSMSrmm with ABARS 304

49. Scheduling DFSMSrmm Utilities . 326

50. DFSMSrmm EDGHSKP Data Sets . 329

51. DFSMSrmm Extract Data Set DASD Space Requirements 331

52. DFSMSrmm Movement Priority Default Values 352

53. EDGHSKP Return Codes . 369

© Copyright IBM Corp. 1992, 2007 xix

||

54. DFSMSrmm EDGBKUP Data Sets . 375

55. EDGBKUP Return Codes . 376

56. EDGUTIL Return Codes . 410

57. INDD Input File for the EDGSPLCS Utility . 412

58. EDGSPLCS Return Codes . 414

59. EDGINERS Return Codes . 435

60. Customizing Report Titles . 444

61. Setting the Message Route Code . 463

62. Coding Sticky Label Text . 463

63. IBM Tivoli Workload Scheduler for z/OS Applications 472

64. Constants for EDGLCSUP . 483

65. Constants for EDGPL100 . 490

66. Constants for EDGPL200 . 493

67. Constants for EDGSLAB . 496

68. SAMPLIB and SMPSTS Members . 499

69. Evaluating Removable Media Management Needs 503

xx z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

||
||

||
||
||
||

About This Document

This document is intended for storage administrators and system programmers who

are responsible for implementing and customizing DFSMSrmm™.

Before using this document, you should read z/OS Migration for detailed migration

information for DFSMSrmm as well as other DFSMS™ functional components.

Additionally, you should have installed DFSMSrmm with SMP/E using the directions

in z/OS Program Directory.

How to Use this Document

This document explains how to implement DFSMSrmm for users with no existing

media management system.

Refer to these topics to implement DFSMSrmm:

 Chapter 1, “Introducing DFSMSrmm,” on page 1

 Chapter 2, “Implementing DFSMSrmm,” on page 25

 Chapter 3, “Setting Up DFSMSrmm Client and Server Systems,” on page 63

 Chapter 4, “Setting Up DFSMSrmm Web Service,” on page 69

 Chapter 5, “Setting Up DFSMSrmm Common Information Model (CIM) Provider,”

on page 73

 Chapter 6, “Organizing the Removable Media Library,” on page 97

 Chapter 7, “Running DFSMSrmm with System-Managed Tape Libraries,” on

page 119

 Chapter 8, “Running DFSMSrmm with BTLS,” on page 149

 Chapter 9, “Managing Storage Locations,” on page 155

 Chapter 10, “Using the Parmlib Member EDGRMMxx,” on page 167

 Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on page

213

 Chapter 12, “Using DFSMSrmm Programming Interfaces,” on page 245

 Chapter 13, “Using DFSMSrmm Installation Exits,” on page 267

 Chapter 14, “Running DFSMSrmm with DFSMShsm,” on page 303

 Chapter 15, “Running DFSMSrmm with JES3,” on page 321

 Chapter 16, “Performing Inventory Management,” on page 325

 Chapter 17, “Maintaining the Control Data Set,” on page 371

 Chapter 18, “Initializing and Erasing Tape Volumes,” on page 417

 Appendix A, “DFSMSrmm Installation Verification Procedures,” on page 475

To set up and run DFSMSrmm utilities, refer to:

 Chapter 16, “Performing Inventory Management,” on page 325

 Chapter 17, “Maintaining the Control Data Set,” on page 371

 Chapter 18, “Initializing and Erasing Tape Volumes,” on page 417

To customize DFSMSrmm, refer to:

 Chapter 12, “Using DFSMSrmm Programming Interfaces,” on page 245

 Chapter 13, “Using DFSMSrmm Installation Exits,” on page 267

 Chapter 19, “Customizing DFSMSrmm,” on page 441

 Chapter 20, “Using the Problem Determination Aid Facility,” on page 457

 Chapter 21, “Setting Up DFSMSrmm Disposition Processing,” on page 461

 Chapter 22, “Running DFSMSrmm with the IBM Tivoli Workload Scheduler for

z/OS,” on page 467

© Copyright IBM Corp. 1992, 2007 xxi

How to Find Samples in this Document

Throughout this document, when a task has an available sample, we point you to

the sample using a figure like the one that follows:

DFSMSrmm Sample Provided in SAMPLIB

CBRUXENT Programming Interface to EDGLCSUX

 See Appendix C, “Using DFSMSrmm Samples,” on page 499 for a list of the

DFSMSrmm supplied samples.

Required product knowledge

You should be familiar with several products:

v RACF®, a component of the Security Server for z/OS™ for defining resources and

creating access lists

v ISPF, for using and customizing the DFSMSrmm ISPF dialog

v DFSMShsm™, for customizing the interaction between DFSMShsm and

DFSMSrmm

v OAM, for customizing the interface between DFSMSrmm and OAM

v DFSMSdss™, for backing up the DFSMSrmm control data set and journal

Referenced documents

These documents have additional information about DFSMSrmm:

 Document Title Order Number

z/OS DFSMSrmm Application Programming

Interface

SC26-7403

z/OS DFSMSrmm Diagnosis Guide GY27-7619

z/OS DFSMSrmm Guide and Reference SC26-7404

z/OS DFSMSrmm Reporting SC26-7406

This topic also refers to these documents:

 Document Title Order Number

TCP/IP: Performance Tuning Guide SC31-7188

z/OS Communications Server: IP Configuration Guide SC31-8775

Basic Tape Library Support Version 1 Release 1 User’s

Guide and Reference

SC26-7016

Data Facility Removable Media Manager for MVS/DFP

Version 3 Program Offering

SC26-7011

z/OS DFSORT Application Programming Guide SC26-7523

IBM 3590 High Performance Tape Subsystem Introduction

and Planning Guide

GA32-0330

IBM TotalStorage Enterprise Automated Tape Library (3494)

Introduction and Planning Guide

GA32-0449

xxii z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Document Title Order Number

IBM TotalStorage Enterprise Automated (3494) Tape Library

Operator Guide

GA32-0448

TotalStorage Automated Tape Library (3495) Introduction GA32-0234

IBM TotalStorage Enterprise Automated Tape Library (3495)

Operator’s Guide

GA32-0235

MVS Batch Local Shared Resources GC28-1469

z/OS DFSMS Installation Exits SC26-7396

z/OS DFSMS OAM Planning, Installation, and Storage

Administration Guide for Tape Libraries

SC35-0427

z/OS DFSMS Using Data Sets SC26-7410

z/OS DFSMS Using Magnetic Tapes SC26-7412

z/OS DFSMSdfp Diagnosis GY27-7618

z/OS DFSMShsm Implementation and Customization Guide SC35-0418

z/OS JES3 Initialization and Tuning Guide SA22-7549

z/OS MVS JCL Reference SA22-7597

z/OS MVS Planning: Global Resource Serialization SA22-7600

z/OS MVS System Commands SA22-7627

z/OS MVS System Management Facilities (SMF) SA22-7630

z/OS MVS System Messages, Vol 1 (ABA-AOM) SA22-7631

z/OS MVS System Messages, Vol 2 (ARC-ASA) SA22-7632

z/OS MVS System Messages, Vol 3 (ASB-BPX) SA22-7633

z/OS MVS System Messages, Vol 4 (CBD-DMO) SA22-7634

z/OS MVS System Messages, Vol 5 (EDG-GFS) SA22-7635

z/OS MVS System Messages, Vol 6 (GOS-IEA) SA22-7636

z/OS MVS System Messages, Vol 7 (IEB-IEE) SA22-7637

z/OS MVS System Messages, Vol 8 (IEF-IGD) SA22-7638

z/OS MVS System Messages, Vol 9 (IGF-IWM) SA22-7639

z/OS MVS System Messages, Vol 10 (IXC-IZP) SA22-7640

z/OS MVS Using the Subsystem Interface SA22-7642

OS/390 Program Directory

z/OS Security Server RACF Security Administrator’s Guide SA22-7683

z/OS Security Server RACF System Programmer’s Guide SA22-7681

z/OS TSO/E Customization SA22-7783

z/OS ISPF User’s Guide Vol I SC34-4822

ServerPac: Installing Your Order

Accessing z/OS DFSMS information on the Internet

In addition to making softcopy information available on CD-ROM, IBM provides

access to z/OS softcopy information on the Internet. To view, search, and print z/OS

information, go to the z/OS Internet Library:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

About This Document xxiii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM®

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS systems to

access IBM message explanations using LookAt from a TSO/E command line

(for example: TSO/E prompt, ISPF, or z/OS UNIX® System Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in the

LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book

might refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. Starting with z/OS V1R4, z/OS

users can obtain the IBM Health Checker for z/OS from the z/OS Downloads page

at http://www.ibm.com/servers/eserver/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

Notational conventions

This section explains the notational conventions used in this document.

xxiv z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html
http://www.ibm.com/servers/eserver/zseries/zos/downloads/

How to read syntax diagrams

Throughout this library, diagrams are used to illustrate the programming syntax.

Keyword parameters are parameters that follow the positional parameters. Unless

otherwise stated, keyword parameters can be coded in any order. The following list

tells you how to interpret the syntax diagrams:

v Read the diagrams from left-to-right, top-to-bottom, following the main path line.

Each diagram begins on the left with double arrowheads and ends on the right

with two arrowheads facing each other.

�� Syntax Diagram ��

v If a diagram is longer than one line, each line to be continued ends with a single

arrowhead and the next line begins with a single arrowhead.

�� LISTDATASET

LD
 data_set_name VOLUME(volume_serial) �

�
1

FILESEQ

(

physical_file_sequence_number

)

SEQ

 ��

v Required keywords and values appear on the main path line. You must code

required keywords and values.

�� REQUIRED_KEYWORD ��

If several mutually exclusive required keywords or values exist, they are stacked

vertically in alphanumeric order.

�� REQUIRED_KEYWORD_OR_VALUE_1

REQUIRED_KEYWORD_OR_VALUE_2
 ��

v Optional keywords and values appear below the main path line. You can choose

not to code optional keywords and values.

��

KEYWORD
 ��

If several mutually exclusive optional keywords or values exist, they are stacked

vertically in alphanumeric order below the main path line.

��

KEYWORD_OR_VALUE_1

KEYWORD_OR_VALUE_2

 ��

v An arrow returning to the left above a keyword or value on the main path line

means that the keyword or value can be repeated. The comma means that each

keyword or value must be separated from the next by a comma.

��

�

 ,

REPEATABLE_KEYWORD

��

About This Document xxv

v An arrow returning to the left above a group of keywords or values means more

than one can be selected, or a single one can be repeated.

��

�

,

REPEATABLE_KEYWORD_OR_VALUE_1

REPEATABLE_KEYWORD_OR_VALUE_2

 ��

v A word in all uppercase is a keyword or value you must spell exactly as shown.

In this example, you must code KEYWORD.

�� KEYWORD ��

If a keyword or value can be abbreviated, the abbreviation is discussed in the

text associated with the syntax diagram.

v If a diagram shows a character that is not alphanumeric (such as parentheses,

periods, commas, and equal signs), you must code the character as part of the

syntax. In this example, you must code KEYWORD=(001,0.001).

�� KEYWORD=(001,0.001) ��

v If a diagram shows a blank space, you must code the blank space as part of the

syntax. In this example, you must code KEYWORD=(001 FIXED).

�� KEYWORD=(001 FIXED) ��

v Default keywords and values appear above the main path line. If you omit the

keyword or value entirely, the default is used.

��
 DEFAULT

KEYWORD

��

v A word in all lowercase italics is a variable. Where you see a variable in the

syntax, you must replace it with one of its allowable names or values, as defined

in the text.

��
 (1)

variable

��

Notes:

1 An example of a syntax note.

v References to syntax notes appear as numbers enclosed in parentheses above

the line. Do not code the parentheses or the number.

�� KEYWORD ��

v Some diagrams contain syntax fragments, which serve to break up diagrams that

are too long, too complex, or too repetitious. Syntax fragment names are in

mixed case and are shown in the diagram and in the heading of the fragment.

The fragment is placed below the main diagram.

xxvi z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

�� Reference to Syntax Fragment ��

Syntax Fragment:

 1ST_KEYWORD,2ND_KEYWORD,3RD_KEYWORD

The following is an example of a syntax diagram.

�� DELETEOWNER

DO
 owner_ID

newowner
 ��

newowner

 (1)

NEWOWNER(new_owner_ID)

Notes:

1 Must be specified if the owner owns one or more volumes.

The possible valid versions of the RMM DELETEOWNER command are:

RMM DELETEOWNER owner

RMM DO owner

RMM DELETEOWNER owner NEWOWNER(new_owner)

RMM DO owner NEWOWNER(new_owner)

How to abbreviate commands and operands

The TSO abbreviation convention applies for all DFSMSrmm commands and

operands. The TSO abbreviation convention requires you to specify as much of the

command name or operand as is necessary to distinguish it from the other

command names or operands.

Some DFSMSrmm keyword operands allow unique abbreviations. All unique

abbreviations are shown in the command syntax diagrams.

How to use continuation characters

The symbol - is used as the continuation character in this document. You can use

either - or +.

- Do not ignore leading blanks on the continuation statement

+ Ignore leading blanks on the continuation statement

Delimiters

When you type a command, you must separate the command name from the first

operand by one or more blanks. You must separate operands by one or more

blanks or a comma. Do not use a semicolon as a delimiter because any character

you enter after a semicolon is ignored.

Character sets

To code job control statements, use characters from the character sets in Table 1.

Table 2 on page xxviii lists the special characters that have syntactical functions in

job control statements.

About This Document xxvii

Table 1. Character Sets

Character Set Contents

Alphanumeric Alphabetic

Numeric

Capital A through Z

0 through 9

National

(See note)

“At” sign

Dollar sign

Pound sign

@ (Characters that can be

$ represented by hexadecimal

values X'7C', X'5B', and X'7B')

Special Comma

Period

Slash

Apostrophe

Left parenthesis

Right parenthesis

Asterisk

Ampersand

Plus sign

Hyphen

Equal sign

Blank

,

.

/

'

(

)

*

&

+

-

=

EBCDIC text EBCDIC printable character set Characters that can be represented

by hexadecimal X'40' through X'FE'

Note: The system recognizes the following hexadecimal representations of the U.S.

National characters; @ as X'7C'; $ as X'5B'; and # as X'7B'. In countries other than the

U.S., the U.S. National characters represented on terminal keyboards might generate a

different hexadecimal representation and cause an error. For example, in some countries

the $ character may generate a X'4A'.

 Table 2. Special Characters Used in Syntax

Character Syntactical Function

, To separate parameters and subparameters

= To separate a keyword from its value, for example, BURST=YES

(�) To enclose subparameter list or the member name of a PDS or PDSE

& To identify a symbolic parameter, for example, &LIB

&& To identify a temporary data set name, for example, &&TEMPDS, and, to

identify an in-stream or sysout data set name, for example, &&PAYOUT

. To separate parts of a qualified data set name, for example, A.B.C., or

parts of certain parameters or subparameters, for example,

nodename.userid

* To refer to an earlier statement, for example, OUTPUT=*.name, or, in

certain statements, to indicate special functions: //label CNTL * //ddname

DD * RESTART=* on the JOB statement

’ To enclose specified parameter values which contain special characters

(blank) To delimit fields

xxviii z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Summary of Changes

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

You may notice changes in the style and structure of some content in this

document—for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

Summary of Changes for SC26-7405-07 z/OS Version 1 Release 9

This document contains information previously presented in z/OS Version 1

Release 8 DFSMSrmm Implementation and Customization (SC26-7405-06).

The following sections summarize the changes to that information.

New Information

This edition includes the following new information:

v Updated the EXEC parameters for EDGINERS to include recording format

EEFMT2.

v Added information to “Creating or Updating the Control Data Set Control Record”

on page 400 for the CSDID(id) operand.

v Added information to “SYSIN File for the EDGHSKP EXPROC Utility” on page

338 for the new EXPROC /EDGSPLCS operands supported by the EDGHSKP

utility.

v Added “Using EDGSPLCS to Issue Commands to OAM for System-Managed

Volumes” on page 411 for the new EDGSPLCS utility.

v Updated “Updating GRSRNLxx (Optional)” on page 31, “OPTION Command

Operands” on page 178, and “SYSIN File for VERIFY and MEND Processing” on

page 397 with information about the CDS serialization support.

v Updated “Step 10: Defining Parmlib Member EDGRMMxx” on page 38 and

Chapter 10, “Using the Parmlib Member EDGRMMxx,” on page 167 with

information about the new MEMBER operand for the OPTION command in

parmlib member EDGRMMxx.

v Updated Chapter 5, “Setting Up DFSMSrmm Common Information Model (CIM)

Provider,” on page 73 with new information about the DFSMSrmm CIM provider.

Changed Information

The following information was changed in this edition:

v Return code 12 for EDGHSKP was updated in “Return Codes for EDGHSKP” on

page 369.

v Macros were updated in Appendix B, “DFSMSrmm Mapping Macros,” on page

481.

© Copyright IBM Corp. 1992, 2007 xxix

Summary of Changes for SC26-7405-06 z/OS Version 1 Release 8

This document contains information previously presented in z/OS Version 1

Release 7 DFSMSrmm Implementation and Customization (SC26-7405-05).

The following sections summarize the changes to that information.

New Information

This edition includes the following new information:

v Added information about DFSMSrmm support for the IBM TotalStorage

Enterprise Tape System 3592 tapes.

– Updated the EXEC parameters for EDGINERS to include media types:

MEDIA9 and MEDIA10, and recording format EFMT2.

– Updated the EDGPL100 cross reference to add _OLD to the field names:

PL100_TDSI1 and PL100_TDSI2.

– Updated information in “Volume-Not-In-Library Processing” on page 123.
v Added information about DFSMSrmm Enterprise Level Interface.

– Added information to Chapter 5, “Setting Up DFSMSrmm Common

Information Model (CIM) Provider,” on page 73 about the dependency on an

xmlCIM compliant product that supports Java, such as the OpenPegasus C++

CIMOM from The Open Group, in order to use the DFSMSrmm CIM provider.

Also, the CIM server can now run either on a non-z/OS server, or directly on

z/OS V1R8 or higher. The CIM client/browser can run on any platform

supported by the provider of that client or application.

– Added “Modifying Notify Messages” on page 448 to enable you to use a

different message format for Internet mail than for non-Internet mail.

– Added information on the operand value supported by the EDGRMMxx

parmlib member, OPTION NOTIFY(YES|NO).
v Added “Step 25: Installing PTFs and the SMP/E Maintenance to DFSMSrmm” on

page 62 to Chapter 2, “Implementing DFSMSrmm,” on page 25.

v Added “Recommendations for Tape Security” on page 233.

v Added information on the new operand value supported by the EDGRMMxx

parmlib member, OPTION TPRACF(CLEANUP), for Tape Data Set Authorization.

v Added information about implementing common time support. See “Setting up

DFSMSrmm Common Time Support” on page 408 for additional details.

v Added information about vital record specification policy management to

“Assigning Policies” on page 109 and changed how release options are assigned

for data sets not retained for vital record specification.

v Added information about using the vital records retention report. See “Using the

Vital Records Retention Report” on page 342 for additional details.

v Added information about enabling direct entry into the DFSMSrmm ISPF dialog

from the ISPF Data Set List Utility and also from the ISMF data set and

mountable tape volumes lists. See “Enabling ISPF Data Set List (DSLIST)

Support” on page 49 for additional details.

Changed Information

The following information was changed in this edition:

v JOBCAT and STEPCAT DD statements were deactivated in z/OS V1R7;

references to them have been deleted.

xxx z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Summary of Changes for SC26-7405-05 z/OS Version 1 Release 7

This document contains information previously presented in z/OS Version 1

Release 6 DFSMSrmm Implementation and Customization (SC26-7405-04).

The following sections summarize the changes to that information.

New Information

This edition includes the following new information:

v Chapter 4, “Setting Up DFSMSrmm Web Service,” on page 69 describes how to

implement and use the DFSMSrmm Web service.

v Chapter 5, “Setting Up DFSMSrmm Common Information Model (CIM) Provider,”

on page 73 describes how to implement and use the DFSMSrmm CIM provider.

v It is no longer necessary to have CONTROL access to

STGADMIN.EDG.MASTER to run daily DFSMSrmm tasks. New RACF profiles

provide better control access to DFSMSrmm resources. You can use some or all

of the new profiles to allow a subset of functions to be authorized. See

Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on page 213

for additional details.

v “Adding a Duplicate Volume into a System-Managed Tape Library” on page 117

describes how to add a duplicate volume into a system-managed tape library.

v Added new information about DFSMSrmm protection against tape erasure and

data loss. New resources were added.

v Added new information about controlling the control data set recovery point.

v Added additional information about CATSYNCH processing.

Changed Information

The following information was changed in this edition:

v SYSALLDA devices have replaced SYSDA devices in the documentation.

Summary of Changes for SC26-7405-04 z/OS Version 1 Release 6

This document contains information previously presented in z/OS Version 1

Release 5 DFSMSrmm Implementation and Customization (SC26-7405-03).

The following sections summarize the changes to that information.

New Information

This edition includes the following new information:

v Added new information about setting up DFSMSrmm client/server for z/OS

systems.

v Added additional considerations for running DFSMSrmm utilities when

client/server support is used.

v Added new EDGRMMxx parmlib member OPTION command operands for

client/server support and VLPOOL command operands for release processing.

v Added new samples to the list of DFSMSrmm-supplied samples.

v Added information about DFSMSrmm support for the IBM TotalStorage

Enterprise Tape System 3592 WORM tapes.

– Added information about the validation that DFSMSrmm performs for WORM

tapes.

– Added WORM pooling information.

– Added information for the EDGRMMxx parmlib member VLPOOL

MASTEROVERWRITE operand.

Summary of Changes xxxi

Changed Information

The following information was changed in this edition:

v Added client/server-related terms to the glossary.

Summary of Changes for SC26-7405-03 z/OS Version 1 Release 5

This document contains information previously presented in z/OS Version 1

Release 3 DFSMSrmm Implementation and Customization (SC26-7405-02).

The following sections summarize the changes to that information.

New Information

This edition includes the following new information:

v DFSMSrmm provides added protection for data sets and volumes by supporting

the RACF name-hiding function.

v DFSMSrmm provides capabilities to set a default media name for your

installation that is used when adding a volume, defining a pool, or using the

DFSMSrmm utility EDGINERS to initialize or erase volumes.

Changed Information

The following information was changed in this edition:

v The DFSMSrmm utility EDGINERS EXEC parameters MEDIATYPE and

RECORDINGFORMAT have been changed to support the IBM TotalStorage™

Enterprise Tape System 3592.

Summary of Changes for SC26-7405-02 z/OS Version 1 Release 3

This document contains information previously presented in z/OS Version 1

Release 3 DFSMSrmm Implementation and Customization (SC26-7405-01).

The following sections summarize the changes to that information.

New Information

This edition includes the following new information:

v You can back up the DFSMSrmm control data set and journal at any time. New

JCL examples have been added that show how to request a back up of the

DFSMSrmm control data set and how to clear the journal.

v You can control whether DFSMSrmm manages or ignores volumes based on

whether they are defined to DFSMSrmm or not. You can use RACF profiles to

separate authorization checking for volumes that are defined DFSMSrmm and

that are not defined to DFSMSrmm.

v You can use volumes with duplicate volume serial numbers. Information and

examples about how to define volumes with duplicate volume serial numbers

have been added. You can also use the DFSMSrmm EDGINERS utility to

initialize duplicate volumes.

v DFSMSrmm provides added protection for data sets and volumes by providing

command authorization support using the DFSMSrmm EDGRMMxx parmlib

OPTION COMMANDAUTH operand.

Changed Information

The following information was changed in this edition:

v Information about backing up and restoring the control data set and journal.

xxxii z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v Information about creating an extract data set has been updated as a result of

Reader’s Comment Form 26541.

v Information about labeling ANSI/ISO Version 3 and Version 4 tapes has been

clarified.

Summary of Changes for SC26-7405-01 z/OS Version 1 Release 3

This document contains information previously presented in z/OS Version 1

Release 1 DFSMSrmm Implementation and Customization (SC26-7405-00).

The following sections summarize the changes to that information.

New Information

This edition includes the following new information:

v Additional DFSMSrmm resource symbolic names used with global resource

serialization have been added.

v DFSMSrmm Report Generator set up information has been added.

v DFSMSrmm minimal bin support has been added.

v DFSMSrmm reporting has been enhanced to support production of an extended

extract data set that contains a new type of record which is a combination of the

data set record and the volume record.

v DFSMSrmm enhancements for supporting storage location management

including allowing storage locations to defined as home locations.

Changed Information

The following information was changed in this edition:

v DFSMSrmm pre-ACS support has been enhanced so that you can control how

policy information is assigned using the EDGRMMxx PARMLIB OPTION

command PREACS and SMSACS operands.

v The DFSMSrmm installation exit EDGUX200 has been modified with the addition

of fields for description and owner information.

Moved Information

The following information was moved from this edition:

v Information about customizing DSSOPT has been moved to Chapter 17,

“Maintaining the Control Data Set,” on page 371.

v DFSMSrmm system code and user code information has been moved to the

z/OS DFSMSrmm Diagnosis Guide.

Summary of Changes xxxiii

xxxiv z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 1. Introducing DFSMSrmm

DFSMSrmm™ is a z/OS feature. In your enterprise, you probably store and manage

removable media in several types of media libraries. For example, in addition to

your traditional tape library, a room with tapes, shelves, and drives, you might have

several automated, virtual, and manual tape libraries. You probably also have both

on-site libraries and off-site storage locations, also known as vaults or stores.

With DFSMSrmm, you can manage your removable media as one enterprise-wide

library across systems and sysplexes. DFSMSrmm manages your installation’s tape

volumes and the data sets on those volumes. DFSMSrmm also manages the

shelves where volumes reside in all locations except in automated tape libraries.

DFSMSrmm manages all tape media, such as cartridge system tapes and 3420

reels, as well as other removable media you define to it. For example, DFSMSrmm

can record the shelf location for optical disks and track their vital record status; it

does not manage the objects on optical disks.

This topic discusses basic tape management concepts and introduces terminology

used throughout the DFSMSrmm publications and in the DFSMSrmm Interactive

System Productivity Facility (ISPF) dialog. This chapter also discusses tape

management tasks you can perform with DFSMSrmm.

What is a RMMplex?

An RMMplex is one or more z/OS systems each running a DFSMSrmm subsystem

sharing a control data set. An RMMplex can optionally include one or more

DFSMSrmm subsystems as servers, one or more client subsystems, in addition to

standard DFSMSrmm subsystems. The server subsystems and standard

subsystems have direct access to and share the DFSMSrmm control data set. The

client systems have no direct access to the DFSMSrmm control data set, but share

the control data set via the server. All systems that share a control data set in this

way are part of the same RMMplex.

What Libraries and Locations Can DFSMSrmm Manage?

You decide where to store your removable media based on how often you access

the media and for what purpose you retain the media. For example, you might keep

volumes that are frequently accessed in an automated tape library. You probably

use at least one storage location to retain volumes for disaster recovery and audit

purposes. You might also have locations to which you send volumes for further

processing. These locations might be other data centers within your company or at

your customers and vendors locations.

DFSMSrmm can manage:

v A removable media library, which incorporates all other libraries, such as:

– System-managed tape libraries; for example, the automated IBM

TotalStorage™ Enterprise Automated Tape Library (3494), IBM TotalStorage

Virtual Tape Servers (VTS), and manual tape libraries

– Non-system-managed tape libraries or traditional tape libraries

v Storage locations that are on-site and off-site

v Storage locations defined as home locations

© Copyright IBM Corp. 1992, 2007 1

What Is in a Removable Media Library?

A removable media library contains all the tape and optical volumes that are

available for immediate use, including the shelves where they reside. A removable

media library usually includes other libraries: system-managed libraries such as

automated or manual tape libraries; and non-system-managed libraries, containing

the volumes, shelves, and drives not in an automated or a manual tape library.

In the removable media library, you store your volumes in shelves, where each

volume occupies a single shelf location. This shelf location is referred to as a rack

number in the RMM TSO subcommands and in the DFSMSrmm ISPF dialog. A rack

number matches the volume’s external label. In DFSMSrmm volume serial numbers

are used to identify volumes and to identify the volume label. DFSMSrmm allows

you to define a volume using a different serial number than is recorded in the

volume label. In this way you can define volumes with duplicate volume serial

numbers. DFSMSrmm uses the external volume serial number to assign a rack

number when adding a volume, unless you specify otherwise. The format of the

volume serial and rack you define must be one to six alphanumeric, national, or

special characters.

What Is in a System-Managed Tape Library?

A system-managed tape library consists of tape volumes and tape devices that are

defined in the tape configuration database. The tape configuration database is an

integrated catalog facility user catalog marked as a volume catalog (VOLCAT)

containing tape volumes and tape library records. A system-managed tape library

can be either automated or manual.

You can have several automated tape libraries or manual tape libraries. You use an

installation-defined library name to define each automated tape library or manual

tape library to the system. DFSMSrmm treats each system-managed tape library as

a separate location or destination. See z/OS DFSMS OAM Planning, Installation,

and Storage Administration Guide for Tape Libraries for additional information.

Automated Tape Libraries

An automated tape library is a device consisting of robotic components, cartridge

storage areas (or shelves), tape subsystems, and controlling hardware and

software, together with the set of tape volumes that reside in the library and can be

mounted on the library tape drives. DFSMSrmm provides support for the automated

IBM TotalStorage Enterprise Automated Tape Library (3494) and also the IBM

TotalStorage Enterprise Automated Tape Library (3495). The IBM 3494 supports

3490E, 3590, and 3592 tape subsystems. The IBM 3495 supports 3490, 3490E,

and 3590 tape subsystems. The IBM 3494 can also include the Virtual Tape Server

subsystem. DFSMSrmm supports the IBM TotalStorage Peer-to-Peer Virtual Tape

Server by ensuring that you cannot use the names of distributed VTS libraries with

DFSMSrmm. You must only use the names of consolidated libraries with

DFSMSrmm.

DFSMSrmm can automatically replenish the scratch volumes in an automated tape

library when the supply of volumes becomes low. See “Replenishing Scratch

Volumes in a System-Managed Library” on page 453 for information about how

DFSMSrmm reclaims volumes that are eligible for returning to scratch.

DFSMSrmm has a cartridge entry installation exit that you can use to help partition

volumes in a single system-managed tape library across multiple systems. Use the

installation exit for support for sharing between z/OS and other systems and also

2 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

for partitioning between z/OS systems and SMS complexes. When using the

cartridge entry installation exit, consider these factors.

v DFSMSrmm supports partitioning when you use the DFSMSrmm parmlib options

to identify volumes that you want to partition. Volumes can be identified based on

volume naming conventions and as individual volumes defined to DFSMSrmm on

z/OS.

v You can use the DFSMSrmm partitioning support to partition between multiple

z/OS systems only when each z/OS partition has a separate DFSMSrmm control

data set.

v When you want to share the DFSMSrmm control data set across multiple z/OS

partitions, use installation exits such as CBRUXENT and EDGUX200 to control

the partitioning.

Manual Tape Libraries

A manual tape library is a set of tape drives and the set of system-managed

volumes the operator can mount on those drives. The manual tape library provides

more flexibility, enabling you to use various tape volumes in a given manual tape

library. This support allows volumes to be associated with manual tape libraries so

that only those volumes defined for a specific manual tape library can be mounted

on drives in that library.

Unlike the automated tape library, the manual tape library does not use the library

manager. With the manual tape library, a human operator responds to mount

messages that are generated by the host and displayed on a console. This manual

tape library implementation completely replaces the IBM 3495-M10 implementation.

IBM no longer supports the 3495-M10.

See “Setting Up DFSMSrmm for the System-Managed Tape Library” on page 142

for implementation details for these scenarios.

What Is in a Non-System-Managed Tape Library?

A non-system-managed tape library is all the volumes, shelves, and drives not in an

automated tape library or manual tape library. You might know this as the traditional

tape library in a data center or as an automated environment that is not

system-managed. DFSMSrmm provides complete tape management functions for

the volumes and shelves in this traditional tape library.

All tape media and drives supported by z/OS are supported in this environment.

Use DFSMSrmm to fully manage all types of tapes in a non-system-managed tape

library, including 3420 reels, 3480, 3490, and 3590 cartridge system tapes.

You can also use DFSMSrmm to manage volumes in any automated tape library

that has special software including an IBM Tape Library Data server that is

managed using Basic Tape Library Support (BTLS).

What Is in a Storage Location?

Storage locations are not part of the removable media library because the volumes

in storage locations are not generally available for immediate use. A storage

location is comprised of shelf locations that you define to DFSMSrmm. A shelf

location in a storage location is identified by a bin number. Storage locations are

typically used to store removable media that are kept for disaster recovery or vital

records. DFSMSrmm manages two types of storage locations: installation-defined

storage locations and DFSMSrmm built-in storage locations.

Chapter 1. Introducing DFSMSrmm 3

You can define an unlimited number of installation-defined storage locations, using

any eight-character name for each storage location. Within the installation-defined

storage location, you can define the type or shape of the media in the location. You

can also define the bin numbers that DFSMSrmm assigns to the shelf locations in

the storage location. You can request DFSMSrmm shelf-management when you

want DFSMSrmm to assign a specific shelf location to a volume in the location.

You can also use the DFSMSrmm built-in storage locations which are LOCAL,

DISTANT, and REMOTE. Although the names of these locations imply their

purpose, they do not mandate their actual location. All volumes can be in the same

or separate physical location. For example, an installation could have the LOCAL

storage location on-site, as a vault in the computer room, the DISTANT storage

location could be a vault in an adjacent building, and the REMOTE storage location

could be a secure facility across town or in another state. DFSMSrmm provides

shelf-management for storage locations so that storage locations can be managed

at the shelf location level.

Although DFSMSrmm automatically shelf-manages built-in storage locations, you

must first define the bins you want to use to DFSMSrmm. For bin numbers in

built-in storage locations, the numbers are fixed in range, starting at bin number

000001. For installation-defined storage locations, you can use any alphanumeric

characters.

How Does DFSMSrmm Manage These Libraries and Locations?

DFSMSrmm records the complete inventory of the removable media library and

storage locations in the DFSMSrmm control data set which is a VSAM

key-sequenced data set. DFSMSrmm records all changes made to the inventory,

such as adding or deleting volumes, and also keeps track of all movement between

libraries and storage locations.

DFSMSrmm manages the movement of volumes among all library types and

storage locations. This lets you control where a volume, and hence a data set,

resides and how long it is retained.

DFSMSrmm helps you manage the movement of your volumes and retention of

your data over their full life, from initial use to the time they are retired from service.

Among the functions DFSMSrmm performs for you are:

v Automatically initializing and erasing volumes.

v Recording information about volumes and data sets as they are used.

v Expiring volumes based on controls you define.

v Identifying volumes with high error levels that require replacement.

To use all of the DFSMSrmm functions, you specify installation setup options and

define retention and movement policies. DFSMSrmm provides you with utilities to

implement the policies you define.

Setting Up Your Installation Options

The DFSMSrmm parmlib member EDGRMMxx includes many options for setting up

DFSMSrmm, such as:

v Defining system options, such as the date format for reports and messages,

default retention periods, and notification to volume owners when their volumes

are ready to be released.

v Preventing a range of tapes from being used on specific systems.

4 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v Specifying if a pool has tape profile processing as provided by RACF, a

component of the Security Server for z/OS®.

v Tailoring mount messages with either the volume’s shelf location or the pool

identifier.

v Defining security classes for data sets and volumes.

v Defining the DFSMSrmm running mode to determine when DFSMSrmm records

volume usage and performs tape validation as described in “How Does

DFSMSrmm Validate Tape Mounts?” on page 18.

v Defining how DFSMSrmm bypass label processing is performed.

v Defining storage locations to DFSMSrmm.

Your system programmer or storage administrator defines your DFSMSrmm

installation options during implementation. For information on the options that can

be set in EDGRMMxx, see Chapter 10, “Using the Parmlib Member EDGRMMxx,”

on page 167.

Defining Retention and Movement Policies

The retention and movement policies you define to DFSMSrmm are known as vital

record specifications. You use them to specify how long and where you want to

keep data sets or volumes. You also use them to define how volumes are to be

moved among the libraries DFSMSrmm supports and to define the storage

locations for vital records and disaster recovery purposes.

Use vital record specifications to control retention requirements for production data

in accordance with the service level agreement and known requirements. Use

COUNT(0) to specify that a vital record specification is not to retain a data set.

Use the DFSMSrmm parmlib member EDGRMMxx to set expiration and retention

defaults for your installation. See z/OS DFSMSrmm Guide and Reference for

information about using the parmlib OPTION VRSEL operand to select vital record

processing. When users are allowed to specify expiration and retention period to

override vital record specifications, use the parmlib OPTION MAXRETPD operand

to set a maximum retention period for your installation. See Chapter 10, “Using the

Parmlib Member EDGRMMxx,” on page 167 for information.

You can define policies, or vital record specifications, for data sets and volumes.

You can also define name vital record specifications to provide retention information

for data sets and volumes that must be moved through multiple locations before

they expire.

Defining Home Location and Target Destinations

DFSMSrmm records the starting location for a volume when the volume is initially

defined to DFSMSrmm or when volume information is changed. This starting

location is known to DFSMSrmm as a home location. Home is the location where

volumes start from and are returned to when the identified retention and movement

actions have been completed. You can use system-managed libraries, storage

locations, and SHELF as home locations. A non-system-managed library identified

as SHELF can only be used as a home location and not as a target location in a

vital record specification. SHELF can be used as a target location when a volume is

moved by issuing a command.

You can give any system-managed library or storage location as a target destination

for a volume move.

Chapter 1. Introducing DFSMSrmm 5

You can also use the DFSMSrmm-reserved location name CURRENT to avoid

moving a volume from its current location.

Defining Retention Policies

Use data set names and data set name masks to define retention policies for data

sets. Use job names and job name masks to define retention policies to further

qualify the criteria for applying retention and movement policies. For data sets, you

can request the different types of retention:

Retention by cycles

You can use retention by cycles for generation data groups (GDGs),

pseudo-GDG data set names, or data sets with the same name. For non-GDG

data sets, DFSMSrmm considers each occurrence of a data set to be a cycle.

Retention by cycles by days

You can use retention by cycles by days when you want DFSMSrmm to

manage all copies of a data set created on a single calendar day as a single

cycle.

Retention by number of elapsed days

You can retain a data set specifying a number of days since it was created.

Retention for a number of extra days

You can retain a data set for a number of days beyond the date when the data

set is no longer retained by the previous vital record specification in a vital

record specification chain.

Retention by days since last referenced

You can retain each copy of a data set produced for a set number of days since

the data set was read or written.

Retention while data set is cataloged

You can retain any data set as long as it remains cataloged.

Retention to a specific date

You can set a deletion date for a vital record specification. When that date is

reached, the vital record specification is deleted. All data sets and volumes that

would match the vital record specification become eligible for release

processing, or might match a less specific vital record specification that might

specify different retention and movement information.

Retention by expiration date

You can retain the data set on a volume as long as the volume expiration date

has not yet been reached.

Retention of open data sets

You can specify a separate policy to apply to all data sets that are currently

open.

Retention of data sets closed by abend processing

You can specify a separate policy to apply to all data sets that were open at the

time of an application or system abend.

You can also use a vital record specification management value instead of a data

set name to define retention policies. A vital record specification management value

assigns management and retention policies to tape data sets and is defined by your

installation. You can define data set vital record specifications for vital record

specification management values to provide support for special JCL-specified

expiration dates. You can use the sample installation exit contained in

SYS1.SAMPLIB, EDGUX100, to assign vital record specification management

values.

6 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

You can use management class names when you are managing data sets. See

“Managing Volumes with Special Dates” on page 112 for information on assigning

management class names and vital record specification management values using

EDGUX100.

Defining Vital Record Specification Chains

You can combine retention types and movements within a vital record specification

to manage data sets and volumes by defining vital record specifications chains. A

vital record specification chain can be one or more vital record specifications linked

together using NEXTVRS and ANDVRS operands. The first vital record specification

in the chain is a data set or volume vital record specification. You can link vital

record specifications to the first vital record specification to add additional retention

types and movement policies for a data set or volume. When combining retention

types, you can include the WHILECATALOG operand and the UNTILEXPIRED

operand with one other retention type in a single vital record specification. To

combine more retention types together so that all must be true concurrently, you

link multiple vital record specifications using the ANDVRS operand. To combine

different retention types to be implemented consecutively or to move a data set or

volume through multiple locations consecutively, you link multiple vital record

specifications using the NEXTVRS operand. An exception is that when the

EXTRADAYS operand is used as a retention type. EXTRADAYS must be the only

retention type at that point in the vital record specification chain. Do not link to or

from the vital record specification that specifies the EXTRADAYS operand using the

ANDVRS operand.

See z/OS DFSMSrmm Guide and Reference for information about chaining vital

record specifications.

Figure 1 is an example of creating a vital record specification chain. The data set

name vital record specification moves a data set from the installation media library

to the REMOTE storage location. The name vital record specification, MOVE2,

moves the volume from the REMOTE storage location to the DISTANT storage

location.

You can define retention and movement policies for specific volumes and volumes

that match a generic volume serial number. If you use a specific volume serial

number, DFSMSrmm retains the volume that matches that volume serial number. If

you use a generic volume serial number, DFSMSrmm retains a number of volumes

matching the generic volume serial number based on the number you specify.

When multiple vital record specifications retain a volume, and each vital record

specification contains a different destination, DFSMSrmm decides where to move

the volume based on priority number. Lower priority numbers have higher priorities.

Table 3 on page 8 shows the movement priority DFSMSrmm uses if you do not

assign movement priority numbers. For example, if you define both REMOTE and

DISTANT as the destination for the volume, DFSMSrmm selects the REMOTE

storage location as the destination. The selection is based on the REMOTE priority

number of 100 which has a higher priority selection value than the DISTANT priority

number of 200.

RMM ADDVRS DSNAME(STEGO.SAURUS) COUNT(1855) DAYS LOCATION(REMOTE) -

 STORENUMBER(30) NEXTVRS(MOVE2)

RMM ADDVRS NAME(MOVE2) LOCATION(DISTANT) STORENUMBER(1825)

Figure 1. Defining a Vital Record Specification Chain

Chapter 1. Introducing DFSMSrmm 7

Table 3. DFSMSrmm Movement Priority

Priority Number Location Name or Location Type

100 REMOTE DFSMSrmm built-in storage location name

200 DISTANT DFSMSrmm built-in storage location name

300 LOCAL DFSMSrmm built-in storage location

2000 Installation defined storage locations

4800 AUTO automated tape libraries

4900 MANUAL manual tape libraries

5000 SHELF location name

Running DFSMSrmm Utilities

DFSMSrmm provides utilities to manage your inventory, create reports, maintain the

DFSMSrmm control data set, and erase and initialize volumes. DFSMSrmm uses

IKJTSOEV, if necessary, to establish a TSO environment for each of its batch

utilities. See z/OS TSO/E Programming Services for additional information about

IKJTSOEV.

Temporary sort files created by DFSMSrmm for use by DFSORT are always large

format data sets when inventory management or EDGUTIL runs on z/OS V1R7. For

the correct and full functioning of DFSMSrmm on z/OS V1R7, DFSORT APAR

PQ93200 (PTF UK90000) must be installed. If you have another sort product

instead of DFSORT, you need equivalent sort product capability to support large

format sequential input and output data sets.

If you do not have the DFSORT APAR PQ93200 (PTF UK90000) installed and

either EDGUTIL or inventory management fails with ABEND 213-14, do one of

these steps:

v Install the PTF for APAR PQ93200 (PTF UK90000).

v Run the EDGUTIL or inventory management utility on a lower level system than

z/OS V1R7.

v Pre-allocate the temporary data sets as non-large format data sets.

– For EDGUTIL, the DD name is VCINOUT and must be included in the

EDGUTIL JCL.

– For EDGHSKP (inventory management), the DD names are SRTINOUT,

DATUPD, VOLCON, VOLSET, and CONSET and must be included in the

started procedure JCL usually called DFRMM.

– Example JCL is:

//SRTINOUT DD DISP=(,DELETE),

// SPACE=(472,(pp,ss)),AVGREC=U,

// BLKSIZE=0,LRECL=472,

// RECFM=FB,UNIT=(SYSALLDA,v),DSORG=PS

- For VCINOUT, the LRECL is 256, all others are 472.

- pp - primary space. This is usually half the number of the data set records

(TCDB volume records for EDGUTIL). See messages EDG2223E and

EDG6840E for an explanation.

- ss - same as pp.

- v - volume count. Usually 1 is enough.

Use the EDGHSKP utility to run inventory management activities.

8 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|

v Vital record processing determines which data sets to retain and what volume

moves are required based on the retention and movement policies you define to

DFSMSrmm.

DFSMSrmm supports trial run and production run vital record processing. Trial

run vital record processing does not change data set and volume information in

the DFSMSrmm control data set. Use trial run vital record processing to analyze

the effect that your movement and retention policies will have. Based on your

analysis, you can then determine if you need to change vital record specifications

before performing production run vital record processing. This is helpful when

you are defining your initial set of policies and when you need to make changes

as you gain more experience with DFSMSrmm.

v Expiration processing identifies volumes ready to be released and returned to

scratch.

v Storage location management processing assigns shelf locations to volumes

being moved to storage locations.

v DFSMSrmm control data set functions back up the control data set and the

journal, reset the journal data set when the control data set and journal are

backed up, and create an extract data set.

Use the EDGAUD and EDGRPTD utilities and the EDGRRPTE exec to get

information about your removable media library and storage locations. You can also

get security trail information about volumes and data sets defined to DFSMSrmm

and audit trail information about volumes, shelf assignments, and user activity.

Use the EDGUTIL utility to create, update, mend, and verify the control data set.

Use the EDGBKUP utility to back up and recover the control data set and journal.

Use DFSMSrmm backup utilities instead of other backup utilities, such as access

method services EXPORT, because DFSMSrmm provides the necessary

serialization and forward recovery functions using the journal data sets. DFSMSrmm

backup utilities check whether the control data set is in use and tell the DFSMSrmm

subsystem that backup or recovery is in process.

Use the EDGINERS utility to erase and initialize tape volumes either automatically

or manually. You can use EDGINERS instead of the DFSMSdfp™ utility IEHINITT.

See “Replacing IEHINITT with EDGINERS” on page 418 for details on the

differences between the utilities and for information on controlling the use of

IEHINITT.

You can schedule these utilities to run at the time and frequency that are best for

your installation. Use a scheduling system such as IBM Tivoli® Workload Scheduler

for z/OS for this purpose.

What Resources Does DFSMSrmm Manage?

This topic describe how DFSMSrmm helps you manage shelf locations, volumes,

data sets, information about volume owners, and software products in all libraries

and storage locations.

Shelf Locations

DFSMSrmm automatically:

v Assigns a rack number to a volume that matches the volume serial number you

specify except when:

Chapter 1. Introducing DFSMSrmm 9

– You already specified a rack number or pool ID when you first defined a

volume to DFSMSrmm.

– There is no rack number that matches the volume.

– The volume is a logical volume.

v Assigns bin numbers for the shelf locations in shelf-managed storage locations

v Provides a specific rack number or pool information in the fetch/mount message

to help the operator respond to mount requests

You can specify that DFSMSrmm make bins available for reuse when a volume

move has started or make bins available only when a volume move has been

confirmed. You can request that DFSMSrmm move volumes by specific location and

request that DFSMSrmm move the volumes to bins in sequential order, beginning

with the lowest volume serial number and the lowest bin number. You can also

request that DFSMSrmm reassign the volumes to bins during storage location

management processing.

DFSMSrmm also helps you delete rack or bin numbers for obsolete, empty shelf

locations. You can create lists containing information about the shelf locations in

your removable media library and in storage locations.

You can have more control over where volumes reside and how they are managed

by defining your removable media into pools. A pool is a group of shelf locations

defined by a common prefix or a group of volumes that require DFSMSrmm pool

management functions. For example, based on your pool definitions, DFSMSrmm

can ensure that RACF profiles exist for all volumes in a pool. You could also

request that all volumes in a pool that are protected with an expiration date are

processed automatically. See “Organizing the Library by Pools” on page 97 for

information about defining your pools in parmlib member EDGRMMxx. If you do not

define any pools, DFSMSrmm considers all volumes part of one default pool.

In DFSMSrmm, there are two categories of pools:

Rack pool

A rack pool is shelf space that can be assigned to hold any volumes. Although

you can add scratch volumes to these pools, you cannot normally use these

volumes to satisfy non-specific mount requests.

 Each rack pool can contain private volumes and scratch volumes:

v Private volumes

– Are not generally available for use because the data on them is not yet

expired

– Can have a master status or user status

A master status indicates that the volume contains data that can only be

overwritten based on criteria set by the EDGRMMxx

MASTEROVERWRITE operand.

A user status indicates that the volume contains data that can be

overwritten even when a data set name does not match.

v Scratch volumes

– Are available for use because they are either unused volumes or they

contain expired data

– Are used to satisfy scratch requests.

With scratch volumes in rack pools, you can provide a user or

group-based pool of volumes that is selected using the RMM

10 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

GETVOLUME subcommand or with the EDGUX100 installation exit.

Scratch volumes in a rack pool cannot be used where DFSMSrmm

system-based pooling is in use.

Scratch pool

A scratch pool is shelf space assigned to hold volumes for use with the

DFSMSrmm system-based scratch pooling or exit-based pooling. The volumes

assigned to this shelf space can be used to satisfy scratch requests as long as

the volumes are in scratch status. Once the volume has been written to, it

becomes a volume with master status, until the volume is returned to scratch

status.

Pools within system-managed libraries are based on the external volume serial

number, which is also used as the rack number. Most volumes in a

system-managed library either belong to a general scratch pool or they can be

separated into multiple scratch pools, one for each media type. For example,

volumes can be divided into one pool for cartridge system tape and one pool for

enhanced capacity cartridge system tapes. If volumes from other data centers are

entered into a system-managed library for processing, a rack pool can be defined to

allow you to take advantage of DFSMSrmm pool management functions.

Pools in non-system-managed libraries are logical sections of shelf space. The shelf

space is divided based on rack number, logical groups of volumes based on volume

prefix, or logical groups of volumes with the same storage group name. You can

control shelf location assignment by specifying a pool ID when you define a volume

to DFSMSrmm. DFSMSrmm automatically assigns the volume to the next available

rack number in that pool. If you do not specify a shelf location or pool ID for a

volume, DFSMSrmm attempts to assign the rack number that matches the volume

serial number.

Volumes

DFSMSrmm provides support for these volumes.

v DFSMSrmm allows you to use all types of physical volumes, tracking their use

and the data they contain, and providing vaulting and retention services

according to policies assigned to the data sets on the volumes. DFSMSrmm also

allows you to use duplicate volumes. These are volumes that are defined to

DFSMSrmm with a unique external volume serial number and a VOL1 label that

might duplicate another volume but that does not match its own external volume

serial number.

v Logical volumes reside in a VTS or on exported stacked volumes. Applications

can access the data on these volumes only when they reside in a VTS. The data

in a VTS is accessed in its tape volume cache or after the data has been copied

to a physical volume through the use of special utilities. DFSMSrmm tracks the

use of logical volumes and the data that resides on the volumes. Retention

services are provided according to policies assigned to the data sets on the

volumes. DFSMSrmm supports exporting of logical volumes on stacked volumes

and provides vaulting services for these stacked volumes based on the policies

assigned to the data sets on the contained logical volumes. Logical volumes can

be removed from a VTS using export processing described in the “Using

DFSMSrmm with the IBM TotalStorage Peer-to-Peer Virtual Tape Server (PtP

VTS)” on page 128.

v Stacked volumes have a one-to-one association with physical tape media and

are used in a VTS to store logical volumes. Stacked volumes are not used by

z/OS applications but by the VTS and its associated utilities. Stacked volumes

can be removed from a VTS to allow transportation of logical volumes to a vault

Chapter 1. Introducing DFSMSrmm 11

or to another VTS. DFSMSrmm can be used to track stacked volumes and

automatically records the logical volumes contained on stacked volumes during

export processing when stacked volume support is enabled. DFSMSrmm

provides support for importing logical volumes on stacked volumes either into the

VTS from which it was exported or into a different VTS.

DFSMSrmm automatically validates volumes to ensure that only valid scratch

volumes are mounted for non-specific mount requests and that the right volume is

mounted for a specific mount request. This eliminates unintentionally overwriting a

valid master volume or a volume retained for disaster recovery or vital record

management.

When a data set on a volume is opened and closed, DFSMSrmm automatically

performs these functions:

v Changes the volume status from scratch to master for non-specific mount

requests at open time.

v Sets an expiration date for the volume and ensures that the maximum expiration

date is not exceeded at open time.

v Records information about data sets on the volume (the data set name is

recorded at open time; all other information is recorded at close time).

v Counts the number of times a volume is used since the volume was last in

scratch status at open time.

v Counts the number of temporary and permanent errors encountered at close time

only.

v Sets a security classification based on the data sets that reside on the volume at

open time.

v Prevents reading of data on a volume in scratch status when DFSMSrmm is

running in protect mode at open time.

v When option TAPEAUTHDSN=YES in parmlib member DEVSUPxx in

SYS1.PARMLIB is in use, the RACF ’erase on scratch’ setting sets the ERASE

release action for the volume.

DFSMSrmm automatically controls the movement of volumes within the removable

media library and the built-in or installation-defined storage locations, based on

criteria you specify in vital record specifications.

When volumes no longer reside in the removable media library or storage locations,

you can define loan locations where these volumes can be found. DFSMSrmm

does not, however, manage the movement of volumes residing in loan locations.

DFSMSrmm automatically releases volumes that have reached their expiration date.

Any non-scratch volume defined to DFSMSrmm has an expiration date indicating

when the volume is to be considered for release. The volume expiration date can

be:

v An expiration date or retention period, given in the JCL by the user when writing

a data set to the volume.

v The date specified by the user when a scratch volume is requested using the

RMM GETVOLUME subcommand or when information about the volume is

manually added or changed.

v A default retention period for data sets set by your installation with the RETPD

option in parmlib member EDGRMMxx in SYS1.PARMLIB.

v The expiration date that is set using the DFSMSrmm EDGUX100 installation exit.

If the exit sets a zero date, the installation default retention period is used.

12 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Your installation can also set a maximum retention period in parmlib member

EDGRMMxx. An expiration date or retention period set for a volume cannot exceed

this value.

You can retain a volume beyond its expiration date by using a vital record

specification to define a retention policy. You can also manually override an

expiration date and release a volume before the expiration date is reached.

When a volume is eligible for release, DFSMSrmm can perform release actions for

the volume based on information you provide. Examples of release actions include:

v Returning a volume to scratch status

v Initializing a volume

v Erasing a volume

v Notifying a volume’s owner of the volume’s release

v Returning a volume to its owner and deleting the volume record in the

DFSMSrmm control data set

See z/OS DFSMSrmm Guide and Reference for information about setting release

actions and how processing is performed.

DFSMSrmm tracks the number of I/O errors recorded for a volume. For permanent

errors, DFSMSrmm automatically marks the volumes for replacement before

returning them to scratch. This occurs during expiration processing.

You can get additional information to help you analyze volumes with temporary

errors from these tools and services:

v DFSMSrmm records volume use and temporary I/O errors. You can obtain this

information through the extract data provided by EDGHSKP.

v The Environmental Record Editing and Printing Program (EREP) uses LOGREC

records to identify tapes with unacceptably high error conditions.

v Service Director™ identifies volumes with high error levels. See your IBM service

representative for information about using this tool.

v System management facilities (SMF) records, produced by DFSMSdfp, track

information on volume use, such as how much data is written to a volume. You

can use this information to analyze volumes with errors.

You can then use this information to identify volumes you want replaced or

managed by DFSMSrmm. Use the RMM CHANGEVOLUME

RELEASEACTION(REPLACE) subcommand or the dialog change volume function

when you want DFSMSrmm to manage the replacement.

DFSMSrmm provides support for using the system TAPEAUTHDSN and

TAPEAUTHF1 options (specified in parmlib member DEVSUPxx in SYS1.PARMLIB)

and the RACF standard tape volume security protection with any combination of

RACF TAPEVOL and TAPEDSN options. See z/OS MVS Initialization and Tuning

Reference for information about the TAPEAUTHxxx keywords to enable tape

authorization checks.

DFSMSrmm allows you to use volumes with duplicate volume serial numbers as

well as volumes undefined to DFSMSrmm. You can request DFSMSrmm to ignore a

volume so it can be used, even if another volume with the same volume serial

number is already defined in the DFSMSrmm control data set. If DFSMSrmm

Chapter 1. Introducing DFSMSrmm 13

ignores a volume, it does not track volume use. If the volume is not defined to

DFSMSrmm, DFSMSrmm cannot provide any management functions for the

volume.

DFSMSrmm Tape Label Support

DFSMSrmm supports these tape label types:

v IBM standard labels (SL)

v ISO/ANSI labels (AL)

v Both IBM standard and user header or trailer labels (SUL)

v Both ISO/ANSI and user header or trailer labels (AUL)

v No labels (NL)

You can explicitly use AL, SL, and NL label types when you define volumes to

DFSMSrmm. Although a tape is defined to DFSMSrmm as SL or AL, a user can still

process it as SUL or AUL. A user could ask for a non-specific volume by specifying

LABEL=(,SUL) and create an SL volume or SUL volume without affecting

DFSMSrmm. DFSMSrmm records the value specified in the JCL.

DFSMSrmm provides support for ISO/ANSI Version 3 and ISO/ANSI Version 4

labels. You can provide the current ISO/ANSI label version of a volume that you

define to DFSMSrmm. Then you can use the DFSMSrmm EDGINERS utility to

initialize the tape with either ISO/ANSI Version 3 or ISO/ANSI Version 4 labels.

DFSMSrmm supports no label (NL) for private volumes and for scratch tapes in a

system-managed automated tape library and private volumes in a

non-system-managed tape library. If you use the IFG019VM volume mount

installation exit, DFSMSrmm supports no label (NL) for scratch tapes in a

non-system-managed tape library. All other scratch tapes must be standard label

tapes. DFSMSrmm allows the creation of no label tapes from standard label scratch

volumes by changing the volume to master status and setting the initialize release

action so that the tape is relabeled as a standard label tape when returned to

scratch. DFSMSrmm also overrides the logical volume serial number generated by

OPEN for NL output to scratch tapes, so that the correct volume serial number is

used for cataloging data sets. Nonstandard labels (NSL) can be used but only if the

volume is not defined to DFSMSrmm. “How Does DFSMSrmm Validate Tape

Mounts?” on page 18 describes how DFSMSrmm validates volume usage and does

not allow the processing of certain label types.

DFSMSrmm also supports the use of bypass label processing (BLP) for:

v Volumes that are either not defined to DFSMSrmm or volumes that DFSMSrmm

should ignore.

v Non-scratch (user and master status) volumes that are used for input processing,

and only those user status volumes that are used for output processing. You can

select this system option in the EDGRMMxx parmlib member using the OPTION

BLP(RMM) command.

v Non-scratch (user and master status) volumes that are used for input processing,

or user, master and scratch tapes that are used for output processing. You can

select this option in the EDGRMMxx parmlib member using the OPTION

BLP(NORMM) command.

When BLP is used with scratch tapes, DFSMSrmm changes the volume to

master status. DFSMSrmm also sets the initialize volume release action to

ensure that the volume has a valid standard label before it returns to scratch

status. When a volume is written with BLP, DFSMSrmm can no longer perform

the 44-character data set name check for the files on the volume.

14 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

For BLP output to a non-specific volume, DFSMSrmm does not check the file

sequence number. For example, LABEL=(2,BLP) can be used. For non-BLP

requests, DFSMSrmm restricts the use to LABEL=(1,label_type).

The data set information for files processed with BLP is only updated for output

to first file on a volume. All other types of BLP requests change only the volume

information such as the date last read and the date last written. Also for BLP

output requests, the data set information is only updated in the DFSMSrmm

control data set when the data set is closed.

Data Sets

DFSMSrmm automatically records information about a data set when the data set is

opened. DFSMSrmm can automatically record information when you request data

set recording and one of these conditions is true:

v The data set is the first file on the volume.

v You already processed all files preceding it on the volume.

v You have previously defined the data sets on the volume to DFSMSrmm.

Data class, management class, storage class, and storage group are included in

the information that DFSMSrmm records for system-managed data sets.

You can manually add information about a data set if the volume on which the data

set resides is already defined to DFSMSrmm and the volume has not been already

processed as a result of open processing and close processing. There are some

limitations on the information that you can change if it was originally recorded by

DFSMSrmm during open, close, and end-of-volume processing.

DFSMSrmm supports generic data set names as filter criteria for searching the

control data set which makes it easier to create lists of resources.

Year 2000 Support

DFSMSrmm provides support for dates beyond the 20th century by ensuring that

DFSMSrmm stores and displays all dates using a 4-digit year. DFSMSrmm also

allows you to specify dates using the 4-digit year. DFSMSrmm provides the same

support for dates as DFSMSdfp™.

Software Products

You can also define software products to DFSMSrmm and associate volumes with

the products.

Owner Information

DFSMSrmm can help you keep track of volume owners. It provides functions to

electronically notify owners when their volumes are being considered for release.

DFSMSrmm automatically records owner IDs as volumes are used. If you want

DFSMSrmm to use owner information to automatically notify owners, you must

manually define the owner’s electronic address to DFSMSrmm. Additionally, the

notify action must have been requested for the volume.

DFSMSrmm ensures that there is an owner ID for each volume. If a job is started

and does not have a known RACF user ID, DFSMSrmm uses the job name as the

owner ID.

DFSMSrmm also provides for notification to product owners when new volumes are

added for a product.

Chapter 1. Introducing DFSMSrmm 15

DFSMSrmm keeps track of volume ownership. To delete a record for a user who

still owns volumes, DFSMSrmm optionally allows you to transfer ownership of those

volumes before deleting the owner record.

How Does DFSMSrmm Help You Create Reports?

You can obtain information and create reports using these methods:

v DFSMSrmm Report Generator

v DFSMSrmm ISPF dialog or RMM TSO commands

v EDGAUD and EDGRPTD report utilities

v DFSMSrmm EDGRRPTE exec shipped in SAMPLIB

v The DFSORT™ ICETOOL utility

v The DFSMSrmm application programming interface

Using DFSMSrmm Report Generator

The DFSMSrmm Report Generator is an ISPF application that you use to create

reports to show the status of the resources that DFSMSrmm manages for you.

These resources include volumes, data sets, racks, owners, and the retention and

movement policies that are established for your installation. Refer to z/OS

DFSMSrmm Reporting for detailed information.

Using DFSMSrmm ISPF Dialog and RMM TSO Subcommands

You can search on-line using either the DFSMSrmm ISPF dialog or RMM TSO

subcommands to create lists of resources and display information recorded in the

DFSMSrmm control data set. Here are some examples:

v Operators can create lists of scratch volumes to be pulled for use.

v Tape librarians and system programmers can create lists of software products

and the volumes on which they reside.

v General users can create lists of volumes they own, such as the example in

Figure 2:

 With DFSMSrmm, you can use the RMM TSO SEARCH subcommands with the

CLIST operand to create a data set of executable subcommands. For example, you

can create subcommands to confirm volume movement for volumes identified

during a SEARCHVOLUME request.

Using the EDGAUD and EDGRPTD Report Utilities

You can create several types of reports using two DFSMSrmm report utilities. Use

EDGRPTD to create movement and inventory reports and EDGAUD to create

security and audit reports. EDGRPTD uses the DFSMSrmm extract data set as

input. EDGAUD uses SMF records as input.

You can use the reports for these purposes:

Volume Owner Rack Assigned Expiration Location Dsets St Act Dest.

 date date

 ------ -------- ------ ---------- ---------- -------- ----- -- ----- --------

 VOL600 AMYW01 RAC500 06/11/2000 11/11/2000 SHELF 0 UR SI

 VOL601 AMYW01 RAC501 06/11/2000 11/11/2000 SHELF 0 UR SI

 VOL603 AMYW01 RAC502 06/11/2000 11/11/2000 SHELF 0 UR SI

 EDG3011I 3 ENTRIES LISTED

Figure 2. Example of a List of Volumes Owned by a Single User

16 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v Identifying volumes that should be moved between the removable media library

and storage locations.

v Determining your volume inventory in the removable media library and storage

locations.

v Identifying volumes that are in transit or that should be marked as moved.

v Identifying all accesses to volumes and changes to information recorded in the

DFSMSrmm control data set.

v Separating volumes that are waiting to return to scratch from those that are

private or have other release actions pending.

v Producing new scratch volume reports or scratch volume inventory reports.

Using the DFSMSrmm EDGRRPTE Exec

Use the DFSMSrmm-supplied EDGJRPT JCL to run the EDGRRPTE exec to

produce reports using the extract data set as input. See z/OS DFSMSrmm

Reporting for more information.

Using the DFSORT ICETOOL Utility

You can use DFSORT™ or a similar program to generate a formatted report using

the information in the extract data set created by the EDGHSKP utility. For example,

you could produce an extract data set listing all volumes to be used on VM with

information about volume owners. Then use the DFSORT ICETOOL utility to sort

the information by volume and produce a report, complete with title and header

information.

Using the DFSMSrmm Application Programming Interface

You can use the DFSMSrmm application programming interface to obtain

information about resources defined to DFSMSrmm. See z/OS DFSMSrmm

Application Programming Interface for information about how to use the

DFSMSrmm application programming interface.

How Does DFSMSrmm Authorization and Security Work?

You can choose the authorization levels of users for all DFSMSrmm functions.

DFSMSrmm uses z/OS System Authorization Facility (SAF) for its authorization

checking. You define DFSMSrmm resources to RACF for use during authorization

checking. DFSMSrmm can create volume profiles, change them, and delete them

on registration, expiration, or release of volumes. DFSMSrmm provides an access

list you can use to set the access list in RACF. You can use the DFSMSrmm

access list for authorization checking on non-RACF systems. Use the RMM

LISTVOLUME subcommand or the DFSMSrmm ISPF dialog to display the

DFSMSrmm access list. You can also view the access list in the volume records in

the report extract data set.

DFSMSrmm provides automatic security classification through installation-specified

criteria based on data set names. DFSMSrmm security includes these elements:

v An audit trail of access and change of status through SMF. This audit trail

produces information about RACF user IDs, groups, and job names.

v Required operator confirmation prior to using certain volumes.

v Erasure of data when a volume is released prior to the volume returning to

scratch status.

Chapter 1. Introducing DFSMSrmm 17

DFSMSrmm provides these ways of optionally keeping an audit trail for volumes

defined to it:

v Control data set information

v SMF audit records

v RACF audit information

See Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on page

213 for additional information about DFSMSrmm authorization and security.

What Tape Usage Does DFSMSrmm Support?

DFSMSrmm supports these tape usage:

v Using BLP to read any private volume.

v Using BLP to write to any volume.

v Using nonstandard label volumes that are not defined to DFSMSrmm.

v Using both AL and SL scratch tapes.

v Using no label (NL) processing for any private volume.

v Performing no label (NL) output to any system-managed scratch volume or

standard label scratch volume.

v Using no label (NL) for private volumes and for scratch tapes in a

system-managed automated tape library and private volumes in a

non-system-managed tape library.

v Using no label (NL) also for scratch tapes in a non-system-managed tape library

if you use the IFG019VM volume mount installation exit.

v Overwriting a volume that is in master status. For volumes in master status,

DFSMSrmm allows the overwriting of data based on criteria set by the

EDGRMMxx MASTEROVERWRITE operand.

v Overwriting a volume that is in user status no matter what the data set name is.

v Using volumes not defined to DFSMSrmm.

v Using duplicate volumes.

v Automatically labeling scratch tapes in an automated tape library.

v Reusing 36-track recorded scratch tapes on 18-track drives and 256-track

recorded scratch tapes on 128-track drives.

v Using multifile and multivolume data sets.

v Recording and validating only the first file on the volume.

v Creating checkpoint data sets on scratch volumes in an automated

system-managed tape library.

v Creating non-checkpoint data sets on scratch volumes in an automated

system-managed library, where the scratch volumes were previously a

checkpoint secure volume.

v Exploiting high-speed cartridge tape positioning when an application does not

exploit it.

How Does DFSMSrmm Validate Tape Mounts?

DFSMSrmm performs validation for all data sets on a volume that have been

recorded by DFSMSrmm when a data set is opened. DFSMSrmm validates tape

volumes as follows:

v For specific tape requests, DFSMSrmm checks that the correct private volume is

mounted.

18 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v For non-specific tape requests, DFSMSrmm checks that a scratch volume is

mounted and that the volume is from an acceptable rack, scratch pool, or storage

group.

v For volumes where DFSMSrmm has recorded the first file creation at open time,

DFSMSrmm checks that the last 17 characters of the data set name from the

tape volume HDR1 label match the first file data set name known to DFSMSrmm.

v For specific requests to overwrite data on a master volume, DFSMSrmm allows

the overwriting of data based on criteria set by the EDGRMMxx OPTION

MASTEROVERWRITE operand. DFSMSrmm checks that the data set name

used matches the data set name that DFSMSrmm has recorded. For generation

data group data (GDG) sets, DFSMSrmm removes the GDG suffix before

checking the data set name.

v At open time for the file being referenced, DFSMSrmm checks that the data set

name used matches the one DFSMSrmm has recorded. If only the first file on a

volume is being recorded, DFSMSrmm only validates the first file on the volume.

If DFSMShsm is reading a tape volume, only the last 17 characters of the data

set name need to match the data set information in the tape header label.

v For scratch tapes mounted in a fully functional automated tape library, that have

incorrect or missing VOL1 labels, DFSMSrmm checks the external and internal

volume serial numbers. DFSMSrmm ensures that both the external volume serial

number and internal volume serial number, if one exists, are either defined as

scratch to DFSMSrmm or are not defined to DFSMSrmm.

v DFSMSrmm ensures that the mounted volume has the correct WWID.

DFSMSrmm obtains the WWID for a WORM tape from the tape drive when the

volume is mounted and used or when you define the WORM tape to DFSMSrmm

using the RMM TSO subcommands.

v When DFSMSrmm has a Write Mount Count for a WORM media, DFSMSrmm

ensures that the mounted volume write mount count matches the value recorded

in the DFSMSrmm control database.

DFSMSrmm performs tape mount validation based on the DFSMSrmm running

mode set in the parmlib member EDGRMMxx with the OPTION command and

OPMODE operand as shown in Table 4.

 Table 4. How the DFSMSrmm Running Mode Affects Tape Mount Validation

DFSMSrmm Running Mode Tape Validation

Manual DFSMSrmm does not validate volume usage.

Record-only DFSMSrmm does not validate volume usage.

Warning DFSMSrmm validates tape volume usage and issues

warnings if errors are encountered. DFSMSrmm does not

reject volume usage.

Protect DFSMSrmm validates tape volume usage and rejects volume

usage under certain conditions.

Use warning mode as you perform testing during conversion from another tape

management system. When you are running DFSMSrmm in warning mode,

DFSMSrmm validates your tape volumes but does not prevent their use. See

“Defining System Options: OPTION” on page 175 for information about setting

options in the DFSMSrmm parmlib member.

Chapter 1. Introducing DFSMSrmm 19

Why Does DFSMSrmm Reject Tape Volumes?

In addition to validation, there are a number of reasons why a tape can be rejected

when you are running DFSMSrmm in protect mode. Volumes can be rejected based

on installation-controlled parmlib options and volume definitions or based on

DFSMSrmm and system rules.

Rejects Caused by Installation Controls

With DFSMSrmm you can define conditions such as where volumes should reside,

ranges of shelf locations that should not be used, and volumes that can only be

used on certain systems. If you are running DFSMSrmm in protect mode, the

volume is rejected under these conditions:

v You have defined the REJECT option for a range of shelf locations, preventing a

volume from being used on a particular system. The REJECT option is in parmlib

member EDGRMMxx.

v The volume mounted for a scratch request has not been defined to DFSMSrmm.

v The volume mounted for a scratch request is not in a scratch pool associated

with this system or does not match installation-defined requirements.

v The volume mounted for a scratch request is from a scratch pool associated with

another system.

v The volume is not to be used on z/OS systems.

v The volume is not defined to DFSMSrmm and your REJECT options request that

all non-defined volumes are to be rejected.

v A user asks for the use of a volume to be ignored, but is not authorized to do so

for that volume.

v A volume in an automated tape library is not defined to DFSMSrmm and cannot

be defined to DFSMSrmm for some reason.

Rejects Caused by Validation Failure

DFSMSrmm performs validity checking on volumes when you read or write to them

if DFSMSrmm is recording information about the data sets on the volumes. If you

are running DFSMSrmm in protect mode the volume is rejected under these

conditions:

v The wrong volume is mounted for a specific volume request.

v An attempt is made to use a specific scratch volume. In DFSMSrmm, when you

want a specific volume, you must request a specific, non-scratch volume, and

when you want a scratch volume, you must request a non-specific mount.

v A private volume (master or user) is mounted in response to a scratch request.

v The data set information for the first file on the volume that DFSMSrmm has

recorded during open, close, or end-of-volume processing does not match the

information on the volume.

v An attempt is made to overwrite a data set on a master volume and the specified

data set name does not exactly match the data set name that DFSMSrmm has

recorded. You can control the overwriting of data sets on master volumes using

the EDGRMMxx OPTION MASTEROVERWRITE operand. If both the data set

being written, and the data set DFSMSrmm has recorded are generation data

group data sets, DFSMSrmm ignores the generation data group suffix when

comparing the data set names.

If the volume is part of a multivolume sequence containing multiple data sets,

DFSMSrmm uses only the first volume, first file data set name for validation; for

all other volumes the sequence of volumes is validated to prevent overwrite.

20 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v An attempt is made to read a data set that DFSMSrmm has not recorded, and

the volume information was previously recorded by DFSMSrmm.

v An attempt is made to automatically label a non-scratch volume in an automated

tape library.

Rejects Caused by DFSMSrmm Rules

DFSMSrmm checks that volumes are labeled correctly and that the volume status

and intended usage is acceptable to DFSMSrmm. If you are running DFSMSrmm in

protect mode the volume is rejected under these conditions:

v An attempt is made to read a scratch volume.

v An attempt is made to read a volume obtained using the RMM GETVOLUME

subcommand and the volume has not yet been written to. You use the RMM

GETVOLUME subcommand to request a scratch volume and assign it to an

owner defined to DFSMSrmm.

v Bypass label processing (BLP) is being used to write to a scratch or master

volume unless you requested BLP processing through EDGRMMxx in the

parmlib.

v An attempt is made to read or write to a volume using nonstandard labels, and

the volume is defined to DFSMSrmm.

v An attempt is made to overwrite standard labels on a master volume, and the

user is not authorized to do so.

v An attempt is made to write standard labels on a master volume that has no

labels, and the user is not authorized to do so.

v An attempt is made to overwrite standard labels on a scratch volume by a user

that is not authorized to do so.

v A scratch volume is requested for a nonstandard label request. In DFSMSrmm,

scratch volumes must have standard labels.

v A volume is in an automated tape library and is defined to DFSMSrmm, but it is

defined as not having a standard label or has different internal and external

volume labels.

v An attempt is made to read or write to a volume that is waiting to be initialized.

v An attempt is made to read or write to a volume that is pending release.

v An attempt is made to write to a data set on the scratch volume other than the

first one.

v An attempt is made to write to a data set that was specified with a sequence

number that is not the next in the sequence from the last file DFSMSrmm has

recorded. This applies only if DFSMSrmm is recording information about all the

data sets on the subject volume.

Who Can Use DFSMSrmm and How?

This topic describe DFSMSrmm users and the tasks they can perform.

General User

General users need only limited access to DFSMSrmm functions. They might want

to manage volumes they own and request information about resources defined to

DFSMSrmm.

General users can use DFSMSrmm to perform these tasks:

v Manually request a scratch volume

v Change information about an owned volume or data set

Chapter 1. Introducing DFSMSrmm 21

v Update information about your owner ID

v Manually release an owned volume

v Create lists of resources and display information about most resources defined to

DFSMSrmm

v Use the CIM browser, or any compatible product that conforms to the CIM

specification, to search and display information about their data sets and

volumes.

Tape Librarian

Tape librarians can use DFSMSrmm to perform these tasks:

v Define new volumes

v Add shelf locations to the removable media library and to storage locations

v Add, change, and delete information about resources defined to DFSMSrmm

v Manually release any volume

v Confirm volume movements and actions

v Create lists of resources and display information about any resource defined to

DFSMSrmm

v Use the CIM browser, or any compatible product that conforms to the CIM

specification, to search and display information about their data sets and

volumes.

Storage Administrator

Storage administrators can use DFSMSrmm to perform these tasks:

v Define retention and storage policies for data sets and volumes

v Change information about any volume they own, their owner ID, and any vital

record specification

v Manually request a scratch volume

v Manually release a volume they own

v Delete a vital record specification

v Create lists of resources and display information about resources defined to

DFSMSrmm

Application Programmer

Application programmers can use DFSMSrmm to perform these tasks:

v Add, change, and delete information about any volume owner

v Manually request a volume and manually release a volume they own

v Create a list of software products and display information about any resource

defined to DFSMSrmm

v Code calls to the DFSMSrmm application programming interface in assembler

language or in any high-level language that can use the object-oriented

interfaces and classes supplied with DFSMSrmm, including Web services and

Java.

System Programmer

System programmers can use the DFSMSrmm support menu to perform these

tasks:

v Display parmlib options and control data set control information

v Add, change, and delete information about any volume owner

22 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v Manually request a volume and manually release a volume they own

v Create a list of software products and display information about any resource

defined to DFSMSrmm

Operator

Operators can use DFSMSrmm to perform these tasks:

v Fetch and mount tapes from specific pools or shelf locations, as specified in

mount messages

v Manually erase and initialize tapes

v Manually request a scratch volume

v Manually release a volume they own

v Create lists of scratch tapes available for use

See z/OS DFSMSrmm Guide and Reference for a complete description of operator

procedures.

Using DFSMSrmm

You define RACF profiles to establish the authorization scheme for using

DFSMSrmm functions. The basic authorization scheme recognizes there are

different types of users and each user type will request common DFSMSrmm

functions. See Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,”

on page 213 for information on how authorization is set up for each user type.

In DFSMSrmm, you can use either the DFSMSrmm ISPF dialog or the set of TSO

subcommands to request DFSMSrmm functions. The RACF profiles control whether

or not DFSMSrmm responds to requests for functions. If you request a function you

are not authorized to use, your request will fail. For descriptions of the TSO

subcommands available within DFSMSrmm, see z/OS DFSMSrmm Guide and

Reference.

DFSMSrmm offers menus in the DFSMSrmm ISPF dialog that are tailored

specifically to a user group’s needs and level of access authorization. For example,

only tape librarians are authorized to add software products to DFSMSrmm, so only

the DFSMSrmm Librarian Menu includes an option to add software products.

DFSMSrmm provides a specific menu for general users, storage administrators,

tape librarians, and system programmers. It does not provide a menu for operators.

Chapter 1. Introducing DFSMSrmm 23

24 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 2. Implementing DFSMSrmm

This topic describes tasks you need to perform to implement DFSMSrmm. This

topic also includes some optional tasks that might not need to be performed for

your installation. Review all the steps in this topic as well as information in the z/OS

Migration before you begin implementing DFSMSrmm. If you have multiple z/OS

images or a RMMplex, you must repeat several of these steps for each z/OS

image. We provide recommendations for steps that should be repeated for each

image. The z/OS Migration describes steps that are required before you install

DFSMSrmm.

To access IBM Red books on topics such as converting to DFSMSrmm from

another tape management product, visit www.redbooks.ibm.com.

Here are the steps that you can follow to implement DFSMSrmm.

v “Step 1: Preparing to Implement DFSMSrmm” on page 26

v “Step 2: Running the Installation Verification Procedure (Optional)” on page 26

v “Step 3: Updating JES3 (Optional)” on page 26

v “Step 4: Updating Installation Exits” on page 27

v “Step 5: Updating SYS1.PARMLIB Members” on page 27

v “Step 6: Using the Problem Determination Aid Facility (Optional)” on page 33

v “Step 7: Setting Up DFSMSrmm Disposition Processing (Optional)” on page 33

v “Step 8: Updating the Procedure Library” on page 34

v “Step 9: Assigning DFSMSrmm a RACF User ID” on page 37

v “Step 10: Defining Parmlib Member EDGRMMxx” on page 38

v “Step 11: Tailoring Parmlib Member EDGRMMxx” on page 38

v “Step 12: Creating the DFSMSrmm Control Data Set” on page 39

v “Step 13: Creating the Journal” on page 44

v “Step 14: Authorizing Users” on page 47

v “Step 15: Making the DFSMSrmm ISPF Dialog Available to Users” on page 47

v “Step 16: Restarting z/OS with DFSMSrmm Implemented” on page 51

v “Step 17: Tailoring DFSMSrmm Set Up” on page 51

v “Step 18: Starting DFSMSrmm” on page 52

v “Step 19: Defining Resources” on page 55

v “Step 20: Updating the Operational Procedures” on page 59

v “Step 21: Initializing the DFSMSrmm Subsystem and Tape Recording” on page

59

v “Step 22: Setting Up DFSMSrmm Utilities” on page 60

v “Step 23: Setting Up DFSMSrmm Web Service (Optional)” on page 61

v “Step 24: Setting Up DFSMSrmm Common Information Model (CIM) Provider

(Optional)” on page 61

v “Step 25: Installing PTFs and the SMP/E Maintenance to DFSMSrmm” on page

62

© Copyright IBM Corp. 1992, 2007 25

Step 1: Preparing to Implement DFSMSrmm

You should have installed DFSMSrmm, along with the other DFSMS components,

using SMP/E. Refer to the z/OS Program Directory you received with the product

tape for complete installation instructions.

If you have multiple z/OS images or systems on which you want DFSMSrmm to

manage tape processing, there are some basic decisions you must make about

how to implement DFSMSrmm. If the systems have access to shared DASD, you

can set up one DFSMSrmm control data set and share it among your systems.

Systems which are in a sysplex are best managed using a single control data set.

When you have multiple sysplexes and have shared DASD between them, you can

choose to have a single control data set to be shared or one control data set per

sysplex. If you do not have shared DASD on which to place a control data set for

all systems to share, consider using DFSMSrmm client server support for z/OS to

enable a single control data set to be used. See Chapter 3, “Setting Up

DFSMSrmm Client and Server Systems,” on page 63 for additional information.

Recommendation: After you have installed DFSMSrmm using SMP/E, IPL your

system without performing any DFSMSrmm implementation tasks and have

DFSMSrmm take no part in removable media management. This is especially

helpful if you are running another tape management product in production.

See Appendix D, “Evaluating Removable Media Management Needs,” on page 503

for a checklist to help you plan for implementing DFSMSrmm.

Step 2: Running the Installation Verification Procedure (Optional)

If this is the first time you are implementing DFSMSrmm, use the supplied IVP to

verify that DFSMSrmm has installed correctly. You can run the IVP at any time, for

example, after installing maintenance on your system.

See Appendix A, “DFSMSrmm Installation Verification Procedures,” on page 475 for

the IVP procedures.

Step 3: Updating JES3 (Optional)

DFSMSrmm Samples Provided in SAMPLIB

v EDG3IIP1 Sample to Update IATIIP1

v EDG3LVVR Sample to Update IATLVVR

v EDG3UX29 Sample to Update IATUX29

v EDG3UX62 Sample to Update IATUX62

v EDG3UX71 Sample to Update IATUX71

If you use DFSMSrmm and have JES3-managed tape devices that are not in an

IBM TotalStorage Enterprise Automated Tape Library (3494) or IBM TotalStorage

Enterprise Automated Tape Library (3495), continue with this step. Otherwise, skip

this step because allocation and DFSMSdfp handle all mount and volume

verification.

DFSMSrmm provides SMP/E USERMODs that you can apply to the standard

supplied JES3 user exits and other JES3 modules. The USERMODs can be used

to prevent JES3 from validating certain volume mounts, to update JES3 fetch and

26 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

mount messages, and to enable the use of no label tape volumes with JES3. If you

have installed DFSMSrmm on a JES3 system, you might want to apply the JES3

USERMODs as described in Chapter 15, “Running DFSMSrmm with JES3,” on

page 321. You must consider how applying a USERMOD might affect any

locally-developed user exits.

Step 4: Updating Installation Exits

DFSMSrmm Samples Provided in SAMPLIB

v EDGCVRSX Sample to Use the Installation Exit EDGUX100

v EDGUX100 Sample to Use the Installation Exit EDGUX100

v EDGUX200 Sample to Use the Installation Exit EDGUX200

DFSMSrmm Samples Provided in AEDGSRC1 or SMPSTS

v CBRUXCUA Programming Interface to EDGLCSUX

v CBRUXEJC Programming Interface to EDGLCSUX

v CBRUXENT Programming Interface to EDGLCSUX

v CBRUXVNL Programming Interface to EDGLCSUX

v IGXMSGEX Programming Interface to EDGMSGEX

DFSMSrmm provides two sample installation exits, EDGUX100 and EDGUX200.

You must install EDGUX100 and EDGUX200 if you want to use them. Chapter 13,

“Using DFSMSrmm Installation Exits,” on page 267 describes the functions that the

DFSMSrmm installation exits provide and how to use the exits. The installation exits

that DFSMSrmm provides for IGXMSGEX and the OAM exits are implemented

when DFSMS is installed. The installation exits that are installed for IGXMSGEX or

the OAM exits replace any exits you had previously installed.

Recommendation: Convert your code to run when called by the DFSMSrmm exits

and modify the supplied exits to call your code. You might need to modify your

DFSMSrmm installation exits to provide the functions available in the exits you are

currently using as well as provide functions required by DFSMSrmm.

Related Reading:

v “Processing Fetch and Mount Messages: EDGMSGEX” on page 262 for details

about the DFSMSrmm programming interface that you use with IGXMSGEX.

v “Managing System-Managed Tape Library Volumes: EDGLCSUX” on page 248

for details about the DFSMSrmm programming interface that you use with the

OAM installation exits.

Step 5: Updating SYS1.PARMLIB Members

Update the SYS1.PARMLIB members IEFSSNxx and IKJTSOxx. Optionally, you

can update IFGPSEDI, SMFPRMxx, and GRSRNLxx. You should also ensure that

IFAPRD00 is updated correctly during installation of DFSMS.

Perform this step once for each z/OS image.

Chapter 2. Implementing DFSMSrmm 27

Updating IEFSSNxx

There are two changes to make in the IEFSSNxx member in SYS1.PARMLIB:

v Define a DFSMSrmm subsystem name to z/OS

v Add the name of the subsystem interface initialization program, EDGSSSI, to

fully enable DFSMSrmm

Recommendation: Implement the changes in two steps. Define the DFSMSrmm

system at this time as described in “Defining DFSMSrmm to z/OS.” Then you can

add the name of the subsystem interface as described in “Step 21: Initializing the

DFSMSrmm Subsystem and Tape Recording” on page 59. If you make only this

first change at this time, you can choose whether to start the DFSMSrmm

procedure and choose a time to best suit your particular situation. If you implement

both changes at once, DFSMSrmm rejects all tape mounts until the subsystem

procedure is active or you use the EDGRESET utility to disable the interface.

Defining DFSMSrmm to z/OS

Add an entry to IEFSSNxx to define the DFSMSrmm subsystem to z/OS. Specify

the DFSMSrmm subsystem name shown in Figure 3. Figure 3 shows where to

place the subsystem name. Place the DFSMSrmm entry after the JES2 or JES3

entry and before the NetView® entry to ensure that NetView automation receives

the write-to-operator messages once DFSMSrmm has updated them. Additionally, if

you have any software identified as a subsystem that is dependent on

open/close/end-of-volume processing, place the names after the DFSMSrmm entry.

DFSMSrmm has no other dependencies on the sequence of subsystem names.

 where:

DFRM Specifies the subsystem name. You can use any unique subsystem

name, one to four characters long.

Although the subsystem name can be one-to-four characters long, the subsystem

name must be four characters and must match the first four characters of the

procedure name under these conditions:

v You have not added EDGSSSI, as described in “Step 21: Initializing the

DFSMSrmm Subsystem and Tape Recording” on page 59, and you want

DFSMSrmm to perform the EDGSSSI processing when it starts by replying

RETRY to message EDG0103D.

v You use the EDGRESET utility or the START command

 and plan to restart DFSMSrmm without an IPL.

Run DFSMSrmm as a subsystem that is started under the JES2 or JES3

subsystem, rather than under the master subsystem. When choosing the

DFSMSrmm subsystem name, the subsystem name must not exactly match the

SUBSYS SUBNAME(JES2) /* JES2 PRIMARY SUBSYSTEM START */

 PRIMARY(YES) START(YES)

SUBSYS SUBNAME(DFRM) /* Name of the DFSMSrmm subsystem */

SUBSYS SUBNAME(AOPA) /* Netview */

Figure 3. Defining DFSMSrmm to z/OS through IEFSSNxx With Subsystem Inactive

 S DFRMM,OPT=RESET

28 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm procedure name, unless you specify SUB=JES2 or SUBJ=JES3 on

each START command. For example, if you use DFRM as the subsystem name,

use DFRMM as the procedure name.

You must run DFSMSrmm under the JES2 or JES3 subsystem to use these

functions:

v Use the DFSMSrmm NOTIFY function which automatically notifies volume and

product owners when the volumes they own become eligible for release or when

product volumes are added.

v Use the SYSOUT facilities like //SORTOUT DD SYSOUT=*.

Dynamically Adding the DFSMSrmm Subsystem

You can dynamically add the DFSMSrmm subsystem without an IPL. Use the z/OS

system command SETSSI to add the DFRM subsystem. Issue the SETSSI

command from a console that has master authority or a console that has sufficient

RACF authority.

To activate the DFSMSrmm subsystem, issue the command:

Enabling DFSMSrmm and Tape Recording

You enable DFSMSrmm later, in “Step 21: Initializing the DFSMSrmm Subsystem

and Tape Recording” on page 59. Refer to this topic now if you are interested in the

changes you will make later to IEFSSNxx to enable the DFSMSrmm tape recording

interface.

Updating IKJTSOxx to Authorize DFSMSrmm Commands

Update IKJTSOxx to authorize RMM commands and utilities. Refer to z/OS TSO/E

Customization if you use the TSO CSECT facility rather than IKJTSOxx for these

updates.

To authorize the TSO command RMM, make the specifications as shown in

Figure 4:

 To authorize the DFSMSrmm utilities that you can use within TSO/E or call through

the TSO/E Service Facility, make the specifications as shown in Figure 5:

 To dynamically obtain the updated version of the IKJEFTxx member, use the TSO

PARMLIB UPDATE(**) command in your TSO session.

SETSSI ADD,SUBNAME=DFRM

 AUTHCMD NAMES(RMM)

Figure 4. Updating IKJTSOxx to Authorize RMM Commands

 AUTHTSF NAMES(EDGHSKP

 EDGUTIL

 EDGRPTD

 EDGAUD)

 AUTHPGM NAMES(EDGHSKP

 EDGUTIL

 EDGRPTD

 EDGAUD)

Figure 5. Updating IKJTSOxx to Call DFSMSrmm through TSO

Chapter 2. Implementing DFSMSrmm 29

Updating IFGPSEDI When the Enhanced Data Integrity Function is

Activated

The purpose of enhanced data integrity in the IFGPSEDI member of

SYS1.PARMLIB is to detect programs that cause data loss due to multiple

programs updating a sequential data set simultaneously. This is a useful function

but if your system programmer chooses to activate it, DFSMSrmm receives

spurious warning messages or ABENDs.

The system programmer activates this function by:

1. Creating SYS1.PARMLIB member IFGPSEDI with MODE(WARN) or

MODE(ENFORCE) and

2. Either re-IPLing the system or issuing the command:

If the member has MODE(DISABLE) or MODE is omitted, then the member has no

effect.

If MODE(WARN) is in effect, then during the normal running of DFSMSrmm

programs, the system issues message IEC984I or message IEC985I for the

DFSMSrmm journal, ACTIVITY, EDGSPLCS, MESSAGE, REPORT, REPTEXT, and

XREPTEXT data sets. You can ignore these messages. IBM recommends that you

code those names in the DSN parameter in the IFGPSEDI member to suppress

these warning messages.

If MODE(ENFORCE) is in effect, then normal running of DFSMSrmm programs

causes ABEND 213-FD for the DFSMSrmm journal, ACTIVITY, EDGSPLCS,

MESSAGE, REPORT, REPTEXT, and XREPTEXT data sets. You must code the

names of these data sets in the DSN parameter in the IFGPSEDI member to

suppress these OPEN failures. Alternately you can change MODE(ENFORCE).

Related Reading: For more information on the journal, see “Step 13: Creating the

Journal” on page 44. For more information on the data sets used for inventory

management, see “Allocating Data Sets for Inventory Management” on page 329.

For further information about enhanced data integrity, see z/OS MVS Initialization

and Tuning Reference.

Updating SMFPRMxx (Optional)

If you want DFSMSrmm security-type SMF records or audit-type SMF records,

update the SMFPRMxx member to ensure that the DFSMSrmm SMF records are

generated. Define the SMF record numbers in the DFSMSrmm parmlib member

EDGRMMxx using the OPTION command and the SMFAUD operand for auditing

records and the SMFSEC operand for security records. For more information on

these commands, see Chapter 10, “Using the Parmlib Member EDGRMMxx,” on

page 167.

Select two SMF record numbers in the range 128 through 255 that your installation

is not currently using. Add your record numbers to the member as described in

z/OS MVS System Management Facilities (SMF).

 S IFGEDI

30 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

|

Updating GRSRNLxx (Optional)

Before you begin: Skip this step if you are not using global resource serialization

(GRS) to serialize access to resources. If you have multiple systems connected with

global resource serialization, decide now how you want GRS to handle the reserve

on the control data set.

Recommendations: These recommendations for setting up resource serialization

depend on the volume where the control data set resides and if the volume

contains critical data.

v If the volume does not contain other critical data and if real reserves do not

cause any shared DASD contention problems, convert the associated SYSTEMS

enqueue to a local SYSTEM enqueue, while leaving the hardware reserve in

effect. This method gives slightly better DFSMSrmm performance.

Example: Add the reserve names to the global resource serialization exclusion

list as shown in Figure 6. This leaves the real hardware reserve in effect, and

causes the associated SYSTEMS enqueue to be converted to a local SYSTEM

one. You must specify both the major name (QNAME) and the minor name

(RNAME) as shown in Figure 6 when converting the SYSTEMS enqueue to a

local SYSTEM enqueue. If you only specify the major name, all enqueues used

by DFSMSrmm are converted and you will be unable to run DFSMSrmm on

multiple systems.

Note: In Figure 6, substitute cdsid with your selected CDSID as specified in the

EDGRMMxx parmlib member OPTION statement.

An alternative to creating multiple exclusion RNL entries is to change the existing

definition from SPECIFIC to GENERIC. See Figure 7 for an example.

v If the volume contains other critical data and real reserves could impact other

systems or cause DASD contention problems, convert the RESERVE to a

SYSTEMS enqueue. If you do not change your GRSRNLxx parmlib member,

DFSMSrmm still functions correctly; but any performance gain from using the real

hardware reserve feature is negated by the overhead created from sending the

global SYSTEMS enqueue around the GRS ring.

Example: Add the reserve name to the global resource serialization reserve

conversion list as shown in Figure 8 on page 32 to leave the global SYSTEMS

enqueue in effect and remove the real hardware reserve. You must specify both

the major name (QNAME) and the minor name (RNAME) as shown in Figure 8

on page 32 when converting the RESERVE to a SYSTEMS enqueue. If you only

specify the major name, all enqueues used by DFSMSrmm are converted and

you will be unable to run DFSMSrmm on multiple systems.

RNLDEF RNL(EXCL) TYPE(SPECIFIC)

QNAME(SYSZRMM)

RNAME(MASTER.RESERVE)

RNLDEF RNL(EXCL) TYPE(SPECIFIC)

QNAME(SYSZRMM)

RNAME(MASTER.RESERVE.cdsid)

Figure 6. Converting the SYSTEMS Enqueue to a Local SYSTEM Enqueue

RNLDEF RNL(EXCL) TYPE(GENERIC)

QNAME(SYSZRMM)

RNAME(MASTER.RESERVE)

Figure 7. Changing an existing definition from SPECIFIC to GENERIC

Chapter 2. Implementing DFSMSrmm 31

|
|
|
|
|
|
||
|
|

|
|
|
||
|
|

|
|

|
|
|

Note: Do not convert the reserve if the control data set volume is shared with

any other system outside the sysplex.

Note: In Figure 8, substitute cdsid with your selected CDSID as specified in the

EDGRMMxx parmlib member OPTION statement.

An alternative to creating multiple exclusion RNL entries is to change the existing

definition from SPECIFIC to GENERIC. See Figure 9 for an example.

Table 5 is the list of DFSMSrmm resource symbolic names. Do not use GRS to

change or alter any of these ENQs. The resource symbolic names are provided

for information only because DFSMSrmm processing manages serialization for

you.

 Table 5. DFSMSrmm Resource Symbolic Names

Major Name Minor Name Resource Scope

SYSZRMM HSKP.dsn.volser Inventory management data

set serialization

SYSTEMS

SYSZRMM MASTER.RESERVE DFSMSrmm control data set

serialization at startup and

when the CDSID is not yet

known

SYSTEMS

SYSZRMM MASTER.RESERVE.cdsid DFSMSrmm control data set

serialization

SYSTEMS

SYSZRMM MHKP.ACTIVE Serialize inventory

management functions on the

same DFSMSrmm subsystem

SYSTEM

SYSZRMM MHKP.dsn.volser Inventory management data

set serialization

SYSTEMS

SYSZRMM RMM.ACTIVE Ensure only one system run

per z/OS image

SYSTEM

SYSZRMM BUFFER.CONTROL Buffer management STEP

SYSZRMM EDGINERS.volser Serialize volume labeling SYSTEMS

SYSZRMM SHUTDOWN Serialize DFSMSrmm

shutdown and refresh

processing

SYSTEM

SYSZRMM INACTIVE Serialize DFSMSrmm

activation enabling only a

single WTOR to be issued to

the operator

SYSTEM

RNLDEF RNL(CON) TYPE(SPECIFIC)

QNAME(SYSZRMM)

RNAME(MASTER.RESERVE)

RNLDEF RNL(CON) TYPE(SPECIFIC)

QNAME(SYSZRMM)

RNAME(MASTER.RESERVE.cdsid)

Figure 8. Converting the RESERVE to a SYSTEMS Enqueue

RNLDEF RNL(CON) TYPE(GENERIC)

QNAME(SYSZRMM)

RNAME(MASTER.RESERVE)

Figure 9. Changing an existing SPECIFIC definition to GENERIC

32 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|
||
|
|

|
|
|
||
|
|

|
|

|
|
|

|
|
|

|||
|
|

Table 5. DFSMSrmm Resource Symbolic Names (continued)

Major Name Minor Name Resource Scope

SYSZRMM EXIT_IS_ACTIVE Exit recovery serialization SYSTEM

SYSZRMM WTOR_ENQ Exit recovery serialization SYSTEM

SYSZRMM WTORIPC TCP/IP error recovery

serialization on CLIENT

systems

SYSTEM

SYSZRMM EXIT_id_UNAVAIL Exit recovery serialization

where id can be 100 or 200

representing the last three

characters of the DFSMSrmm

installation exits EDGUX100

or EDGUX200.

SYSTEM

See z/OS MVS Planning: Global Resource Serialization for additional information

about global resource serialization.

Enabling DFSMSrmm

IBM supplies a tailored SYS1.PARMLIB member, IFAPRD00, that enables the

elements and features you ordered. Before you can use them, you must copy the

contents of IDAPRD00 to an active IFAPRDxx member that you establish through

the PROD parameter in IEASYSxx or the SET PROD operator command. The

IFAPRD00 member is not active by default.

To update the IFAPRDxx member dynamically, use the z/OS SET system

command:

For more information on IDAPRDxx, see z/OS MVS Initialization and Tuning

Reference.

Step 6: Using the Problem Determination Aid Facility (Optional)

Perform this step once for each z/OS image. You only need to perform this step if

you want an external DASD record of trace data.

The problem determination aid (PDA) facility gathers DFSMSrmm processing

information to enable analysis to pinpoint module flow and resource usage that is

related to DFSMSrmm problems. The PDA facility is required for IBM Support

Center because it traces module and resource flow. The PDA facility consists of

in-storage trace, optional DASD log data sets, EDGRMMxx parmlib member

options, and operator commands to control tracing. See Chapter 20, “Using the

Problem Determination Aid Facility,” on page 457 for information about setting up

the PDA facility.

Step 7: Setting Up DFSMSrmm Disposition Processing (Optional)

DFSMSrmm disposition processing is optional and provides support for these tasks:

SET PROD=xx

Chapter 2. Implementing DFSMSrmm 33

v Providing operators with information to assist them in performing tasks like

moving a tape to a specific location

v Generating sticky labels

v Updating the location where a volume resides

See Chapter 21, “Setting Up DFSMSrmm Disposition Processing,” on page 461 for

information about setting up DFSMSrmm disposition processing.

Step 8: Updating the Procedure Library

DFSMSrmm Sample Provided in SAMPLIB

v EDGDFRMM Sample to Create a Procedure in SYS1.PROCLIB

Perform this step once for each z/OS image.

Create a procedure in SYS1.PROCLIB to start the DFSMSrmm subsystem address

space.

Tip: Figure 10 shows sample JCL that you can use to create the procedure.

The sample JCL in Figure 11 shows the use of additional parameters for specifying

the MASTER DD statement, the JOURNAL DD statement, the PARMLIB DD

statement, and the IEFRDER DD statement.

 where:

DFRMM

Specifies the procedure name. You can use any procedure name, one-to-eight

characters long, subject to the restriction documented under IEFSSNxx parmlib

member.

dispdd

dispdd is an OUTPUT JCL statement that you code when you want to create

label output data. The name of the output statement must match the name you

specified in the DFSMSrmm EDGRMMxx parmlib OPTION DISPDDNAME

 //DFRMM PROC M=00,OPT=MAIN

 //IEFPROC EXEC PGM=EDG&OPT.,PARM=’&M’,TIME=1440,REGION=40M

 //EDGPDOX DD DISP=SHR,DSN=RMM.&SYSNAME..RMMPDOX

 //EDGPDOY DD DISP=SHR,DSN=RMM.&SYSNAME..RMMPDOY

 //dispdd OUTPUT DEST=SYSTEMX,FORMS=LABEL,CLASS=L

Figure 10. Creating a Procedure in SYS1.PROCLIB Using the Recommended JCL

 //DFRMM PROC M=00,OPT=MAIN

 //IEFPROC EXEC PGM=EDG&OPT.,PARM=’&M’,TIME=1440,REGION=40M

 //PARMLIB DD DDNAME=IEFRDER

 //IEFRDER DD DISP=SHR,DSN=SYS1.PARMLIB

 //MASTER DD DISP=SHR,DSN=RMM.CONTROL.DSET

 //JOURNAL DD DISP=SHR,DSN=RMM.JOURNAL.DSET

 //EDGPDOX DD DISP=SHR,DSN=?UID..?HOSTID..RMMPDOX

 //EDGPDOY DD DISP=SHR,DSN=?UID..?HOSTID..RMMPDOY

 //dispdd OUTPUT DEST=SYSTEMX,FORMS=LABEL,CLASS=L

Figure 11. Creating a Procedure in SYS1.PROCLIB Using Additional Parameters

34 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

operand as described in “Defining System Options: OPTION” on page 175. You

can use any JCL keywords supported on the OUTPUT statement as described

in z/OS MVS JCL Reference.

EDGPDOX DD and EDGPDOY DD

EDGPDOX DD and EDGPDOY DD are required statements for external trace

output recording. If you do not specify these DD statements, no logging of the

PDA trace output is performed. When DFSMSrmm swaps the PDA log data sets

EDGPDOX and EDGPDOY, DFSMSrmm uses an intermediate data set name

for the log data sets. The started task must have ALTER access to this

intermediate data set. The data set name is

?UID.RMMPDO.TEMP.RMMPDO.H?SYSID. The ?UID is the DFSMSrmm ID,

and ?SYSID is the first seven characters of the DFSMSrmm SYSID that is

defined in the DFSMSrmm EDGRMMxx parmlib OPTION SYSID operand, as

described in Chapter 10, “Using the Parmlib Member EDGRMMxx,” on page

167.

IEFRDER DD

IEFRDER is an optional statement. Use the IEFRDER DD statement to enable

operators to specify PARMLIB DD keywords on the START command for the

DFRMM procedure. If you do not code the IEFRDER DD and code the

PARMLIB DD, you will not be able to specify a different PARMLIB data set

name when starting the DFRMM procedure. If you do not code SYS1.PARMLIB,

it is not necessary to code the IEFRDER DD statement.

JOURNAL DD

JOURNAL is an optional statement. If you code the JOURNAL DD statement to

name the DFSMSrmm journal data set, you cannot easily change the journal

name by switching to a different PARMLIB member. You must supply the journal

data set name in the DFSMSrmm EDGRMMxx parmlib member if you do not

code the JOURNAL DD statement and if you require journaling. You must

catalog the journal.

M Use M on the PROC statement to specify a parmlib member suffix. When you

specify M=00, DFSMSrmm uses member EDGRMM00.

MASTER DD

MASTER is an optional statement that identifies the DFSMSrmm control data

set name. If you code the MASTER DD statement to name the DFSMSrmm

control data set, you cannot easily change the control data set name by

switching to a different parmlib member. You must supply the control data set

name in the DFSMSrmm EDGRMMxx parmlib member if you do not code the

MASTER DD statement.

OPT

Use OPT on the PROC statement to specify whether to enable or disable

subsystem interface:

 OPT=RESET to disable the subsystem interface

 OPT=MAIN to enable the DFSMSrmm subsystem

PARMLIB DD

PARMLIB is an optional statement. Use the PARMLIB DD statement to identify

the data set that contains DFSMSrmm startup parameters when you do not use

the system PARMLIB concatenation. If you do not code the PARMLIB DD

statement, do not code the IEFRDER DD statement because it is not required.

See “Step 18: Starting DFSMSrmm” on page 52 for parameters you can specify

with the START command if you specify the PARMLIB DD statement.

 If you specify the parmlib data set in the DFSMSrmm procedure, the data set

remains allocated while DFSMSrmm is active. If you do not specify the parmlib

Chapter 2. Implementing DFSMSrmm 35

data set name, DFSMSrmm dynamically allocates PARMLIB by using the

concatenated parmlib function of the z/OS system.

 Recommendation: Do not specify the PARMLIB or IEFRDER DD statement in

the DFRMM procedure. Let DFSMSrmm dynamically allocate the PARMLIB to

’SYS1.PARMLIB’ or use the concatenated parmlib support.

REGION

As you determine the REGION size for the DFSMSrmm started procedure, the

amount of virtual storage that DFSMSrmm uses depends on the resources you

have defined. DFSMSrmm virtual storage usage can be affected by any

REGION size controls or restrictions that your systems might have in place

such as in IEFUSI. The sample DFRMM procedure specifies REGION=40M,

which normally provides all the private region below 16MB and 40MB above

16MB. To enable DFSMSrmm to use all available virtual storage, specify

REGION=0M. If you want to set a specific region size, consider these tips along

with the current region size of your DFRMM started procedure, to determine if

you need to make any changes to the REGION size:

v The VSAM local shared resources (LSR) buffer pool that is built by the

DFSMSrmm subsystem for the control data set is obtained above 16 MB.

DFSMSrmm builds an LSR buffer pool for the DFRMM started procedure,

and also for the EDGUTIL utility batch address space, which has a

predetermined size. The LSR buffer pool is 800*data CISZ + 200*index CISZ.

Assuming 10 240 for the control data set data CISZ and 2 048 for the control

data set index CISZ, the value is 800*10 240+200*2 048=8.4 MB. If you use

larger CI sizes, more buffer space is required. For example, if you use a 26K

data CISZ, a 21.2 MB buffer size is required.

Recommendation: If the buffer space is larger than 8.6 MB, add the

difference to the 40 MB region size that is used by DFSMSrmm and use this

value as the REGION size for the DFRMM started procedure.

v DFSMSrmm uses DFSORT during inventory management. Increase the

DFSMSrmm REGION size to allow DFSORT to use storage rather than

SORTWKxx DASD files. The use of storage rather than DASD files can

potentially decrease the time that is needed to run DFSMSrmm inventory

management. If you change the REGION size, use 1 additional MB for every

2 000 data sets on private volumes.

If you code the MASTER DD statement and the JOURNAL DD statement in the

started procedure, you can switch to different data set names by specifying the

names in the EDGRMMxx parmlib member. To make the switch:

1. Quiesce DFSMSrmm by specifying:

 DFSMSrmm frees the current file allocations and pauses the DFSMSrmm

processing.

2. Specify the new parmlib member name that contains the data set names.

3. Start DFSMSrmm by specifying:

If you decide to use EDGLABEL or EDGXPROC, you must update the procedure

library to include them as well. See “Using the LABEL Procedure” on page 454 for

 F DFRMM,QUIESCE

 F DFRMM,M=xx

36 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

information on the supplied EDGLABEL procedure. See “Replenishing Scratch

Volumes in a System-Managed Library” on page 453 for information on the supplied

EDGXPROC procedure.

Step 9: Assigning DFSMSrmm a RACF User ID

Perform this step once for each z/OS image.

When running on a system with RACF installed, assign DFSMSrmm a RACF user

ID by adding a definition to the RACF started procedures table, ICHRIN03, or in the

RACF STARTED class. The RACF user ID can be the name of the DFSMSrmm

procedure you created in “Step 8: Updating the Procedure Library” on page 34 or

any installation-selected RACF user ID you specify. As data sets are created for use

by the DFSMSrmm procedure, add the RACF user ID to the access list for the data

sets. Table 6 lists the data sets to which DFSMSrmm requires access.

 Table 6. Data Sets Requiring Access by the DFSMSrmm RACF User ID

DDNAMES Access Required

ACTIVITY Update

EDGPDOX Alter

EDGPDOY Alter

MASTER Control

Parmlib member Read

JOURNAL Update

MESSAGE Update

REPORT Update

REPTEXT Update

XREPTEXT Update

If you plan to use the DFSMSrmm procedures EDGXPROC, BACKUPPROC, or

LABEL, you must define the procedures in ICHRIN03 or the STARTED class. For

more information on updating ICHRIN03 or the RACF STARTED class, see z/OS

Security Server RACF System Programmer’s Guide.

The DFSMSrmm procedures EDGXPROC and EDGBKUP require READ access to

STGADMIN.EDG.HOUSEKEEP and ALTER access to the data sets specified in the

BACKUP and JRNLBKUP DD statements. The LABEL procedure requires UPDATE

access to STGADMIN.EDG.OPERATOR. If you are using the EDGRESET utility,

you should make sure it has ALTER access to the STGADMIN.EDG.RESET.SSI

access list. For additional information on authorization needed for the DFSMSrmm

user ID, see Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on

page 213.

To run DFSMSrmm with DFSMShsm, ABARS, Tivoli Storage Manager, or OAM, you

must define their procedure names to RACF with the STARTED class. See z/OS

DFSMS Storage Administration Reference for information about defining the

procedure names.

You must define any user ID that requires DFSMSrmm services and makes use of

OPERATIONS or privileged attributes to RACF.

Chapter 2. Implementing DFSMSrmm 37

If you are using an equivalent security product, review the RACF-related information

to determine the changes that might be required to run DFSMSrmm with the

equivalent security product.

Step 10: Defining Parmlib Member EDGRMMxx

Perform this step once for each z/OS image.

Related Reading:

v “Implementing DFSMSrmm Client and Server Systems” on page 64 for details

about setting up DFSMSrmm systems.

Create a parmlib member EDGRMMxx definition for each DFSMSrmm standard

system, server system, and client system. The member name is in the form

EDGRMMxx, where xx is a two character alphanumeric suffix of your choice. The

default is EDGRMM00. A sample parmlib member is available as EDGIVPPM in

SAMPLIB.

Starting with z/OS V1R9, you can use system symbols to enable easier sharing of

the EDGRMMxx parmlib member. See z/OS MVS Initialization and Tuning

Reference for how to use system symbols in parmlib members.

You may need some information in the EDGRMMxx parmlib to be specific to a

subset of your systems; for example, the REJECT or VLPOOL entries may need to

be different. To enable this information to be handled on a system-by-system basis,

you can specify a second parmlib member to be used. Use the MEMBER operand

on the OPTION command to identify the second parmlib member. Using system

symbols for the MEMBER value enables a different second parmlib member to be

used on each system.

Recommendation: Specify the PARMLIB member EDGRMMxx as a member of

SYS1.PARMLIB or the PARMLIB concatenation. If you follow this recommendation,

you can use the DFSMSrmm startup parameters to avoid stopping and restarting

DFSMSrmm. For example, you can use the modify command (F DFRMM,M=xx) to

implement updates to the data set and avoid stopping and restarting DFSMSrmm.

You can also restart DFSMSrmm using another data set with parameters to

implement changes.

The RACF ID associated with the DFSMSrmm started procedure requires READ

access to the parmlib member EDGRMMxx data set.

Table 7 shows several ways to define the parmlib member.

 Table 7. Creating DFSMSrmm Parmlib Definitions

Way to Define Example

Member of SYS1.PARMLIB SYS1.PARMLIB(EDGRMMxx)

Member of PARMLIB concatenation SYSC.PARMLIB(EDGRMMxx)

Member of separate data set MY.PARMLIB(EDGRMMxx)

Separate sequential data set USER.PARMLIB

Step 11: Tailoring Parmlib Member EDGRMMxx

Perform this step once for each z/OS image.

38 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|

|
|
|
|
|
|
|

Tailor the options for parmlib member EDGRMMxx. To see the options and parmlib

member examples, see Chapter 10, “Using the Parmlib Member EDGRMMxx,” on

page 167.

Parmlib member EDGRMMxx contains the installation options for DFSMSrmm. See

Chapter 10, “Using the Parmlib Member EDGRMMxx,” on page 167 for information

about the options you can define in the parmlib member. Using EDGRMMxx, you

can perform these tasks:

v Define system options, such as the date format for reports and messages, and

the mode in which DFSMSrmm runs

v Prevent a range of tapes from being used on specific systems

v Define pools, such as the range of shelves to use for a pool and whether a pool

has RACF tape profile processing

v Tailor mount messages, such as the position of the volume serial number and

identifier

v Define security classes for data sets and volumes

v Control the use of bypass label processing for tape volumes

v Define storage locations

v Define controls for running DFSMSrmm vital record processing to apply retention

and movement policies

Step 12: Creating the DFSMSrmm Control Data Set

DFSMSrmm Sample Provided in SAMPLIB

v DFSMSrmm EDGJMFAL Sample JCL for Allocating the Control Data Set

v DFSMSrmm EDGJUTIL Sample JCL for Creating the Control Data Set

Perform this step once for each RMMplex, or for each z/OS image.

Create the DFSMSrmm control data set, a VSAM key-sequenced data set that

contains the complete inventory of the removable media library. DFSMSrmm

records all changes made to the inventory, such as adding or deleting volumes, in

the control data set.

You can create the control data set for each RMMplex or for each z/OS image. If

you have a control data set for each z/OS image, each control data set only

contains information for that system. DFSMSrmm cannot track tapes that are

accidentally moved to another system that has a different control data set.

Recommendation: Create one control data set for each RMMplex. Sharing the

control data set across systems allows DFSMSrmm to keep all tape usage

information in one place.

Roadmap for Creating the Control Data Set

This table shows the subtasks and associated procedures for creating the control

data set.

 Subtask Associated procedure

Define the control data set. “Defining the DFSMSrmm Control Data Set”

on page 40

Chapter 2. Implementing DFSMSrmm 39

Subtask Associated procedure

Calculate DASD space for the control data

set.

“Calculating DASD Space for the

DFSMSrmm Control Data Set”

Place the control data set. “Placing the DFSMSrmm Control Data Set”

on page 41

Allocate space for the control data set. “Allocating Space for the Control Data Set”

on page 42

Protect the control data set. “Protecting the Control Data Set” on page 43

Initialize the control data set for DFSMSrmm

subsystem use by running the EDGUTIL

utility.

“Initializing the Control Data Set” on page 43

Back up the control data set. “Backing Up the Control Data Set” on page

43

Defining the DFSMSrmm Control Data Set

You can define the DFSMSrmm control data set as either an extended format (EF)

or a basic format VSAM data set. Using a basic format data set for the DFSMSrmm

control data set, limits the control data set size to a maximum of 4 GB. Using an EF

data set enables you to use VSAM functions such as multivolume allocation,

compression, or striping. EF also enables you to define a control data set that uses

VSAM extended addressability (EA) to enable the control data set to grow above 4

GB. To define an EF control data set, you must include the DATACLASS keyword

on the AMS DEFINE command and reference the correct data class. Refer to z/OS

DFSMS Using Data Sets for more information on EF data sets, and refer to z/OS

DFSMS Storage Administration Reference for information on defining data classes

with DSNTYPE=EXT and EXTENDED ADDRESSABILITY=Y.

DFSMSrmm requires CONTROL access to the control data set. The control data

set cannot be a SYS1.xx data set if the control data set is to be shared.

Additionally, batch LSR cannot be used with the DFSMSrmm control data set.

Calculating DASD Space for the DFSMSrmm Control Data Set

Table 8 helps you to calculate DASD space requirements for the DFSMSrmm

control data set. To determine the number of resources in the library, such as the

number of software products you have, see your answers to Appendix D,

“Evaluating Removable Media Management Needs,” on page 503.

 Table 8. DFSMSrmm Control Data Set DASD Space Requirements

Control Data Set Content DASD Space

Control record 1 MB (MB equals approximately 1 000 000

bytes)

Data sets 512 KB for every 1000 data sets

Shelf locations in the library that do not

contain volumes

140 KB for every 1000 shelf locations

Shelf locations in storage locations 140 KB for every 1000 shelf locations

Owners 38 KB per 1000 volumes

Software products, average five volumes per

product

420 KB for every 1000 software products

Volumes 1 MB for every 1000 volumes

40 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 8. DFSMSrmm Control Data Set DASD Space Requirements (continued)

Control Data Set Content DASD Space

Vital record specifications 212 KB for every 1000 vital record

specifications

After calculating the previous figures, increase the total by approximately 50% for

free space in the VSAM key-sequenced data set. For example, if the calculated size

is 3000 KB, increase it by 50% to 4500 KB to allow for free space. Also consider

your expected future growth in numbers of tape volumes and data sets, such as

acquiring a new virtual tape solution, and build this expected growth into your size

calculations. Use this calculated value in the access method services KILOBYTES

parameter on the DEFINE CLUSTER command shown in Figure 12 on page 42.

See “Monitoring the Space Used by the Control Data Set” on page 385 for

information about monitoring the DFSMSrmm control data set space usage.

The size of the records in the DFSMSrmm control data set is variable, and record

sizes increase as new function is added. Thus, the space required for your

DFSMSrmm control data set increases over time. For example, each time a volume

record is updated, such as during inventory management or when a new data set is

written on a volume, the associated control data set volume records change in size

or increase in size as they migrate to the new level dynamically. The value you use

for free space enables DFSMSrmm and VSAM to handle the record size changes

and allows you the ability to easily add new resources to DFSMSrmm at any time.

Because of the way that DFSMSrmm handles variable length records, it is

recommended that you do not use FREESPACE(0 0) when defining the

DFSMSrmm control data set.

Placing the DFSMSrmm Control Data Set

For each RMMplex, create one control data set on the main, or most active, system

in your complex.

If the volume where you place the control data set is system-managed, select a

storage class name that has the GUARANTEED SPACE attribute, and substitute it

in the example for the STORAGECLASS parameter in Figure 12 on page 42. If it is

not system-managed, remove the STORAGECLASS parameter.

If you are running DFSMSrmm on more than one system, decide which systems in

an RMMplex will share the control data set using DASD sharing and which will

share the control data set using DFSMSrmm client/server support for z/OS. Each

standard system and server system needs to share the control data set using

DASD sharing. The control data set must be cataloged in a user catalog shared by

all the standard systems and server systems in the RMMplex.

Put the control data set on a different volume than the journal, which is also shared.

Separating the two data sets optimizes data integrity, since the journal is a copy of

changes made to the control data set.

If you plan to use DFSMSdss to back up the control data set, place the control data

set on a concurrent copy capable volume.

To avoid a potential deadlock on the volume where the DFSMSrmm control data set

is placed, you should consider the other data that you place on the volume. A

deadlock can occur when a program other than DFSMSrmm reserves the volume

Chapter 2. Implementing DFSMSrmm 41

where the control data set resides and requests DFSMSrmm for service. If the

DFSMSrmm control data set requires additional extents because of the request,

then a deadlock can occur.

DFSMSrmm uses RESERVE/RELEASE to control access to the control data set

and ensure integrity. If your installation is using global resource serialization, see

“Step 4: Updating Installation Exits” on page 27 and “Updating GRSRNLxx

(Optional)” on page 31.

Place the DFSMSrmm control data set and journal on the highest performing DASD

in your installation. DFSMSrmm can benefit from features like caching and DASD

fastwrite and support for concurrent copy. Consider using the storage class attribute

AVAILABILITY=CONTINUOUS for the control data set. This does not remove the

need for journaling in DFSMSrmm, however, as the journal is required when

reconstructing the control data set from backups.

Allocating Space for the Control Data Set

When you allocate the DFSMSrmm control data set index and data components,

the index and data components must be on the same volume because DFSMSrmm

does not support them being allocated on separate volumes.

Use JCL similar to that shown in Figure 12 to allocate space for the control data set

on the master system:

 Recommendation: Use a CISZ of 26624 bytes and BUFFERSPACE of 829440

bytes for the data component of the control data set to help improve inventory

management run times through reduced I/O to the control data set. Any suitable

CISZ between 10240 and 26624 that meets your needs can be used.

where:

KILOBYTES Is the space value you calculated in “Calculating DASD Space for

the DFSMSrmm Control Data Set” on page 40. Choose a

secondary space value that allows the control data set to grow in

the future.

NAME() Specifies the name of the control data set. Use the same name you

//IDCAMS EXEC PGM=IDCAMS,REGION=1M

//SYSPRINT DD SYSOUT=*

//DASD DD DISP=SHR,UNIT=SYSDA,VOL=SER=8E5U04

//SYSIN DD *

 DEFINE CLUSTER(NAME(RMM.CONTROL.DSET) -

 FILE(DASD) -

 FREESPACE(15 0) -

 KEYS(56 0) -

 REUSE -

 RECSZ(512 9216) -

 SHR(3 3) -

 KILOBYTES(4500 1500) -

 STORAGECLASS(gspace) -

 VOLUMES(8E5U04)) -

 DATA(NAME(RMM.CONTROL.DSET.DATA) -

 BUFFERSPACE(829440)

 CISZ(26624)) -

 INDEX(NAME(RMM.CONTROL.DSET.INDEX) -

 CISZ(2048))

 /*

Figure 12. Allocating DASD Space for the Control Data Set

42 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

assigned in the parmlib member EDGRMMxx under OPTION

DSNAME(name) or in the MASTER DD statement in the

DFSMSrmm procedure.

FREESPACE Specifies how much free space VSAM reserves in the data set for

future additions. Free space is specified for control intervals (CI) to

allow for the variable length records used by DFSMSrmm.

Specifying a zero value for control area (CA) freespace ensures

that CA splits create free space where it is required. For more

information on changing the FREESPACE values, see z/OS

DFSMS Using Data Sets.

BUFFERSPACE

When the buffer space value is large enough to accommodate a

data CA plus one data CI and one index CI, you benefit from

improved performance during IDCAMS REPRO.

Protecting the Control Data Set

Protect the control data set by ensuring that a RACF DATASET profile protects it.

To prevent inadvertent updates to the control data set, specify a RACF universal

access of NONE. Give READ access to users running the inventory management

backup function, and give UPDATE access to users running any other backup

procedure. Give CONTROL access only to users authorized to perform functions

independent of the subsystem, such as restoring and reorganizing the control data

set and using program EDGUTIL. Give CONTROL access to the RACF user ID

assigned to the DFSMSrmm procedure in “Step 9: Assigning DFSMSrmm a RACF

User ID” on page 37.

Initializing the Control Data Set

To initialize the control data set, run the DFSMSrmm EDGUTIL utility. Figure 13 is

sample JCL you can use to create the control data set.

 See “Creating or Updating the Control Data Set Control Record” on page 400 for

additional information on SYSIN values you can use.

Backing Up the Control Data Set

Plan to use the DFSMSrmm utilities EDGBKUP and EDGHSKP to back up the

control data set. You can automatically back up the control data set as part of

inventory management if you use EDGHSKP which also clears the journal. You can

also use the parmlib OPTION command JOURNALFULL operand threshold value to

start a backup procedure.

Back up the control data set to DASD. You can also back up the control data set to

tape using DFSMSdss. Once the backup is complete, you can move or copy the

backup file to any storage medium.

Recommendation: Keep the latest backup available on DASD to provide the

fastest recovery time for the control data set.

//EDGUTIL EXEC PGM=EDGUTIL,PARM=’CREATE’

//SYSPRINT DD SYSOUT=*

//MASTER DD DSN=RMM.CONTROL.DSET,DISP=SHR

//SYSIN DD *

CONTROL CDSID(cds_id) EXTENDEDBIN(YES) STACKEDVOLUME(YES)

/*

Figure 13. Initializing the Control Data Set

Chapter 2. Implementing DFSMSrmm 43

|
|
|
|
|
|
||
|
|

|
|
|

See “Backing Up the Control Data Set” on page 365 for more information.

Step 13: Creating the Journal

DFSMSrmm Sample Provided in SAMPLIB

v EDGJNLAL Sample JCL for Allocating the Journal

Perform Step 13 once for each RMMplex or z/OS image, depending on how you

created the control data set. Create one control data set and one journal for each

RMMplex.

The journal contains a record of all changes made to the control data set since the

last backup. Create the journal and use it to forward recover changes made since

the last backup. Each time the control data set is backed up successfully using the

EDGHSKP utility, the journal data set is cleared.

DFSMSrmm requires UPDATE access to the journal. The journal cannot be an

extended sequential data set.

You should plan to back up the journal and maintain multiple generations of it. See

Chapter 16, “Performing Inventory Management,” on page 325 for additional

information.

When all systems are running z/OS V1R7 or higher, you can implement a large

format journal data set by deleting and reallocating the Journal data set by

specifying DSNTYPE=LARGE in the JCL. A large format data set does not actually

have to be more than 65 535 tracks. If you attempt to write to a large format journal

or journal backup from a lower level of DFSMSrmm (z/OS V1R6 or below), the

attempt fails.

If you want to implement a large format journal data set in an existing DFSMSrmm

installation, see Chapter 17, “Maintaining the Control Data Set,” on page 371 for the

procedures on reallocating or moving the journal. Also, look at the EDGJNLAL and

EDGPBKP samples. They include the DSNTYPE=LARGE keyword.

Roadmap for Creating the Journal

This table shows the subtasks and associated procedures for creating the journal.

 Subtask Associated procedure

Calculate DASD space for the journal. “Calculating DASD Space for the Journal”

Place the journal. “Placing the Journal” on page 45

Allocate space for the journal. “Allocating Space for the Journal” on page

46

Protect the journal. “Protecting the Journal” on page 46

Back up the journal. “Backing Up the Journal” on page 46

Calculating DASD Space for the Journal

Table 9 on page 45 helps you to calculate DASD space requirements for the

journal. To determine the number of resources in your library, such as the number

of scratch mounts that you have, see your answers to Appendix D, “Evaluating

Removable Media Management Needs,” on page 503. Base these calculations on

your

44 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

requirements from one backup to the next. To ensure that the journal has enough

space when there is an unexpected increase in tape activity, increase the calculated

amount by 50% or more. The journal size can exceed 65 535 tracks.

 Table 9. DFSMSrmm Journal DASD Space Requirements

Journal Content DASD Space

Changes by users 1.5 KB for each change made

Data sets 1.5 KB for each data set retained by a vital

record specification

Data sets no longer retained by a vital record

specification

1.5 KB for each data set no longer retained

by a vital record specification

Expiring volumes 1.5 KB for each expiring volume

Non-scratch mounts 6.7 KB for each mount

Scratch mounts 8.3 KB for each mount

Volumes 1.5 KB for each volume retained by a vital

record specification

Volume checked in/out 2.6 KB for each volume in or out of the library

Volumes returned to scratch 3.0 KB for each volume returned to scratch

Volumes to and from storage locations 3.5 KB for each volume moved to or from a

storage location

Volumes no longer retained by a vital record

specification

1.5 KB for each volume that has not reached

its expiration date and is no longer retained

by a vital record specification

Volumes that are exported or imported 1.5 KB for each logical volume exported or

imported

Vital record specifications 1.3 KB for each vital record specification

created

Convert the final figure into a space allocation. The journal has a record format of

variable-length blocked records. You do not need to specify the record format

information when allocating the journal, because DFSMSrmm sets the correct

values when it opens the journal data set.

To calculate the space required, divide the total KB of space by 4, as allocation will

be by average record size using a 4 K value. This calculation gives you the number

to use in the space allocation (SPACE=) shown in Figure 14 on page 46.

Placing the Journal

Place the journal on a different volume than the DFSMSrmm control data set. If the

selected volume is system-managed, use the STORCLAS parameter as shown in

Figure 14 on page 46, and select a storage class with the GUARANTEED SPACE

attribute. By using the GUARANTEED SPACE attribute, you ensure that the journal

is allocated to a specific volume. This volume is different than the one on which the

control data set resides. Remove the STORCLAS parameter if the volume is not

system-managed.

Place the DFSMSrmm journal on the highest performing DASD in your installation.

DFSMSrmm can benefit from features like caching and DASD fastwrite and support

for concurrent copy. Consider using the storage class attribute

AVAILABILITY=CONTINUOUS for the journal.

Chapter 2. Implementing DFSMSrmm 45

When the enhanced data integrity function (EDI) is activated, you must include the

journal in the parmlib member IFGPSEDI.

Systems sharing a control data set must also share the same journal.

Allocating Space for the Journal

Figure 14 shows JCL for allocating space for the journal.

where:

pp Specifies the calculated primary space.

DSN= Specifies the name of the journal. Use the same name you assigned in the

parmlib member EDGRMMxx for OPTION JRNLNAME(name) or in the

JOURNAL DD statement in the DFSMSrmm procedure.

SPACE=(4096,(pp))

Specifies the space allocation for the journal. Use the value you calculated

in “Calculating DASD Space for the Journal” on page 44.

You must catalog the journal.

You do not have to specify any DCB information for the data set because the

required values are set when DFSMSrmm opens the data set. Any conflicting

values that you supply are overridden.

You can create the journal in multiple extents, but increases in size are not

permitted once DFSMSrmm uses the data set. If you specify a secondary space

allocation for the data set, DFSMSrmm ignores it.

Protecting the Journal

Protect the journal by ensuring that a RACF DATASET profile protects it. To prevent

inadvertent updates to the journal, specify a RACF universal access of NONE. Give

READ access only to users that are authorized to perform functions independent of

the subsystem, such as restoring and reorganizing the control data set. Give

UPDATE access to the RACF user ID assigned to the DFSMSrmm procedure in

“Step 9: Assigning DFSMSrmm a RACF User ID” on page 37.

Backing Up the Journal

Plan to use the DFSMSrmm utilities EDGBKUP and EDGHSKP to back up the

journal. You can automatically back up the journal as part of inventory management

if you use EDGHSKP which also clears the journal. You can also use the parmlib

OPTION JOURNALFULL to automatically start a backup procedure. DFSMSrmm

uses IDCAMS to back up the journal.

Back up the journal to DASD. Once the backup is complete, you can move or copy

the backup file to any storage medium. Be sure to maintain multiple generations of

the journal.

//JOURNAL EXEC PGM=IEFBR14

//SYSPRINT DD SYSOUT=*

//JOURNAL DD DISP=(NEW,CATLG),DSN=RMM.JOURNAL.DSET,

// UNIT=SYSALLDA,VOL=SER=volser,STORCLAS=store_class,

// DSNTYPE=LARGE,

// AVGREC=U,SPACE=(4096,(pp))

Figure 14. Allocating Space for the Journal

46 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Step 14: Authorizing Users

Perform this step once for each RMMplex.

Refer to Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on

page 213 to authorize your users to DFSMSrmm resources.

Step 15: Making the DFSMSrmm ISPF Dialog Available to Users

Modify the ISPF environment so you can run the DFSMSrmm ISPF dialog. Use one

or more of these methods to make the dialog available:

v Add DFSMSrmm to an ISPF dialog as described in “Adding DFSMSrmm to an

ISPF Selection Panel.”

v Use the method supplied by DFSMS. DFSMSrmm is selection option ’R’ from the

ISMF primary option menu.

v Use the RMMISPF EXEC to enter the dialog.

v Enable ISPF Data Set List access to the ISPF dialog. See “Enabling ISPF Data

Set List (DSLIST) Support” on page 49 for additional information.

v Use the EDGRPD34 exec or its aliases RMMI and TI from the ISMF data set list

or ISPF data set list. See “Enabling ISPF Data Set List (DSLIST) Support” on

page 49 for additional information.

To implement those methods, use one of these techniques:

v Concatenate the DFSMSrmm target ISPF libraries with your existing ISPF

libraries.

v Use the ISPF LIBDEF facility to make the DFSMSrmm target ISPF libraries

available to your users, and use the EDGRMLIB EXEC to enter the dialog.

If you are using the LIBDEF facility and you are not using the same target library

names as listed in the z/OS Program Directory and ServerPac: Installing Your

Order, you must modify the EDGRMLIB EXEC or produce your own similar exec

or CLIST.

Adding DFSMSrmm to an ISPF Selection Panel

You can add a selection to an ISPF selection panel so that users can choose

DFSMSrmm. To add the selection:

1. Add a selection for DFSMSrmm to the body of the chosen ISPF selection panel.

For example, add:

R DFSMSrmm Invoke DFSMSrmm

2. Add one of these statements to the ZSEL processing list in the)PROC section

of the chosen ISPF panel:

v If you are not using LIBDEF:

R,’CMD(%RMMISPF) NEWAPPL(EDG)’

v If you are using LIBDEF:

R,’CMD(%EDGRMLIB)’

Figure 15 on page 48 shows the ISPF Utility Selection Menu with step 1 and 2

changes made. LIBDEF was not used:

Chapter 2. Implementing DFSMSrmm 47

Modifying an ISPF Selection Panel

You can modify the selection so that only the USER option of the DFSMSrmm

dialog is available to the majority of end users.

v If you are not using LIBDEF, add to the)PROC section:

R,’CMD(%RMMISPF USER) NEWAPPL(EDG)’

v If you are using LIBDEF, modify the supplied EDGRMLIB EXEC to include the

USER parameter on the RMMISPF EXEC call.

For example, enter this REXX statement to replace the one supplied in

EDGRMLIB.

address "ISPEXEC" "SELECT CMD(%RMMISPF USER) NEWAPPL(EDG) PASSLIB"

Make the DFSMSrmm panel library, tables, skeletons, messages, and REXX execs

available to users. If you are not using LIBDEF, Table 10 on page 49 shows the

names of the default libraries that you concatenate to the DD statements in the

TSO logon procedure or a user-supplied start-up CLIST. If you are using LIBDEF,

%------------------------- UTILITY SELECTION MENU ---------------------

%OPTION ===>_ZCMD

%

% 1 +LIBRARY - Compress or print data set. Print index listing.

+ Print, rename, delete, or browse members

% 2 +DATASET - Allocate, rename, delete, catalog, uncatalog, or

+ display information of an entire data set

% 3 +MOVE/COPY - Move, copy, or promote members or data sets

% 4 +DSLIST - Print or display (to process) list of data set names

+ Print or display VTOC information

% 5 +RESET - Reset statistics for members of ISPF library

% 6 +HARDCOPY - Initiate hardcopy output

% 8 +OUTLIST - Display, delete, or print held job output

% 9 +COMMANDS - Create/change an application command table

% 10 +CONVERT - Convert old format menus/messages to new format

% 11 +FORMAT - Format definition for formatted data Edit/Browse

% 12 +SUPERC - Compare data sets (Standard dialog)

% 13 +SUPERCE - Compare data sets (Extended dialog)

% 14 +SEARCH-FOR - Search data sets for strings of data

% R +DFSMSrmm - Invoke DFSMSrmm

)INIT

 .HELP = ISR30000

)PROC

 &ZSEL = TRANS(TRUNC (&ZCMD,’.’)

 1,’PGM(ISRUDA) PARM(ISRUDA1)’

 2,’PGM(ISRUDA) PARM(ISRUDA2)’

 3,’PGM(ISRUMC)’

 4,’PGM(ISRUDL) PARM(ISRUDLP)’

 5,’PGM(ISRURS)’

 6,’PGM(ISRUHC)’

 8,’PGM(ISRUOLP)’

 9,’PANEL(ISPUCMA)’

 10,’PGM(ISRQCM) PARM(ISRQCMP)’

 11,’PGM(ISRFMT)’

 12,’PGM(ISRSSM)’

 13,’PGM(ISRSEPRM) NOCHECK’

 14,’PGM(ISRSFM)’

 R,’CMD(%RMMISPF) NEWAPPL(EDG)’

 ’ ’,’ ’

 *,’?’)

 &ZTRAIL = .TRAIL

)END

Figure 15. Adding DFSMSrmm to ISPF

48 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

the EDGRMLIB EXEC allocates these default libraries to the user. If you changed

the names of the target libraries on your system, modify the EDGRMLIB exec to

contain the new library names.

Table 10 lists the DFSMSrmm libraries by the default target names.

 Table 10. Default Libraries to Concatenate

DFSMSrmm Data Set Name DD Statement Content

SYS1.SEDGEXE1 SYSPROC (or SYSEXEC) REXX execs

SYS1.SEDGMENU ISPMLIB English messages

SYS1.SEDGPENU ISPPLIB English panels

SYS1.DGTSLIB ISPSLIB Skeletons

SYS1.DGTTLIB ISPTLIB Tables

The target library SYS1.SEDGEXE1 has a fixed-block record format. The

SYS1.DGTSLIB library and the SYS1.DGTTLIB library are shared with other

DFSMS components.

To customize the DFSMSrmm Report Generator library names, you can modify the

EDGRMAIN member of SYS1.SEDGEXE1. Refer to z/OS DFSMSrmm Reporting

for details.

Use the ISPF ISPPREP facility to build preprocessed versions of the panels. For

more information on using ISPPREP, see z/OS ISPF User’s Guide Vol I.

Enabling ISPF Data Set List (DSLIST) Support

To enable direct entry into the DFSMSrmm ISPF dialog from the ISPF Data Set List

Utility, use the ISPF Configuration Utility to update the ISPF Configuration Table. To

enable this function, select the Enable RM/Tape Commands option. For details of

how to use the ISPF Configuration Utility, refer to z/OS ISPF Planning and

Customizing. Figure 16 on page 50 shows that the data set list support is enabled,

as well as showing the default values for the RM/Tape Command EDGRPD34 and

Command APPLID EDG. You do not need to change these values.

Chapter 2. Implementing DFSMSrmm 49

The line commands supported by DFSMSrmm are I, S, M, and D.

v I - Displays a search results list showing all data sets in the multivolume set for

the selected data set.

v S - Displays the individual data set details. DFSMSrmm determines the first file

on the selected volume that matches the selected data set. If other data sets of

the same name exist on the volume, the wrong details may be displayed. In that

case, use the M line command and then the DFSMSrmm I line command from

that results list.

v M - Displays a search results list showing all data sets defined to DFSMSrmm

that match the selected data set name.

v D - Releases the volume. If the volume is part of a multivolume set, there is the

option to release all volumes in the set.

There is additional capability provided in the EDGRMAIN exec to customize how

the ISPF Data Set List line commands are handled by DFSMSrmm. You can apply

any of the DFSMSrmm results to any of the line commands, as well as these

options:

v Display the volume details for the selected entry.

v Display the search results for all the volumes in the same set as the selected

entry.

v Display a search results list showing all data sets on the same volume as the

selected data set.

Once you see the DFSMSrmm results, you are in the DFSMSrmm ISPF dialog and

can use any of the available functions including fast path commands.

You can use the DFSMSrmm support either by enabling the support and using the

DSLIST line commands, or you can use the EDGRPD34 exec as a command

directly in the DSLIST results or in the ISMF data set and mountable tape volumes

lists results. For example:

EDGRPD34 I

ISPPMOD3 Modify PDF Configuration Settings

Command ===>

 More: -

 When to use COPY or COPYMOD

 2 1. Use COPY if the target block size is equal to or greater than the

 source block size, COPYMOD otherwise

 2. Use COPY if the target block size is equal to the source block size,

 COPYMOD otherwise

 3. Always use COPYMOD

DSLIST Removable Media Settings

 Enter "/" to select option

 / Enable RM/Tape Commands

 RM/Tape Command . . %EDGRPD34

 Command APPLID . . . EDG

Other PDF Settings

 Default PDF Unit SYSALLDA

 Volume for Migrated Data Sets MIGRAT

 Delete Command for Migrated Data Sets HDELETE

 Allowed Allocation Units ANY

 Maximum IEBCOPY Return Code 0

Figure 16. Enabling ISPF Data Set List (DSLIST) Support

50 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

This command executes the DSLIST I line command. You can use one of the exec

aliases (RMMI or TI), or you can rename it to any value you wish. However you

choose to run the command outside of the ISPF DSLIST built-in capability, the exec

expects that optionally the first parameter may be a line command, such as I, S, M

or D. If you do not specify an optional line command:

v When EDGRPD34 is used, the default line command is ″I″.

v When any other exec or alias name is used, the exec or alias name is used as

the line command.

You can also customize the EDGRPD34 exec to handle your selected ISPF

environment. If you plan to use ISPF LIBDEF, you must edit EDGRPD34 to use

EDGRMLIB instead of EDGRMAIN to enter the DFSMSrmm dialog. Update this line

in the exec:

UseIspfLibdef = false /* << true or false */

When you use ISPF LIBDEF, whether for normal entry to the DFSMSrmm dialog or

from the ISPF DSLIST utility, you must copy, or make available, the EDGRMLIB

and the EDGRPD34 execs in an exec library normally available to ISPF users.

Step 16: Restarting z/OS with DFSMSrmm Implemented

You are ready to start the system with DFSMSrmm implemented. You cannot restart

z/OS without an IPL, however an IPL can usually be avoided. For example, you can

avoid an IPL when performing one of these tasks:

v Changing subsystem name information in IEFSSNxx

v Setting SMF information in SMFPRMxx

v Changing GRS RNL definitions in GRSRNLxx

v Using the PARMLIB UPDATE command to implement changes to IKJTSOxx

If you performed an IPL during Step 1, described in “Step 1: Preparing to Implement

DFSMSrmm” on page 26, you have to re-IPL only if you cannot dynamically

implement changes to the z/OS system parmlib members or modified installation

exits. You must re-IPL with CLPA to include new levels of DFSMSrmm code that

have LPALIB as the target library.

Step 17: Tailoring DFSMSrmm Set Up

At this time, you must perform some additional set up for some of the DFSMSrmm

functions. See z/OS Migration for information about steps that you need to perform

prior to installing DFSMSrmm.

See these sections for more information:

v Using volumes with special expiration dates, see “Managing Volumes with

Special Dates” on page 112.

v Using volumes with duplicate volume serial numbers, see “Managing Volumes

with Duplicate Volume Serial Numbers” on page 115.

v Using DFSMSrmm to control tape label types that can be used on volumes, see

Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on page

213.

v Enabling the use of no label output for scratch volumes with JES3, see

Chapter 15, “Running DFSMSrmm with JES3,” on page 321.

v Synchronizing the DFSMSrmm control data set and other user catalogs, see

“Running DFSMSrmm Catalog Synchronization” on page 359.

Chapter 2. Implementing DFSMSrmm 51

v Enabling DFSMSrmm stacked volume support, see “Setting up DFSMSrmm

Stacked Volume Support” on page 407.

v Managing volumes using ACS routines, see “Using SMS Tape Storage Groups

for DFSMSrmm Scratch Pooling” on page 105.

v Enabling UTC or common time support (also known as GMT), see “Setting up

DFSMSrmm Common Time Support” on page 408.

Step 18: Starting DFSMSrmm

Set the OPMODE operand in parmlib member EDGRMMxx to M to start

DFSMSrmm in manual mode. Tape mounts are processed as they were before you

began implementing DFSMSrmm. Refer to “Defining System Options: OPTION” on

page 175 for information about setting OPMODE. See z/OS DFSMSrmm Guide and

Reference for information about operator procedures.

Then, issue the z/OS START command to start the DFSMSrmm subsystem, as

shown in Figure 17:

 where:

DFRMM Specifies the procedure name.

M=xx Specifies your chosen parmlib member name suffix.

SUB=jesp This is an optional keyword to identify the name of the job entry

subsystem. DFSMSrmm must not run under the MSTR subsystem.

If the DFSMSrmm procedure name you use matches the

subsystem name in IEFSSNxx as described in “Updating

IEFSSNxx” on page 28, you must specify the SUB keyword when

starting the DFSMSrmm procedure. The value jesp is the procedure

name of your job entry subsystem and can be specified as

SUB=JES3 or SUB=JES2.

If your DFSMSrmm procedure has a PARMLIB DD statement with

DDNAME=IEFRDER, there are several other parameters that you can specify with

the START command. You can specify keyword parameters that are supported on a

DD statement. For example, you can specify DSN= to override the control data set

name on the IEFRDER statement, as shown in Figure 18:

 where:

name Specifies a name other than DFRMM by which you can call the DFRMM

procedure. You can then use this name on STOP and MODIFY commands.

M=xx Specifies a specific parmlib member with which DFSMSrmm should be

started instead of the default parmlib member.

DSN=parmlib_name

Specifies an alternative data set name to be used as a parameter for this

restart of the DFSMSrmm subsystem.

 S DFRMM,M=xx,SUB=jesp

Figure 17. Starting DFSMSrmm

S DFRMM.name,M=xx,DSN=parmlib_name

Figure 18. Starting DFSMSrmm with Additional Parameters

52 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm is now running in manual mode.

Stopping DFSMSrmm

You can stop the DFSMSrmm subsystem with the z/OS STOP command, as shown

in Figure 19:

 If the operator defers the reply to the WTORs, DFSMSrmm shutdown might wait

until the operator enters a reply. This is also true if active or new tasks are in hold.

If shutdown is delayed, DFSMSrmm issues message EDG0154I to notify the

operator that action is required. If the STOP command is rejected, message

EDG1108E is issued.

When DFSMSrmm is stopped, DFSMSrmm completes these tasks:

v DFSMSrmm completes any requests being processed at the time DFSMSrmm is

stopped.

v DFSMSrmm completes any requests accepted by DFSMSrmm but that are

currently waiting to be processed, except for requests to start DFSMSrmm

inventory management. DFSMSrmm fails requests to start DFSMSrmm inventory

management.

v If DFSMSrmm is already quiesced, DFSMSrmm does not process the waiting

requests. DFSMSrmm issues message EDG1105I indicating that the requests

are still waiting to be processed. If any of the requests are for catalog activity

notifications, DFSMSrmm provides additional message text in message

EDG1106I. DFSMSrmm issues a WTOR EDG1107D with options to STOP,

QUIESCE, RESTART DFSMSrmm with the same parmlib member or RESTART

DFSMSrmm with a new parmlib member.

v DFSMSrmm fails new requests with the RMM not active reason.

To stop DFSMSrmm and still allow tapes to be used, issue the commands shown in

Figure 20 to disable the DFSMSrmm subsystem interface until the next time you

IPL or start the DFSMSrmm subsystem.

 Before DFSMSrmm disables the subsystem interface, it ensures that the user who

made the request is authorized. To disable the DFSMSrmm subsystem interface by

using the RESET option, you must have a security profile in place. If your

installation does not have RACF or an equivalent security product installed,

DFSMSrmm allows the reset request. In order to control the request, you can write

a RACROUTE exit to test for the security profile and return an acceptable return

code. See Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on

page 213 for additional information.

Tell the operator to reply to any DFSMSrmm WTORs issued between issuing the

commands shown in Figure 20. The operator must reply to any DFSMSrmm

WTORs before entering the STOP command. If the RESET option is used to allow

tape usage to continue, the operator should first enter the command:

P DFRMM

Figure 19. Stopping DFSMSrmm

S DFRMM,OPT=RESET

P DFRMM

Figure 20. Disabling the DFSMSrmm Subsystem Interface

Chapter 2. Implementing DFSMSrmm 53

|

|
|

S DFRMM,OPT=RESET

The operator should reply to the outstanding WTORs and then enter the STOP

command. If the operator defers the reply to the WTORs, DFSMSrmm shutdown

might hang until the operator enters a reply. If shutdown is delayed, DFSMSrmm

issues message EDG0154I to notify the operator that action is required.

Quiescing DFSMSrmm

When you quiesce DFSMSrmm:

v DFSMSrmm completes requests that are being processed when the quiesce is

requested. Note that DFSMSrmm might fail the request if manual recovery is to

be performed or if there are I/O errors on the control data set.

v Any requests accepted by DFSMSrmm are left on work queues until DFSMSrmm

recovery and refresh is completed.

v DFSMSrmm fails any new requests with an I/O error during manual recovery or

RMM not ACTIVE when DFSMSrmm is quiesced by command.

v In a multihost environment, conditions, which result in an automatic quiesce of

DFSMSrmm (such as control data set errors from which DFSMSrmm cannot

automatically recover), cause the quiesce on all hosts sharing the control data

set. Only after all hosts have successfully quiesced can the control data set be

recovered. Manually issuing a DFSMSrmm quiesce affects only the host on

which you issue the command. If you want all hosts quiesced, you must issue

the command on each host that is sharing the control data set.

To quiesce DFSMSrmm, the operator should issue the command to quiesce the

subsystem, allow DFSMSrmm to deallocate the control data set and the journal,

and allow recovery processing to be performed.

Restarting DFSMSrmm

To restart DFSMSrmm after it has been quiesced or to change the DFSMSrmm

options, the operator can issue the command specified with a member name.

Checking DFSMSrmm Status

Your operator can obtain DFSMSrmm status information by issuing this command.

 The operator can also use the abbreviations of QUERY and ACTIVE:

 and

MODIFY DFRMM,QUIESCE

Figure 21. Quiescing the DFSMSrmm Subsystem Interface

 MODIFY DFRMM,M=xx

 F DFRMM,QUERY ACTIVE

 Q ACT

54 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Status information that is available includes:

v The number of requests waiting to be processed.

v The number of local requests and server requests.

v If DFSMSrmm is active or quiesced.

v If the journal is enabled, disabled, or locked.

v The status of the listener task, either active or inactive.

v The list of active tasks including function, originated system, job name, status,

token, and started time.

v The number of current active tasks, the number of current active tasks in hold

and whether new tasks are in hold.

Step 19: Defining Resources

This topic helps you define these resources to DFSMSrmm: shelves, volumes,

owners, and vital record specifications. For detailed information about how to

perform these tasks, see z/OS DFSMSrmm Guide and Reference. If you are

migrating to DFSMSrmm, refer to Converting to Removable Media Manager: A

Practical Guide, SG24-4998, and the DFSMSrmm SAMPLIB documentation

member, EDGCMM01.

Defining Shelf Locations

Shelf locations in the removable media library are called rack numbers. Shelf

locations in storage locations are called bin numbers. To define shelf locations to

DFSMSrmm, use RMM ADDRACK or ADDBIN subcommands or the DFSMSrmm

ISPF dialog.

You can optionally define a rack number for every volume that you plan to define to

DFSMSrmm. You do not have to define all possible shelf locations now because

you can add them at any time. If you want to logically divide the library into pools,

see “Organizing the Library by Pools” on page 97.

If volumes are designated for use in an automated tape library, you must define

rack numbers for the volumes when the external and internal volume serial

numbers are not the same.

You can optionally define a bin number for every shelf location in a storage location.

For shelf locations in DFSMSrmm built-in storage locations, LOCAL, DISTANT, and

REMOTE, you provide an initial count and DFSMSrmm assigns the bin numbers.

You can use the LOCDEF command in the EDGRMMxx member of parmlib to

define additional locations to DFSMSrmm and to further define existing locations.

See “Defining Storage Locations: LOCDEF” on page 168 and Chapter 9, “Managing

Storage Locations,” on page 155 for additional information. For shelf locations in

installation defined storage locations, provide a count and an initial bin number.

Defining Owner Information to DFSMSrmm

Use the RMM ADDOWNER subcommand or the Add Owner Details panel in the

DFSMSrmm ISPF dialog to define owner information to DFSMSrmm. You must

 Q A

Chapter 2. Implementing DFSMSrmm 55

|
|

|
|

define owner information to DFSMSrmm before defining owner information for

non-scratch volumes, software products, and vital record specifications.

If you plan to define volumes using the RMM ADDVOLUME subcommand and want

to assign volume ownership, you must predefine those owners to DFSMSrmm

before you add the volumes.

You must also define owners before you use the RMM ADDVRS subcommand or

the DFSMSrmm Add Data Set VRS, DFSMSrmm Add Name VRS, or DFSMSrmm

Add Volume VRS panel in the DFSMSrmm ISPF dialog.

DFSMSrmm automatically adds owner information to the control data set when

volumes are read or data is written to volumes. DFSMSrmm uses the RACF user

ID for a job, when available, as the volume owner. When there is no RACF user ID

for a job, DFSMSrmm uses the job name as the volume owner ID.

To use DFSMSrmm automatic owner notification, you should include the owner’s

electronic user ID and node, or owner’s e-mail address, when you define an owner

to DFSMSrmm. For example, if you want DFSMSrmm to automatically notify

owners when their volumes become eligible for release, DFSMSrmm can send the

release notification to the owner’s electronic address, an z/OS or VM user ID and

node, or an Internet e-mail address, that you have defined.

Defining Volumes

Use the RMM ADDVOLUME subcommand or the DFSMSrmm ISPF dialog to add

physical volumes, logical volumes, and stacked volumes to DFSMSrmm. The

volume serial number and volume status are the basic information needed for

DFSMSrmm to recognize a volume. You can add more information using the

subcommand or dialog or use the DFSMSrmm running modes to record information

about volumes as they are used.

You can add information about volumes that reside in an automated tape library

before they are entered into the automated tape library using the RMM

ADDVOLUME subcommand or the DFSMSrmm ISPF dialog. For more information

about adding volumes to a system-managed tape library and using DFSMSrmm

with system-managed tape libraries, see Chapter 7, “Running DFSMSrmm with

System-Managed Tape Libraries,” on page 119.

You set running modes with the OPMODE operand in the parmlib member

EDGRMMxx. See “Defining System Options: OPTION” on page 175 for information

about the DFSMSrmm running modes. See z/OS DFSMSrmm Guide and Reference

for details about adding volume information to DFSMSrmm.

Adding Volumes for a New Removable Media Library

If you have a new removable media library or system with all scratch tapes, define

all volume information to DFSMSrmm at once.

1. Use the RMM ADDVOLUME subcommand or the DFSMSrmm ISPF dialog to

define volume information to DFSMSrmm. Figure 22 shows the minimum

information you must add for each volume: volume serial number and volume

status.

RMM ADDVOLUME volser STATUS(SCRATCH)

Figure 22. Defining Minimum Volume Information

56 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

To add volumes that are in a system-managed library, use the command as

shown in Figure 23. You specify the STATUS(VOLCAT) to obtain volume

information from the TCDB.

To add volumes that are in a manual tape library, use the command as shown

in Figure 24. You must specify the MEDIATYPE operand and the

RECORDINGFORMAT operand.

When you are adding a volume to DFSMSrmm, you can specify whether the

volume is a logical volume, a physical volume, or a stacked volume. The default

volume type is physical volume. If a volume resides in a virtual tape server

(VTS), the default is either a logical volume or a stacked volume. If you want

DFSMSrmm to manage stacked volumes, you must enable stacked volume

support as described in “Setting up DFSMSrmm Stacked Volume Support” on

page 407.

You can issue the subcommands in batch.

2. Set the DFSMSrmm running mode in the parmlib member EDGRMMxx to

record only mode, warning mode, or protect mode. DFSMSrmm records

information about the volumes as they are used. When DFSMSrmm is running

in warning mode, DFSMSrmm validates magnetic tapes volumes as you use

them. If DFSMSrmm discovers errors, it issues error messages instead of

rejecting tapes. When DFSMSrmm is running in protect mode, DFSMSrmm

validates magnetic tapes volumes as you use them and rejects magnetic tape

volume mounts when errors are encountered. Protect mode is the only mode

that provides full verification and validation of volumes.

Adding Volumes from an Existing Removable Media Library

If you have an existing removable media library with no record of tape usage,

define basic volume information to DFSMSrmm. Set the DFSMSrmm running mode

to record-only mode. DFSMSrmm monitors all tape volume mounts and

automatically records and updates information about your defined tape volumes

when they are used. DFSMSrmm cannot automatically record optical disk

information.

1. Define all required tape volumes to DFSMSrmm as private volumes using the

RMM ADDVOLUME subcommand. This example shows the minimum

information you should add:

RMM ADDVOLUME volser STATUS(USER) EXPDT(yyyy/ddd)

DFSMSrmm uses the parmlib RETPD default if you do not use EXPDT or

RETPD to define an expiration date for the volumes. Specifying the EXPDT or

RETPD operand allows you to define a time period long enough to gather

information about the volumes under DFSMSrmm. Use the information to

determine if the volume should be released. Use EXPDT(99/365) if you are

unsure how long volumes should be retained. Later, after running DFSMSrmm,

defining DFSMSrmm vital record specifications, you should use the information

to determine if the volume should be released.

RMM ADDVOLUME volser STATUS(VOLCAT)

Figure 23. Defining Volumes in a System-managed Library

RMM ADDVOLUME volser LOCATION(mtlname) MEDIATYPE(HPCT)-

 RECORDINGFORMAT(128TRACK) STATUS(SCRATCH)

Figure 24. Defining Volumes in a Manual Tape Library

Chapter 2. Implementing DFSMSrmm 57

Specifying STATUS(USER) ensures that DFSMSrmm does not change the

expiration date when the first file on the volume is re-written.

2. Set the DFSMSrmm running mode to record-only mode. DFSMSrmm records

information about the volumes as they are used but does not validate or reject

volumes.

3. When you believe that DFSMSrmm has recorded enough information, set the

DFSMSrmm running mode to warning mode. When DFSMSrmm is running in

warning mode, DFSMSrmm validates tape volumes. If DFSMSrmm discovers

errors, it issues error messages but does not reject tape usage.

4. After DFSMSrmm has been running for a while, check volume usage to

determine if some of the volumes you added can be released.

Adding Known Volumes

DFSMSrmm Samples and Execs Provided in SAMPLIB

v EDGCLMS Sample to Convert Volume Information into RMM Commands

v EDGRCSCR Exec to Convert Scratch Pool Information

 See the IBM Red book Converting to Removable Media Manager: A Practical

Guide, SG24-4998, for information about converting from other products to

DFSMSrmm.

1. When you have existing information about your media library, you can build a

set of RMM TSO subcommands, one for each volume, and define the

information you know. You can also write a REXX exec, CLIST or procedure

that converts volume information from your existing tape management system

into DFSMSrmm subcommand requests.

2. After adding the information you have available, set the DFSMSrmm running

mode to protect mode. Protect mode is the only mode that provides full

verification and validation of volumes.

Defining Vital Record Specifications

Vital record specifications are retention and movement policies for data sets and

volumes. Define vital record specifications to use DFSMSrmm retention and

movement management. The only requirement is that you define them before

running your first expiration processing, which you should run once a day.

To define vital record specifications, use the RMM ADDVRS subcommand or the

DFSMSrmm ISPF dialog. For more information about ADDVRS and the dialog, see

z/OS DFSMSrmm Guide and Reference. See “Managing Volumes with Special

Dates” on page 112 for information about defining vital record specifications that

use special expiration dates for volumes using the EDGUX100 DFSMSrmm

installation exit.

To implement the retention and movement policies you define, you must run

DFSMSrmm inventory management vital record processing as described in

“Running Vital Record Processing” on page 341. You can control the way vital

record processing runs using the DFSMSrmm parmlib member EDGRMMxx

OPTION command as described in Chapter 10, “Using the Parmlib Member

EDGRMMxx,” on page 167.

58 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Step 20: Updating the Operational Procedures

Ensure that operators understand how to use DFSMSrmm by documenting changes

in your operational procedures. z/OS DFSMSrmm Guide and Reference has an

operator procedures topic that you should use to educate operators and update

your procedures.

Step 21: Initializing the DFSMSrmm Subsystem and Tape Recording

Perform this step once for each z/OS image to initialize the DFSMSrmm subsystem

interface to enable tape usage.

Enabling the DFSMSrmm Subsystem Interface

Enable the DFSMSrmm subsystem interface to ensure that the interface starts

every time you IPL and to ensure that users cannot use tapes before the

DFSMSrmm subsystem starts. To enable DFSMSrmm, change the IEFSSNxx

member of SYS1.PARMLIB. Add EDGSSSI, as the DFSMSrmm subsystem

initialization program, as shown in Figure 25.

 Figure 25 shows the correct relative position of the DFSMSrmm subsystem,

updated to include the initialization program.

Changing the DFSMSrmm Running Mode

The DFSMSrmm running modes are set with the parmlib OPTION command

OPMODE operand. Each DFSMSrmm running mode provides different levels of

information recording and volume validation. If you want to record information about

volumes, set the running mode to record-only by setting the OPMODE in the

parmlib member EDGRMMxx to R and starting or restarting DFSMSrmm.

Set the running mode to warning mode if you want DFSMSrmm to validate tape

volumes. DFSMSrmm issues error messages but does not reject tape usage. If you

want to ensure that DFSMSrmm provides full validation and recording functions, set

the running mode to protect mode.

After you have verified that DFSMSrmm is providing the required functions, change

the DFSMSrmm running mode to protect mode. Protect mode is the only mode that

provides full verification and validation of volumes.

If you are converting to DFSMSrmm from another media management system, this

step would be part of the final conversion phase. In the final phase, you might be

reconverting some data set and volume information. Changing to protect mode

ensures that DFSMSrmm controls the management of the volumes defined to it,

and controls the use of scratch tapes. When changing to protect mode, either stop

running the current media management system or ensure that the two products do

not overlap in their function.

SUBSYS SUBNAME(JES2) /* JES2 PRIMARY SUBSYSTEM START */

 PRIMARY(YES) START(YES)

SUBSYS SUBNAME(DFRM) /* Name of the DFSMSrmm subsystem */

 INITRTN(EDGSSSI) /* RMM initialization routine */

SUBSYS SUBNAME(AOPA) /* Netview */

Figure 25. Changing SYS1.PARMLIB IEFSSNxx

Chapter 2. Implementing DFSMSrmm 59

Activating the Tape Volume Interface

To enable the DFSMShsm tape volume interface to be used by other similar

products, follow the directions in “Releasing Tapes: EDGTVEXT” on page 245. Also,

see the TVEXTPURGE parmlib option in Chapter 10, “Using the Parmlib Member

EDGRMMxx,” on page 167 for how to select the correct option for the tape volume

interface.

Restarting the DFSMSrmm Subsystem

If you changed the DFSMSrmm running mode as described in “Changing the

DFSMSrmm Running Mode” on page 59 and need to activate the DFSMSrmm

subsystem interface to implement the change, use the operator MODIFY command

shown in Figure 26:

 where:

M=xx Specifies the suffix of parmlib member EDGRMMxx.

The subsystem temporarily stops and reinitializes itself with the new OPMODE. Use

this command whenever you update DFSMSrmm parameters and want to

implement the change.

During this restart, DFSMSrmm issues the message shown in Figure 27, unless you

have IPLed the system since adding EDGSSSI to IEFSSNxx in SYS1.PARMLIB, in

which case the interface is already initialized.

 Reply RETRY to this message. In response, DFSMSrmm initializes its subsystem

interface. If you reply IGNORE, the DFSMSrmm tape recording function is not

activated.

Step 22: Setting Up DFSMSrmm Utilities

There are several DFSMSrmm utilities that you should now set up to run. Run the

utilities on the system with the highest level of code to ensure you are taking

advantage of DFSMSrmm enhancements and changes to the control data set.

Related Reading:

v See “Scheduling DFSMSrmm Utilities” on page 325 for a sample schedule of all

DFSMSrmm utilities. See Chapter 22, “Running DFSMSrmm with the IBM Tivoli

Workload Scheduler for z/OS,” on page 467 for information about setting up the

IBM Tivoli Workload Scheduler for z/OS to manage the scheduling of

DFSMSrmm functions.

v See Chapter 16, “Performing Inventory Management,” on page 325 for

information about EDGHSKP to run inventory management activities.

– Run vital record processing to determine which volumes to retain and what

volume moves are required based on vital record specifications. Vital record

F DFRMM,M=xx

Figure 26. Restarting the DFSMSrmm Subsystem

EDG0103D DFSMSrmm SUBSYSTEM INTERFACE IS INACTIVE -

 ENTER "IGNORE", "CANCEL" OR "RETRY"

Figure 27. Message EDG0103D

60 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

processing can be run to validate vital record specification information without

updating volume and data set information in the DFSMSrmm control data set.

– Run expiration processing to identify volumes that are ready to be released

and returned to scratch.

– Run storage location management processing to assign shelf locations to

volumes that are being moved to storage locations.

– Run backup of the control data set and the journal to ensure the integrity of

the control data set and journal.

v See z/OS DFSMSrmm Reporting for information about utilities that help you get

information about your removable media library and storage locations,

security-related information about volumes and data sets defined to DFSMSrmm,

and audit trail information about volumes, shelf assignments, and user activity.

Create movement and inventory reports by producing an extract data set from

the control data set and creating a report from the control data set with

EDGRPTD.

v See Chapter 17, “Maintaining the Control Data Set,” on page 371 for information

about using EDGBKUP and EDGUTIL to back up and recover the control data

set, back up the journal, and check the integrity of the information contained in

the control data set. Use the EDGBKUP utility to back up and recover the control

data set and back up the journal, and the EDGUTIL utility to create, update, and

verify the control data set.

Use DFSMSrmm backup utilities rather than other backup utilities, such as

DFSMS access method services EXPORT, because DFSMSrmm provides the

necessary serialization and forward recovery functions. Use EDGBKUP to

backup and recover the DFSMSrmm control data set when DFSMSrmm is

inactive, stopped, or quiesced.

v See Chapter 18, “Initializing and Erasing Tape Volumes,” on page 417 for

information about EDGINERS, the DFSMSrmm utility you use to erase and

initialize tape volumes either automatically or manually. You can use EDGINERS

to replace the DFSMSdfp utility IEHINITT.

Step 23: Setting Up DFSMSrmm Web Service (Optional)

DFSMSrmm Web service is optional and provides support for these tasks:

v Enables the high-level language application programming interface to be used

from any system or platform that can run Java, C++, or any language that

supports the Web services standards.

v A single call to the application programming interface to run a subcommand and

receive all the output.

The infrastructure to support the use of Web services must be implemented and

available on both the application system and the target z/OS system running

DFSMSrmm. See Chapter 4, “Setting Up DFSMSrmm Web Service,” on page 69 for

information about setting up DFSMSrmm Web service.

Step 24: Setting Up DFSMSrmm Common Information Model (CIM)

Provider (Optional)

A plug-in adapter created for the OpenPegasus CIM environment supports

removable media. The DFSMSrmm CIM provider is optional and provides support

for these tasks:

v Mapping of DFSMSrmm resources into those defined in the CIM object model.

v Provides real-time information about storage resources.

Chapter 2. Implementing DFSMSrmm 61

See Chapter 5, “Setting Up DFSMSrmm Common Information Model (CIM)

Provider,” on page 73 for information about setting up DFSMSrmm CIM processing.

Step 25: Installing PTFs and the SMP/E Maintenance to DFSMSrmm

Installing PTFs to DFSMSrmm results in updates to programs in the system

libraries such as LPALIB and LINKLIB. These changes are normally implemented

via an installation-defined process that would normally include an IPL of the system.

If any DFSMSrmm code resident in LPALIB is changed, you must IPL with the

CLPA option.

If you implement DFSMSrmm updates without an IPL, you should be aware that:

v You cannot do this for programs that are in LPALIB.

v A consistent set of DFSMSrmm programs is required to avoid problems.

Recommendation: Stop the DFSMSrmm started procedure. Copy the updated

programs into the system libraries. This is usually LINKLIB. Next, refresh or restart

LLA, and start the DFSMSrmm procedure.

Note: If any dialog-related parts are updated, your end users should exit ISPF, and

re-enter the DFSMSrmm dialog.

See Chapter 13, “Using DFSMSrmm Installation Exits,” on page 267 for details

about maintenance to installation exits such as EDGUX100 and EDGUX200.

62 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 3. Setting Up DFSMSrmm Client and Server Systems

When a server subsystem starts, identify some basic information for TCP/IP to the

DFSMSrmm subsystem using the EDGRMMxx parmlib OPTION SERVER operand.

See “Defining System Options: OPTION” on page 175 for information on the

OPTION command. After the startup of the standard subsystem, DFSMSrmm

communicates with TCP/IP and prepares to handle DFSMSrmm requests from

client systems. The server verifies that TCP/IP and the specified PORT is available,

determines its own default IP address and informs the operator that initialization is

successful or issues error messages. As well as normal DFSMSrmm subsystem

operation, such as processing of local requests, the server waits for and accepts

connection requests, and processes requests from DFSMSrmm client systems. If

the server task is unable to start successfully, you can still use DFSMSrmm as a

standard subsystem until the server task problem is resolved.

When a client subsystem starts, identify some basic information for TCP/IP to the

DFSMSrmm subsystem via the EDGRMMxx parmlib OPTION CLIENT operand.

See “Defining System Options: OPTION” on page 175 for information on the

OPTION command. During startup, the subsystem communicates with TCP/IP and

prepares to send DFSMSrmm requests from the client to a server system. The

client verifies that TCP/IP is available and that the server can be reached with the

specified PORT, determines its own IP address, verifies the control data set ID

matches that of the server, and informs the operator that initialization is successful

or issues error messages. DFSMSrmm ignores any parmlib options not required for

a client system. The client can connect to only one server system at a time. If the

defined server is not available, the client issues a WTOR EDG0358D and waits for

either the operator to reply with CANCEL, RETRY, or for the server to be available

for connection.

After the DFSMSrmm client and server are started, DFSMSrmm fails requests with

an I/O error when:

v There is a client or server communication error that cannot be successfully

completed.

v The server is restarted using the command:

 DFSMSrmm recovers from the error when a new server is available and

processing continues.

DFSMSrmm issues a WTOR when a TCP/IP error occurs. RETRY processing relies

on the operator replying to the WTOR. If the error is resolved and the operator has

not replied to the WTOR, DFSMSrmm processing automatically continues and

cancels the outstanding WTOR.

Once the client is started, no further verification of the server availability is

performed unless a DFSMSrmm request is to be processed. When a request is

processed and server communication fails or a time out occurs, and retry still

cannot process the request, DFSMSrmm issues message EDG0358D to describe

the error and prompts the operator to reply CANCEL or RETRY, and DFSMSrmm

automatically continues if the error is resolved.

 F DFRMM,M=xx

© Copyright IBM Corp. 1992, 2007 63

The DFSMSrmm client system processes most requests by communicating with the

server but also by processing those local requests which can be completely

processed on the client system. When multiple tasks are being processed,

DFSMSrmm maintains a queue in FIFO order. The operator can issue this

command to display the tasks and a summary of the queues.

The DFSMSrmm server processes local requests as if it runs as a standard system.

In addition, client requests are accepted and processed synchronously while the

requester on the client waits. There is no queue of client requests maintained on

the server. The request queues maintained on the server are for local requests only.

When you list the active tasks, using ’QUERY ACTIVE’, the active local requests

are listed together with the accepted client requests.

You must update your firewall to ensure that communication between DFSMSrmm

clients and servers is allowed only for the defined IP addresses and ports. The

DFSMSrmm subsystem does no authentication, encryption, or verification of

connect requests received on the server other than to verify that it is a valid

DFSMSrmm request and that control data set IDs match. You should also consider

using RACF to protect the use of the IP addresses defined for DFSMSrmm and

limit use of the IP address to the DFSMSrmm started task.

Tracing of the IP communication is enabled by the DFSMSrmm support. You will

use TCP/IP facilities, such as TCP/IP component trace to gather information about

the DFSMSrmm socket processing. See z/OS DFSMSrmm Guide and Reference

for information on operator procedures.

Implementing DFSMSrmm Client and Server Systems

This topic describes how to implement DFSMSrmm client and server systems.

Related Reading:

v “DFSMSrmm Inventory Management Considerations when Client/Server Support

is Enabled” on page 328 for details about DFSMSrmm inventory management

considerations when you have set up DFSMSrmm client/server systems.

v See z/OS DFSMSrmm Guide and Reference for a complete description of

operator procedures.

Before you begin:

v All client and server systems must be at least at this release level.

v DFSMSrmm client/server processing is dependent on Internet Protocol V4.

v You can share the control data set with other systems that run any supported

level of DFSMSrmm with any supported level of DFSMSrmm that has appropriate

toleration maintenance installed.

You can convert existing DFSMSrmm systems to be either client or server systems,

or add new DFSMSrmm systems to the RMMplex. In addition you can merge

existing DFSMSrmm systems into the RMMplex by merging the control data sets as

described in the red book DFSMSrmm Primer.

v To implement a client system, follow these steps.

 F DFRMM,Q A

64 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

1. Ensure TCP/IP definition files are updated to identify the server host name, IP

address, and port number.

2. If you have a firewall installed, update your firewall to ensure that

communication between DFSMSrmm clients and servers is allowed only for

the defined IP addresses and ports. The DFSMSrmm subsystem does no

authentication, encryption, or verification of connect requests received on the

server other than to verify that it is a valid DFSMSrmm request and that the

control data set IDs match. You should also consider using RACF to protect

the use of the IP addresses defined for DFSMSrmm and to limit the use of

the IP address to the DFSMSrmm started task.

3. Update the parmlib options with the CLIENT operand and select appropriate

values for the sub operands. The parmlib operand, CDSID, has to be the

same as on the server. If CATSYSID is not already set, add the operand now

to define the list of system IDs that share catalogs with the client system or

specify that catalogs are shared. Define the list of system IDs that share

catalogs with the client system (CATYSID(list)) or specify that catalogs are

shared (CATSYSID(*)).

4. Refresh DFSMSrmm with the new EDGRMMxx parmlib member.

5. Run EDGHSKP CATSYNCH to synchronize catalogs if needed.

6. Run EDGHSKP with EXPROC regularly to return volumes to scratch status.

v To implement a server system, follow these steps.

1. Update the parmlib options with the SERVER operand and select appropriate

values for the sub operands.

2. If CATSYSID is not already set, add the operand to define the list of system

IDs that share catalogs with the server system or specify that catalogs are

shared.

3. Ensure that TCP/IP definition files are updated to identify the server host

name, IP address, and port number.

4. Ensure your firewall is updated with the client and server IP addresses and

port numbers.

5. Refresh DFSMSrmm with the new EDGRMMxx parmlib member.

6. Run EDGHSKP CATSYNCH to synchronize catalogs if needed.

v You must perform these steps to implement a standard system that is part of an

RMMplex that contains client and server systems.

1. If CATSYSID is not already set, add the operand to define the list of system

IDs that share catalogs with the server system.

2. Refresh DFSMSrmm with the new EDGRMMxx parmlib member.

3. Run EDGHSKP CATSYNCH to synchronize catalogs if needed.

Using the DFSMSrmm Client and Server Systems

This topic contains recommendations for using the client or server system.

In order to manage a single tape inventory across multiple sysplexes where there is

no shared DASD available, you can create one or more DFSMSrmm client systems.

Any tape usage on a client system uses the server system to dynamically validate

and record tape usage. If the server system is not available for any reason, for

example, the IP connection is unavailable or fails, you cannot use tapes on the

client system until the server is reconnected or restarted.

Chapter 3. Setting Up DFSMSrmm Client and Server Systems 65

All DFSMSrmm users on a client system can use the DFSMSrmm ISPF dialog,

RMM TSO subcommands, and batch utilities, including use of DFSMSrmm API and

High Level Language API.

Recommendation: Users who need regular access to DFSMSrmm data should log

on to the server system. Storage administrators and tape librarians should use a

server system or an DFSMSrmm system with direct access to the control data set

except when there is a specific reason for using a client system.

v Performing a task for a system-managed tape library that is known to the client

and not the server.

– Ejecting a volume from a system-managed tape library

– Adding volumes to a system-managed tape library using STATUS(VOLCAT)

– Changing volume attributes that are also maintained in the TCDB

– Running expiration processing

– Confirming moves for exported stacked volumes

– Running EDGUTIL VERIFY with the TCDB and optionally the Library Manager

v Using DFSMSrmm catalog processing for cataloged data sets that are cataloged

only on the client system.

– Confirming the erasure or initialization of a volume

– Returning volumes to scratch status and DFSMSrmm is to perform the return

to scratch cleanup actions

– Deleting volumes that contain cataloged data sets

Managing Catalogs in an RMMplex

You can implement DFSMSrmm client/server support with or without sharing

catalogs across all of the systems in the RMMplex. You must, however, identify to

DFSMSrmm whether catalogs are shared or not using the EDGRMMxx parmlib

OPTION CATSYSID command described in “OPTION Command Operands” on

page 178 in the parmlib member for each system.

DFSMSrmm uncatalogs data sets on a volume, when you specify the EDGRMMxx

parmlib OPTION UNCATALOG command under these conditions:

v The commands must be processed on the system the data set was created on if

all the catalogs are not shared.

v A volume is returned to scratch status, DFSMSrmm uncatalogs all the data sets

on the volume.

v The RMM DELETEVOLUME FORCE subcommand is issued for a volume,

DFSMSrmm uncatalogs all the data sets on the volume.

v The RMM CHANGEVOLUME DSNAME subcommand is issued for a volume,

DFSMSrmm uncatalogs all the data sets on the volume. If the data set name

specified on the RMM CHANGEVOLUME subcommand matches the data set

name on the volume, then DFSMSrmm only uncatalogs subsequent data sets.

v The RMM DELETEDATASET subcommand is issued for a data set, DFSMSrmm

uncatalogs the data set. Also, DFSMSrmm uncatalogs all data sets recorded on

the same volume with higher data set sequence numbers.

v A tape data set is overwritten, DFSMSrmm uncatalogs the data set. Also, all data

sets recorded on the same volume with higher data set sequence numbers are

uncataloged.

v When the volume on which data sets resides is returned to scratch status,

DFSMSrmm uncatalogs data sets.

66 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v Confirming the erasure or initialization of a volume

v Returning volumes to scratch status, and DFSMSrmm performs the return to

scratch cleanup actions

To use the DFSMSrmm catalog processing, you must synchronize the catalogs with

the DFSMSrmm control data set. The catalog status for all data sets is maintained

in the server system control data set. With unshared catalogs, the UNCATALOG

parmlib option, on the server system, cannot be honored for data sets created on

the client systems because the server cannot communicate with the client to initiate

uncatalog processing. However, when processing is requested from the client, there

is special recognition and handling of the request so that any catalog or RACF

profile updates can be initiated on the client system. To synchronize the control data

set and the catalogs, specify the EDGRMMxx parmlib OPTION

CATSYSID(list_of_sysids). See “Running DFSMSrmm Catalog Synchronization” on

page 359 for additional information. Then run EDGHSKP with CATSYNCH, VERIFY,

and EXPROC on the client system.

For example, you have 3 systems; SystemA is to run as a client and has no shared

DASD in common with SystemB. SystemC will run in a sysplex and share their own

catalogs and the DFSMSrmm control data set.

v For client SystemA, specify the EDGRMMxx parmlib OPTION

CATSYSID(SystemA) SYSID(SystemA) CLIENT(....) command

v For SystemB, specify the EDGRMMxx parmlib OPTION

CATSYSID(SystemB,SystemC) SYSID(SystemB) SERVER(....) command

v For SystemC, specify the EDGRMMxx parmlib OPTION

CATSYSID(SystemB,SystemC) SYSID(SystemC) command

Run EDGHSKP CATSYNCH once on the client system SystemA, once on one of

the systems SystemB or SystemC, and then run EDGUTIL with PARM=UPDATE

and SYSIN containing the statement; CONTROL CATSYNCH(YES).

Chapter 3. Setting Up DFSMSrmm Client and Server Systems 67

68 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 4. Setting Up DFSMSrmm Web Service

You can use the high-level language application programming interface via Web

service. This enables the high-level language application programming interface to

be used from any system or platform that can run Java, C++, or any language that

supports the Web services standards. It is as if the high-level language application

programming interface is available as a locally callable program. A single call to the

application programming interface to run a subcommand and receive all the output

is all that is needed. The infrastructure to support the use of Web services must be

implemented and available on both the application system and the target z/OS

system running DFSMSrmm. See z/OS DFSMSrmm Application Programming

Interface for additional information about the DFSMSrmm Web service

requirements.

Implementing the DFSMSrmm Web Service

This topic describes how to implement the DFSMSrmm Web service.

To set up the DFSMSrmm Web service for the management of DFSMSrmm tasks,

do this:

v Start a Web browser and go to the administrative console of your z/OS

WebSphere Application Server. The Web address is http://x.xx.xxx.xxx:pppp/
admin

where:

x.xx.xxx.xxx is the IP address, and

pppp is the port that the server is running on.

v Login and select Enterprise Applications, then select Install New Application.

v Select Server Path and enter the location of the EAR file in the z/OS file system

directory: /usr/lpp/dfsms/rmm/rmmapi.ear

v Click Next.

v Select Generate Default Bindings and click Next. Enter the Application Name you

want your Web service to use and click Next. Select Web Module and click Next.

Select Module and click Next. Finally, click Finish. You should see the message,

Application xxxxxxx installed successfully. Select Yes to Save to Master

Configuration.

v After you saved the configuration, select Enterprise Applications. In the list of

applications, find the DFSMSrmm Web service you just installed and select the

box in front of it. Click Start. When the status symbol indicates that your

DFSMSrmm Web service has been started, your DFSMSrmm Web service is

available. Note: The userid that is used by WebSphere must have a valid RACF

profile for DFSMSrmm.

Using the DFSMSrmm Web Service Sample Client

This topic describes how to use the DFSMSrmm Web service sample client.

To use the DFSMSrmm Web service client, do this:

v Download the /usr/lpp/dfsms/rmm/rmmSampleWSClient.java file from the z/OS

file system directory to your workstation. This file is found in the SMP/E part

name, EDGSJWS1, and contains sample code to use to access the DFSMSrmm

Web service.

© Copyright IBM Corp. 1992, 2007 69

v Import the file into your development tool (for example, Eclipse) to generate the

binaries. Binaries can also be created on the command line level with javac

rmmSampleWSClient.java.

v Ensure that these libraries are added to your CLASSPATH:

 Table 11. Libraries needed for DFSMSrmm Web service

Name Version Used Download location

j2ee.jar 1.3.1 http://java.sun.com/j2ee/index.jsp

soap.jar 2.3.1 http://apache.rmplc.co.uk/ws/soap/version-2.3.1/

xerces-2.4.0.jar 2.4.0 http://archive.apache.org/dist/java-repository/xerces/jars/

mail.jar 1.3.1 http://java.sun.com/products/javamail/downloads/index.html

v Build the program.

v The DFSMSrmm Web service uses a C++ DLL from the z/OS Link List. The

program object is called EDGXHCLL. To make this DLL available for the

DFSMSrmm Web service, install a link in the z/OS WebSphere Application

Servers’ library path. Go to the library path in the file system, for example:

/WebSphere/V5R0M2/AppServer/lib, and type ″ln -e EDGXHCLL

libEDGXHCLL.so″. This step establishes an external link to the DLL in LINKLST.

v Run the program after specifying these required parameters:

– For the first parameter, pass the TCP/IP address, including the port number,

of the server that provides the DFSMSrmm Web service.

– For the second parameter, pass the DFSMSrmm TSO subcommand that you

want to run.

– For the third parameter, pass the name of the file where you want the

resulting data to be written.

An example showing these parameters is:

You are now ready to use the DFSMSrmm Web service. You can add to this

sample source, or write your own application based on the definitions and files

contained in the Enterprise ARchive (EAR) file, rmmapi.ear.

Setting the Memory Limit for Returned XML Data

DFSMSrmm can contain millions of data sets. This can result in gigabytes of data

returned for a search command. Data has to go through different environments,

C++, Java, SOAP, z/OS, USS, Windows, and some of these environments may not

be able to handle this much data at once.

By default, the maximum amount of data returned from the DFSMSrmm Web

service is one megabyte (MB). This should be transferable in every standard

environment. If the submitted command results in more returned data than 1 MB,

you will get 1 MB of data plus an error message indicating that there is more data

available:

EDG3921I: Insufficient storage for search processing RC = 4, RS = 10

To correct this situation, either submit a command that returns less data, or adjust

the memory limit for the amount of returned data if your environment can handle

more than 1 MB.

 java rmmSampleWSClient 9.10.111.122:9080 "LISTCONTROL ALL" "C:\temp\results.dat"

70 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

You can adjust the memory limit via the system property, RMM_XML_MAX_SIZE,

that is passed to the Java Virtual Machine (JVM). If you want your Web service to

use this value, you need to set it via the Administrative Console of your Application

Server. In WebSphere Application Server, you find the JVM settings under Servers

-> Application Servers -> your server name -> Process Definition -> Servant -> Java

Virtual Machine -> Custom Properties. Enter the name:
 and the value:

 if you want to set the memory limit to 2 MB. If you can’t find the JVM settings, use

the Help function to determine the way to change your server’s JVM settings.

Debugging the DFSMSrmm Web Service

Debug methods are available in z/OS DFSMSrmm Diagnosis Guide. These can be

useful when the Web service cannot be accessed during the first-time install.

 RMM_XML_MAX_SIZE

 2000000

Chapter 4. Setting Up DFSMSrmm Web Service 71

72 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 5. Setting Up DFSMSrmm Common Information Model

(CIM) Provider

A plug-in adapter created for the OpenPegasus CIM environment supports

removable media. This Java class maps DFSMSrmm resources into those defined

in the CIM object model. This plug-in adapter uses the CIM provider interface to

provide real-time information about storage resources.

Requirement: For operation of the DFSMSrmm CIM provider under Linux, a fully

functional web service as well as an xmlCIM compliant product that supports Java,

such as the OpenPegasus C++ CIM server from the OpenGroup, is required to use

the DFSMSrmm CIM provider. The required release of the OpenPegasus package

is 2.5.3 or above and is available via the web at:

http://www.openpegasus.org

Please refer to the OpenPegasus documentation on how to install and configure the

CIM server under Linux.

For operation under z/OS, the OpenPegasus CIM server package is pre-installed

within the file system of the Unix System Services. The CIM server has to be fully

configured before the DFSMSrmm CIM provider can make use of it. See z/OS

Common Information Model User’s Guide on how to setup the CIM server. Ensure

that you perform all the RACF security steps in advance, before attempting to run

the CIM provider against the CIM server.

The CIM server runs either on a non-z/OS server, or directly on z/OS V1R8 or

higher. The CIM client/browser runs on any platform supported by the provider of

that client or application.

The DFSMSrmm Common Information Model (CIM) provider application

programming interface are Java classes that implement the CIM-specified methods

required of providers. The CIM-classes provided by DFSMSrmm and the providers

for those classes are defined in a Managed Object Format (MOF) file. Each of the

classes are subclasses of a corresponding class of the CIM schema version 2.11,

respectively SMI-S 1.1. The CIM server reads and interprets the MOF file and calls

the providers, as required. The DFSMSrmm-provided classes extend those of the

standard CIM object model and enable DFSMSrmm to provide information about

removable media managed by DFSMSrmm in real time.

These DFSMSrmm CIM classes are supported:

v IBMrmm_Control (main class)

v IBMrmm_Dataset (main class)

v IBMrmm_Location (main class)

v IBMrmm_LogicalVolume (main class)

v IBMrmm_Owner (main class)

v IBMrmm_PhysicalVolume (main class)

v IBMrmm_PolicyRule (main class)

v IBMrmm_Product (main class)

v IBMrmm_ShelfLocation (main class)

v IBMrmm_DatasetOwner (association N:1)

v IBMrmm_LocationShelfLocation (association 1:N)

© Copyright IBM Corp. 1992, 2007 73

|

|

|

|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

http://www.opengroup.org/snia-cimom

v IBMrmm_LogicalVolumeChainedLogicalVolume (association 1:1)

v IBMrmm_LogicalVolumeDataset (association 1:N)

v IBMrmm_LogicalVolumeLogicalVolumeInChain (association 1:N)

v IBMrmm_LogicalVolumeOwner (association N:1)

v IBMrmm_PhysicalLogicalVolume (association 1:1)

v IBMrmm_PhysicalVolumeCurrentLocation (association N:1)

v IBMrmm_PhysicalVolumeCurrentShelfLocation (association N:1)

v IBMrmm_PhysicalVolumeDestinationLocation (association N:1)

v IBMrmm_PhysicalVolumeDestinationShelfLocation (association 1:1)

v IBMrmm_PhysicalVolumeHomeLocation (association N:1)

v IBMrmm_PhysicalVolumeLoanLocation (association N:1)

v IBMrmm_PhysicalVolumeOldLocation (association N:1)

v IBMrmm_PhysicalVolumeOldShelfLocation (association 1:1)

v IBMrmm_PhysicalVolumeRequiredLocation (association N:1)

v IBMrmm_PolicyRuleAndPolicyRule (association N:1)

v IBMrmm_PolicyRuleLocation (association N:1)

v IBMrmm_PolicyRuleNextPolicyRule (association N:1)

v IBMrmm_PolicyRuleOwner (association N:1)

v IBMrmm_PolicyRulePolicyRuleInChain (association 1:N)

v IBMrmm_ProductLogicalVolume (association 1:N)

v IBMrmm_SearchOperands (aux class for search type operations)

v IBMrmm_DeleteOperands (aux class for delete operation)

LIST, SEARCH, ADD, CHANGE, and DELETE-type operations are fully supported

by the providers for all classes. Each CIM class is served by its own provider Java

class.

These DFSMSrmm CIM abstract classes are supported:

v IBMrmm_LogicalMedia (abstract)

v IBMrmm_Identity (abstract)

v IBMrmm_PhysicalMedia (abstract)

v IBMrmm_StorageMediaLocation (abstract)

The subclasses created for the DFSMSrmm-managed media have all of the

attributes of the CIM classes from which they are derived. In addition, they contain

additional attributes that are mapped to those of the resources under DFSMSrmm

control. The elements and their attributes, defined in the XML schema for the

DFSMSrmm application programming interface, are mapped and converted to the

attributes in the DFSMSrmm CIM classes.

Figure 28 on page 75 shows a picture of the elements involved in the Common

Information Model (CIM). The CIM client is the CIM browser that allows you to view

information about the resources managed by the CIM server. Other CIM-compliant

clients can also be used as CIM browsers. Each CIM server maintains a repository

of persistent information for managed resources, but also retrieves information in

real-time via the provider interface associated with other managed resources. The

DFSMSrmm provider uses the DFSMSrmm application programming interface via

the DFSMSrmm Web service or direct function call to retrieve information about

DFSMSrmm resources in real-time.

74 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|

|

|

Implementing the DFSMSrmm CIM provider

The readme file, rmmcim.txt, describes the necessary steps for CIM provider

installation and configuration. See z/OS Common Information Model User’s Guide,

available from the IBM z/OS web library, for details on how to setup the

OpenPegasus CIM server under z/OS. If running the OpenPegasus CIM server

under Linux, see the documentation that comes with the Pegasus package on how

to setup the OpenPegasus CIM server under Linux.

To implement the DFSMSrmm CIM Provider, do this:

Pegasus CIM server prerequisites

For LINUX:

The Pegasus base distribution is a fundamental prerequisite for the DFSMSrmm

CIM provider. It must be installed and operational before you start to work with the

provider. Go to

http://www.openpegasus.org

to obtain the Pegasus product. The required OpenPegasus version is 2.5.3 or

above.

It is outside the scope of this topic to provide a detailed installation description of

the Pegasus base distribution. See “Exports (demo) for LINUX” on page 79 to set

up the environmental variables for Pegasus.

CIM Services xmlCIM over HTTP

WAS

WebService
RPC-Router

SOAP
Wrapper

RMM Java API

JNI
C++<>Java

WASWAS

RMM C++ API

DFSMSrmm
server

DFSMSrmm
client CDS

RMM C++ API

DFSMSrmm
server

RMM C++ API

DFSMSrmm
server

CDS

RMM C++ API

RMM

Direct API calls supported,
in case JavaVM is within z/OS

CDS

R
M

M
 J

av
a

A
P

IJavaVM
OpenPegasus

CIMOM
RMM

CIM-Provider
RMM

WebService Proxy

CIM
reposi-

tory

Web Services xmlSOAP over HTTP

WAS= WebSphere Application Environment

CIM
Client

IBMrmm_class definitions

XCDSXCDS

Figure 28. Example of DFSMSrmm Common Information Model (CIM)

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 75

|
|
|
|
|
|

|
|

http://www.opengroup.org/snia-cimom

If you intend to use a source distribution of Pegasus under Linux, make sure to

have the Linux packages for code checkout (CVS Concurrent Versioning System)

and code compilation (GCC GNU C++ Compiler) installed. This is required to build

the binaries and the CIM server repository.

For z/OS:

The OpenGroup Pegasus z/OS CIM server is pre-installed as a binary distribution

under Unix System Services. See z/OS Common Information Model User’s Guide

for details on how to setup the CIM server under z/OS.

Installation of the Java 2 Standard Edition SDK

For LINUX:

Download the Java 2 Standard Edition SDK from

http://java.sun.com/downloads/index.html

or get the package from your Linux installation CD. Execute the binary, and follow

the instructions on the screen. The version used during development was 1.4.2_07.

For z/OS:

Java may be preinstalled on your system. You can check it by typing: java -version

within the Unix System Services. If it is not installed, have your system

administrator install it. The supported Java version is 1.4.2. For both the Linux and

z/OS USS, make sure to include the Java exports, as shown in “Export of

environmental variables” on page 79. Adapt paths if necessary.

DFSMSrmm CIM provider files

Verify that these files exist under z/OS Unix System Services:

v /usr/lpp/dfsms/rmm/rmmcimp.jar (The main CIM provider jar.)

v /usr/lpp/dfsms/rmm/rmmmsgs.jar (The messages repository jar.)

v /usr/lpp/dfsms/rmm/rmmjapi.jar (The Java API class.)

v /usr/lpp/dfsms/rmm/rmmcimp.mof (The MOF file with the DFSMSrmm CIM

classes.)

v /usr/lpp/dfsms/rmm/rmmcimpr.mof (The MOF file for provider registration.)

v /usr/lpp/dfsms/rmm/var/rmm.properties (The configuration file.)

v /usr/lpp/dfsms/rmm/var/rmmtocim.map (The XML to CIM mapping file.)

v /usr/lpp/dfsms/rmm/config/rmmlog.properties (The logger control file.)

v /usr/lpp/dfsms/rmm/config/rmmcust.properties (The customer option file.)

v /usr/lib/xml_schema/rmmxml.xsd (The XML schema file.)

v /usr/lpp/dfsms/rmm/rmmcim.txt (The readme file.)

v /usr/lpp/dfsms/rmm/rmmutil.sh (The DFSMSrmm CIM provider utility script.)

For LINUX:

If you plan to run the CIM Provider under Linux, download these files to your target

system via ftp. It is up to you to go with the same path structure as z/OS or copy

everything into a single $RMM_DIR-directory. Either way, make sure the paths are

correct within the properties files and exports. Download the first three files as

binary and the remaining as text files.

Ensure that these special characters were downloaded correctly in the text files,

particularly within the rmmcimp.mof, rmmcimpr.mof, rmmxml.xsd, and

rmmcust.properties files:

76 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

|

|

|

http://www.opengroup.org/snia-cimom

v [(left square bracket)

v] (right square bracket)

v { (left brace)

v } (right brace)

v | (vertical bar)

v / (slash)

v \ (backslash)

Add rmmcimp.jar, rmmmsgs.jar, and rmmjapi.jar to the CLASSPATH as shown in

“Exports (demo) for LINUX” on page 79.

For z/OS:

Create the directories (mkdir) /etc/rmm and /var/rmm.

Execute these commands to copy various files:

v cp /usr/lpp/dfsms/rmm/var/rmm.properties /var/rmm/rmm.properties

v cp /usr/lpp/dfsms/rmm/var/rmmtocim.map /var/rmm/rmmtocim.map

v cp /usr/lpp/dfsms/rmm/config/rmmlog.properties /etc/rmm/rmmlog.properties

v cp /usr/lpp/dfsms/rmm/config/rmmcust.properties /etc/rmm/rmmcust.properties

and make your necessary changes to the last files in the /etc/rmm directory.

The copies within /var/rmm and /etc/rmm are your working set of configuration files.

Required Java libraries

Ensure that these libraries exist on your system and are added to the CLASSPATH

as well (see “Export of environmental variables” on page 79):

 Table 12. Libraries Needed for DFSMSrmm CIM Provider

Name Version used Download location

j2ee.jar 1.3.1 http://java.sun.com/j2ee/index.jsp

soap.jar 2.3.1 http://apache.rmplc.co.uk/ws/soap/version-2.3.1/

mail.jar 1.3.1 http://java.sun.com/products/javamail/downloads/index.html

xerces-2.4.0.jar 2.4.0 http://www.ibiblio.org/maven/xerces/jars/

log4j-1.2.8.jar 1.2.8 http://logging.apache.org/log4j/docs/download.html

uddi4j.jar 2.0 http://sourceforge.net/projects/uddi4j

Note: These links are subject to change. Also, some of these links are entry points

and require further navigation.

First Time Setup

A user-friendly script is provided that performs the class loadings and provider

registrations in a single procedure. It is named, rmmutil.sh. Ensure that the

execution flag is set on by chmod a+x rmmutil.sh.

Navigate to /usr/lpp/dfsms/rmm for z/OS, or your $RMM_DIR directory, if everything

resides there, and invoke

rmmutil.sh

Choose item 1 from the main menu, and confirm your selection by typing Y.

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 77

|

|
|

For LINUX:

If you receive the error bad interpreter: No such file or directory after the invocation

of rmmutil.sh, then the script has a non-compliant file format. Correct this by

opening rmmutil.sh within the vi editor and set the file format to unix:

vi rmmutil.sh

set fileformat=unix

x

Next, choose item 9 from the main menu to restart the CIM server.

 This procedure:

v Loads the DFSMSrmm CIM classes to the repository.

v Registers the provider.

v Prompts for initial values of the auxiliary search classes.

Initial default values for the auxiliary search classes are already set. If you do not

want to modify them now, press Enter to continue. Alternatively, for z/OS, you can

load the CIM classes and register the providers by invoking these commands from

your working directory $RMM_DIR:

cimmof -I. -n root/cimv2 rmmcimp.mof

cimmofl -I. -nroot/PG_InterOp -R/var/wbem rmmcimpr.mof

XML schema file adaptions

For LINUX:

v Copy the XML schema file to directory /var cp /usr/lib/xml_schema/rmmxml.xsd

/var/rmmxml.xsd

v Edit the new file and change the header line to read <?xml version=″1.0″

encoding=″UTF-8″?>

v Ensure that within /var/rmm.properties the entry is set to the new file:

XML_SCHEMA_LOCATION = /var/rmmxml.xsd

For z/OS:

Ensure that within /var/rmm.properties the entry is set to the new file:

XML_SCHEMA_LOCATION = /usr/lib/xml_schema/rmmxml.xsd

DFSMSrmm specific environment variables

Add these exports to your system profile:

v Export RMMCIM_NAMESPACE=root/cimv2

v Export RMMCIM_CONFIG=/var/rmm/rmm.properties

Customer options

Edit the option file /etc/rmm/rmmcust.properties and verify these settings:

v WEB_SERVICE_REGISTRY = FILE (for first time usage, if not using UDDI).

v WEB_SERVICE_LOCATIONS = <URL>, where <URL> points to a valid z/OS

WebSphere Application Server address that serves DFSMSrmm data.

To make the exports effective, close and then reopen the Linux/Unix session.

Pretests

Navigate to the folder /usr/lpp/dfsms/rmm and invoke: rmmutil.sh. Choose item 8

from the main menu for Miscellaneous Tests.

78 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|

|
|
|

|

|

|

1. Show version of the DFSMSrmm CIM Provider - Display the actual version of

the DFSMSrmm CIM Provider.

2. Show version of Pegasus CIM server - Display the actual version of the

Pegasus CIM server.

3. Show Java VM - Display the installed Java version.

4. Test DFSMSrmm Direct API -

v For LINUX, message EDG3950E: ERROR CALLING THE EDGXHCLL DLL is

received.

v For z/OS, display the CdsID and SystemID of the attached DFSMSrmm.

5. Test DFSMSrmm Web Service - Enter the web service’s IP-address. The CdsID

and SystemID are returned. For this test, the destination should be equal to

what is specified by WEB_SERVICE_LOCATIONS.

Note: If behind a firewall, be sure to login first.

6. Test UDDI Inquiry - Enter the UDDI inquiry URL and the search string. The

published services are returned that match to the search string.

Start and stop the CIM server

The provider is now properly installed and ready to use. To use it, you have to start

the CIM server. To start the CIM server, enter: cimserver To stop the CIM server,

enter: cimserver -s

While the CIM server is running, requests against DFSMSrmm can be done by a

CIM client (for example, wbemcli under Linux, or cimcli under z/OS).

Note: cimcli comes with Pegasus. wbemcli has to be installed externally. See

“WBEMCLI CIM command line client for Linux” on page 87 for instructions

on how to install it and also some sample invocations of how to obtain data

via the DFSMSrmm CIM Provider.

Export of environmental variables

Exports (demo) for LINUX

Note: These exports are for demo purposes only. Do not simply copy and paste it

to your profile. In particular, the path statements have to be adapted to your

system. Also, the $RMM_DIR variable is assumed to be set correctly.

In general, these exports are done within .profile in your home directory. For

system-wide effects, you can also make them within /etc/profile.

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 79

|
|

|

Exports (demo) for z/OS

Note: These exports are for demo purposes only. Do not simply copy and paste it

to your profile. Ensure that all path settings match to your environment.

First, set these links:

v ln -e EDGXHCLL libEDGXHCLL.so (within $LIBPATH)

v ln -s /usr/lpp/dfsms/rmm /var/r

The second link shortens the CLASSPATH length, which is limited to 254 characters

under z/OS. Make the symbolic path (/var/r) as short as possible. If CLASSPATH is

still too long, you can either:

v Rename the jar-files, or

v Unpack the jar-files to have the Java class files in a directory tree.

\#---

PEGASUS Variable Setup

#---

export RMM_DIR=<the directory where you want to place the provider>

export PEGASUS_HOME=$RMM_DIR/pegasus_home

export PEGASUS_ROOT=$RMM_DIR/pegasus

export PEGASUS_PLATFORM=LINUX_IX86_GNU

export PEGASUS_ENABLE_CMPI_PROVIDER_MANAGER=1

export PEGASUS_ENABLE_JMPI_PROVIDER_MANAGER=1

export PEGASUS_DEBUG=1

export PEGASUS_JMPI_MAX_HEAP=900M

export PEGASUS_JMPI_INITIAL_HEAP=900M

export PEGASUS_JVM=sun

export PEGASUS_JAVA_ARCH=i386

export PATH=$PEGASUS_HOME/bin:$PEGASUS_HOME/sbin:$JAVA_SDK/bin:$PATH

export MANPATH=$MANPATH:$PEGASUS_HOME/share/man

#---

RMM CIM Provider Variable Setup

#---

export RMMCIM_NAMESPACE=root/cimv2

export RMMCIM_CONFIG=/var/rmm.properties

export JAVA_SDK=/j2sdk1.4.2_07

export JAVA_SDKINC=$JAVA_SDK/include

export WBEMCLI_IND=$RMM_DIR/sblim-wbemcli-1.4.10/wbemcli.ind

#---

CLASSPATH exports

#---

export CLASSPATH=$PEGASUS_ROOT/src/Pegasus/ProviderManager2/JMPI

export CLASSPATH=$CLASSPATH:$RMM_DIR/xerces-2.4.0.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/log4j-1.2.8.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/j2ee.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/soap.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/mail.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/uddi4j.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/rmmcimp.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/rmmmsgs.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/rmmjapi.jar

export LD_LIBRARY_PATH=$PEGASUS_HOME/lib:$JAVA_SDK/jre/lib/i386/server:

 $JAVA_SDK/jre/lib/i386/native_threads:$JAVA_SDK/jre/lib/i386:$RMM_DIR/usr/local/lib

export LD_ASSUME_KERNEL=2.2.5

Figure 29. Exports (demo) for LINUX

80 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Finally, add the root of the tree to your CLASSPATH, instead of adding every single

jar-file.

DFSMSrmm CIM provider properties file: rmm.properties

The DFSMSrmm CIM provider properties file, rmm.properties, has these options:

#---

PEGASUS Variable Setup

#---

export PEGASUS_HOME=/usr/lpp/wbem

export _CEE_RUNOPTS="FILETAG(AUTOCVT,AUTOTAG) HEAPP(ON)"

export _BPXK_AUTOCVT=ON

export _TAG_REDIR_ERR=TXT

export _TAG_REDIR_IN=TXT

export _TAG_REDIR_OUT=TXT

export PATH=$PATH:$PEGASUS_HOME/bin:

export LIBPATH=$LIBPATH:$PEGASUS_HOME/lib:$PEGASUS_HOME/provider

export LIBPATH=$LIBPATH:$JAVA_HOME/bin/classic

export LIBPATH=$LIBPATH:$JAVA_HOME/bin

#---

RMM CIM Provider Variable Setup

#---

export RMMCIM_NAMESPACE=root/cimv2

export RMMCIM_CONFIG=/var/r/rmm.properties

#---

CLASSPATH exports

#---

export RMM_DIR=/var/r

export CLASSPATH=.

export CLASSPATH=$CLASSPATH:$PEGASUS_HOME/lib/JMPIImpl.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/xerces-2.4.0.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/log4j-1.2.8.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/j2ee.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/soap.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/mail.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/uddi4j.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/rmmcimp.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/rmmmsgs.jar

export CLASSPATH=$CLASSPATH:$RMM_DIR/rmmjapi.jar

Figure 30. Exports (demo) for z/OS

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 81

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

If running under LINUX, ensure that XML_SCHEMA_LOCATION points to the

version in your working set that you changed according to “XML schema file

adaptions” on page 78.

DFSMSrmm CIM provider properties file: rmmcust.properties

A second properties file, rmmcust.properties, is available to select the values

needed to configure the CIM provider to your needs. The rmmcust.properties file

looks like this:

//***

//* *

//* Description: RMM CIM provider configuration file

//* *

//***

//* Customer config file name *

//* Do not specify logical path names like $MYPATH/rmmcust.properties, *

//* only physical path names like *

//* /etc/rmm/rmmcust.properties are allowed. *

//***

CUST_CONFIG_FILE_NAME = /etc/rmm/rmmcust.properties

//***

//* Logger config file name *

//* Do not specify logical path names like $MYPATH/rmmlog.properties, *

//* only physical path names like *

//* /etc/rmm/rmmlog.properties are allowed. *

//***

LOG_CONFIG_FILE_NAME = /etc/rmm/rmmlog.properties

//***

//* SFI-to-CIM mapping file name *

//* Do not specify logical path names like $MYPATH/rmmtocim.map, only *

//* physical path names like /var/rmm/rmmtocim.map are allowed. *

//***

SFI_TO_CIM_MAP = /var/rmm/rmmtocim.map

//***

//* XML-schema file location *

//* Do not specify logical path names like $MYPATH/rmmxml.xsd, only *

//* physical path names like /usr/lib/xml_schema/rmmxml.xsd are allowed.*

//***

XML_SCHEMA_LOCATION = /usr/lib/xml_schema/rmmxml.xsd

Figure 31. The DFSMSrmm CIM Provider Properties File, rmm.properties

82 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//***

//* A copyrighted, trademarked or otherwise unique name for your *

//* business organization. *

//***

ORG_ID = IBM_DFSMSrmm

//***

// RMM CIM provider customer option file

//***

// Locale settings

// syntax: language_COUNTRY_REGION

// e.g. no_NO_B norwegian in Norway/Bokmal

//***

CURRENT_LOCALE = en_US

//CURRENT_LOCALE = de_DE

//***

//* Do XML-schema validation *

//* syntax: ALWAYS or NEVER or ONCE *

//* ALWAYS - do validation always *

//* NEVER - do validation never *

//* ONCE - do validation once per URL and subcommand *

//* Note: For z/OS use NEVER, unless you have converted the schema file *

//* rmmxml.xsd according instructions in rmmcim.txt *

//***

DO_SCHEMA_VALIDATION = NEVER

//***

//* Do Web-Service discovery *

//* syntax: ALWAYS or ONCE *

//* ALWAYS - discover always, per each cim request *

//* ONCE - discover once, at the start of the cimserver *

//***

DO_WEB_SERVICE_DISCOVERY = ONCE

//***

// Web Service timeout in milliseconds

//***

WEB_SERVICE_TIMEOUT = 10000

//***

// Web-Service response zipped or unzipped

// syntax: { YES | NO }

//**

WEB_SERVICE_USE_ZIP = YES

//***

//* Web-Service registry *

//* syntax: NONE or FILE or UDDI or BOTH *

//* NONE - direct API call, if CIM server runs under zOS *

//* FILE - find web service URLs in WEB_SERVICE_LOCATIONS *

//* UDDI - find web service URLs in UDDI registry *

//* BOTH - combination of FILE and UDDI *

//***

WEB_SERVICE_REGISTRY = FILE

//***

// UDDI registry inquiry & publish URLs

//***

UDDI_INQUIRY_URL = http://your_uddi_registry_inquiry_url

//***

// UDDI search string

// syntax: may be uncomplete and is case sensitive

// e.g. "Rmm" finds all services starting with "Rmm"

//***

UDDI_SEARCH_STRING = Rmm

//***

//* Web-Service locations for WEB_SERVICE_REGISTRY = FILE *

//* multiple locations are separated by commas (loc1,loc2...) *

//* xxx.xxx.xxx.xxx = IP-address or name of your RMM web server *

//* pppp = Port of the web service (normally 9080) *

//***

WEB_SERVICE_LOCATIONS = http://xxx.xxx.xxx.xxx:pppp/RmmJApi/servlet/rpcrouter

Figure 32. The DFSMSrmm CIM Provider Properties File, rmmcust.properties

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 83

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Edit the rmmcust.properties file.

The parameters in the rmmcust.properties file are:

ORG_ID

Specify a copyrighted, trademarked, or an otherwise unique name for your

business organization.

CURRENT_LOCALE

This setting determines the resource bundle used. For example, if en_US is

specified, the class called RmmResourceBundle_en_US is used. This resource

bundle contains the messages displayed in the English language (en) and how

they are spoken in the United States (US). If you wish to use another locale,

make sure the appropriate resource bundle exist and specify it in this setting.

Refer to the rmmcim.txt file for instructions on creating new message bundles.

DO_SCHEMA_VALIDATION

Incoming XML data from DFSMSrmm is validated against a schema.

ALWAYS

Validates every response from a CIM request.

NEVER

Switches off validation.

ONCE

Validates the first request per each request type (LISTVOLUME,

SEARCHVOLUME and so on) only once after starting the CIM server.

DO_WEB_SERVICE_DISCOVERY

The destinations of the DFSMSrmm Web servers can be discovered either:

ONCE

At the start of the CIM server.

ALWAYS

Upon each single CIM request.

WEB_SERVICE_TIMEOUT

The time in milliseconds the CIM provider waits for the Web service response

before timing out. Make sure to set this value sufficiently high for slower

networks.

WEB_SERVICE_USE_ZIP

To reduce the network transfer, the XML response from the Web service can be

requested in:

YES

Compressed form.

NO

Not compressed form (plain text).

WEB_SERVICE_REGISTRY

The DFSMSrmm Web server URLs can be specified as:

UDDI

The Web server’s URL published to an UDDI registry. In this case,

UDDI_INQUIRY_URL must be set accordingly.

FILE

The WEB_SERVICE_LOCATIONS setting must point to a valid server

address.

84 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

|

BOTH

The DFSMSrmm Web server URLs are specified as both published to an

UDDI registry and specified in rmmcust.properties by the

WEB_SERVICE_LOCATIONS option.

NONE

No web services are used, instead the DFSMSrmm direct API is called.

UDDI_INQUIRY_URL

Specifies a valid UDDI-registry.

UDDI_SEARCH_STRING

If the DFSMSrmm Web service is published to an UDDI registry and is

discovered from there, ensure that it’s name starts with what is specified here.

Otherwise, even though it is properly published, the Web service will not be

found. Note: The search string is case-sensitive.

WEB_SERVICE_LOCATIONS

The DFSMSrmm Web server URLs, separated by commas, where

xxx.xxx.xxx.xxx is the IP address and pppp is the port number.

Diagnostic log properties: rmmlog.properties

Customize the diagnostic log properties within rmmlog.properties:

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 85

#**

Logger configuration

#**

Define root logger level and appender

{ DEBUG | INFO | WARN | ERROR | FATAL }

#**

log4j.rootLogger = INFO, R

#**

Define appender as RollingFileAppender

#**

#log4j.appender.R = org.apache.log4j.ConsoleAppender

log4j.appender.R = org.apache.log4j.RollingFileAppender

log4j.appender.R.File = rmmcim.log

log4j.appender.R.MaxFileSize = 500KB

log4j.appender.R.MaxBackupIndex = 9

#**

Define logging format

(see http://logging.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html)

c Category

For example, for the category name "a.b.c" the pattern %c{2} will output "b.c"

C Fully qualified class name of the caller

For example, for the class name "org.apache.xyz.SomeClass", the pattern %C{1} will output

"SomeClass".

WARNING Generating the caller class information is slow.

d Date of the logging event.

The date conversion specifier may be followed by a date format specifier enclosed between

braces.

For example, %d{HH:mm:ss,SSS} or %d{dd MMM yyyy HH:mm:ss,SSS}.

If no date format specifier is given then ISO8601 format is assumed.

F File name where the logging request was issued.

WARNING Generating caller location information is extremely slow.

l Location information of the caller which generated the logging event.

Usually consists of the fully qualified name of the calling method

followed by the callers source the file name and line number between parentheses.

The location information can be very useful. However, its generation is extremely slow.

L Line number from where the logging request was issued.

WARNING Generating caller location information is extremely slow.

m Application supplied message associated with the logging event.

M Method name where the logging request was issued.

WARNING Generating caller location information is extremely slow.

n Line separator character or characters.

p Priority of the logging event.

r Number of milliseconds elapsed since the start of the application until the creation of the

logging event.

t Name of the thread that generated the logging event.

x NDC (nested diagnostic context) associated with the thread that generated the logging event.

X MDC (mapped diagnostic context) associated with the thread that generated the logging event.

The X conversion character must be followed by the key for the map placed between braces,

as in %X{clientNumber} where clientNumber is the key.

The value in the MDC corresponding to the key will be output.

% The sequence %% outputs a single percent sign.

format modifier examples:

%20c Right justify and left pad with spaces if category is smaller than 20 characters.

%-20c Left justify and right pad with spaces if category is smaller than 20 characters.

%.30c Truncate from the beginning if the category name is longer than 30 characters.

%20.30c Left pad with spaces if the category name is shorter than 20 characters.

However, if category name is longer than 30 characters, then truncate from the beginning.

%-20.30c Right pad with spaces if the category name is shorter than 20 characters.

However, if category name is longer than 30 characters, then truncate from the beginning.

#**

log4j.appender.R.layout=org.apache.log4j.PatternLayout

log4j.appender.R.layout.ConversionPattern=%d [%-25F:%5L %-20M] %-5p - %m%n

Figure 33. The Diagnostic Log Properties, rmmlog.properties

86 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

The parameters in the rmmlog.properties file are:

log4j.rootLogger

Set the logger level to either:

DEBUG

Used for problem diagnosis, this setting results in a very detailed log report.

This setting is not recommended for normal use.

INFO

Suggested for normal operation.

WARN

Suggested for normal operation.

ERROR

Suggested for normal operation.

FATAL

Note: Do not change ″R″. It is a reference to the logger object.

log4j.appender.R

Appends all entries into a file. Do not change this setting, unless you want

another behavior (for example, you want ConsoleAppender output to go to the

screen instead of to a file).

log4j.appender.R.File

Specifies the name of the log file.

log4j.appender.R.MaxFileSize

Specifies the maximum file size. If this file size is exceeded, the suffix .1 is

attached to the filename and logging starts with a new filename.

log4j.appender.R.MaxBackupIndex

Specifies the number of times a file can exceed its MaxFileSize before the

oldest backup file is discarded. For example, if this variable is set to 9, the file

can have 9 backup files, but on the tenth time that this file exceeds its

MaxFileSize, the oldest backup file is discarded.

log4j.appender.R.layout

Defines the format of each log entry. Although it is not suggested to change

this, it can be adapted to other formats.

log4j.appender.R.layout.ConversionPattern

Defines the format of each log entry. Although it is not suggested to change

this, it can be adapted to other formats.

WBEMCLI CIM command line client for Linux

Installation

Download the latest version of sblim-wbemcli from:

http://sourceforge.net/project/showfiles.php?group_id=128809

Navigate to the target directory and untar the file:

- tar -xvf sblim-wbemcli-1.4.10.tar.gz

A subdirectory, sblim-wbemcli-1.4.10, is created. Go to this subdirectory by issuing

this command:

cd sblim-wbemcli-1.4.10

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 87

http://www.opengroup.org/snia-cimom

Invoke these commands:

v configure

v make

v make install

Set the variable WBEMCLI_IND accordingly, as seen in “Exports (demo) for LINUX”

on page 79. Read the wbemcli documentation on how to adapt the file, wbemcli.ind.

Usage

To view the syntax and options of wbemcli, enter:

man wbemcli

This opens the online manual. These are some sample enumeration commands

against DFSMSrmm resources (assuming a control data set and the corresponding

resources exists):

cimcli command line client for z/OS

The z/OS Pegasus CIM server comes with the cimcli command line client ready to

use. Invoke cimcli --help to see the syntax. These are some sample commands to

request DFSMSrmm resources:

Set program control flag

If during a client request, this message appears on the z/OS console:

BPXP015I HFS PROGRAM /bin/printenv IS NOT MARKED PROGRAM CONTROLLED.

set the program control flag "on" by issuing this command from the OMVS shell:

extattr +p /bin/printenv

wbemcli ein http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_LogicalVolume

wbemcli ei -nl http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_LogicalVolume

wbemcli ein http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_PhysicalVolume

wbemcli ei -nl http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_PhysicalVolume

wbemcli ein http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Dataset

wbemcli ei -nl http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Dataset

wbemcli ein http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Location

wbemcli ei -nl http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Location

wbemcli ein http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_ShelfLocation

wbemcli ei -nl http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_ShelfLocation

wbemcli ein http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Owner

wbemcli ei -nl http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Owner

Figure 34. Sample enumeration commands against DFSMSrmm resources

cimcli ni IBMrmm_LogicalVolume -u <userid> -p <password> -l <cimserver_ip -niq

cimcli gi IBMrmm_LogicalVolume -u <userid> -p <password> -l <cimserver_ip

cimcli ni IBMrmm_Dataset -u <userid> -p <password> -l <cimserver_ip -niq

cimcli gi IBMrmm_Dataset -u <userid> -p <password> -l <cimserver_ip

cimcli ni IBMrmm_Owner -u <userid> -p <password> -l <cimserver_ip -niq

Figure 35. Sample commands to request DFSMSrmm resources

88 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

Java client for use with invokeMethod

Search is the only supported method name for the invokeMethod function. It returns

a list of objects from DFSMSrmm by name. It is particularly useful when working

with the CONTINUE operand for search requests. Only the number of objects that

are actually returned to the client are specified by the LIMIT operand. The client is

able to get the list incrementally, in an interactive way.

Input parameters are passed as CIMProperty objects, which are wrapped in an

vector. Valid CIMProperty names are CdsID and Operands. CdsID is a mandatory

parameter. If you issue invokeMethod against the IBMrmm_ShelfLocation class, and

you would like to get BINs returned, you need to specifiy the BIN operand in the

Operands parameter. Otherwise, RACKs are returned as the default. For example,

new CIMProperty("Operands", new CIMValue("BIN(*) LIMIT(20) CONTINUE"))

The returned objects from DFSMSrmm are CIMObjectPath objects, which are

wrapped as values in CIMProperty objects. The CIMProperty objects are wrapped

in the output Vector.

The invokeMethod function returns a operands string, ready to be used for the next

data request. See 89 for Java code as a sample client for invokeMethod.

public class IMClient {

public static void main(String[] args) throws CIMException {

/***

* Set variables

***/

CIMClient cc = null;

CIMNameSpace cns = null;

CIMObjectPath cop = null;

CIMInstance ci = null;

CIMClass cls = null;

String host = "http://localhost:5988";

String nameSpace = "root/cimv2";

String className = null;

String user = "";

String password = "";

String method = "search";

String cdsId = null;

String operands = null;

CIMValue retValue = null;

boolean repeat = false;

int p = 0;

String arg;

/***

* Extract command line arguments

/while (p < args.length && args[p].startsWith("-")) {

arg = args[p++];

/***

* Get -cds option

***/

if (arg.equals("-cds")) {

if (p < args.length)

cdsId = args[p++];

else

System.err.println("-cds requires CdsID");

}

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 89

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/***

* Get -op option

***/

else if (arg.equals("-op")) {

if (p < args.length)

operands = args[p++];

else

System.err.println("-op requires operands string");

}

/***

* Get -cls option

***/

else if (arg.equals("-cls")) {

if (p < args.length)

className = args[p++];

else

System.err.println("-cls requires class name");

}

}

/***

* Exit if no class specified

***/

if (className == null) {

System.err.println(

"Usage: IMClient [-cds CdsID]"

+ " [-op search_operands] [-cls class_name]");

System.exit(1);

}

/***

* Create CIM client

***/

cns = new CIMNameSpace(host, nameSpace);

cc = new CIMClient(cns, user, password);

cop = new CIMObjectPath(className, nameSpace);

/***

* Create input and output Vectors

***/

Vector inParams = new Vector();

Vector outParams = new Vector();

/***

* Loop while invokeMethod returns something

***/

do {

/***

* Set value for input parameter CdsID, if specified

***/

if (cdsId != null)

inParams.addElement(

new CIMProperty(

"CdsID", new CIMValue(cdsId)));

/***

* Set value for input parameter Operands, if specified

***/

if (operands != null)

inParams.addElement(

new CIMProperty(

"Operands", new CIMValue(operands)));

/***

* Call invokeMethod

***/

try {

90 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

retValue =

cc.invokeMethod(cop, method, inParams, outParams);

} catch (CIMException ce) {

System.err.println("\nInvokeMethod() Failed: " + ce);

System.exit(1);

}

/***

* Evaluate response

***/

if (retValue != null) {

/***

* Copy return value for next operands

***/

if ((operands != null) &&

retValue.toString().startsWith(operands.substring(0,5))) {

operands = retValue.toString();

repeat = true;

}

/***

* Stop loop if no operands returned

***/

else {

repeat = false;

}

/***

* Show the output Vector

***/

for (int i = 0; i < outParams.size(); i++) {

System.out.println(

((CIMProperty)outParams.elementAt(i))

.getValue().toString());

}

/***

* Show the return value

***/

System.out.println(retValue.toString());

}

} while ((retValue != null) && repeat);

}

}

Sample invocation:java IMClient -cds RMM_TC -cls IBMrmm_LogicalVolume

 -op "Volume(X*) Owner(*) Limit(10) Continue"

Using the DFSMSrmm CIM Provider with DFSMSrmm Web Service

The DFSMSrmm CIM provider application programming interface uses the

DFSMSrmm Web service via a proxy integrated with the provider. Thus, you must

implement the Web service and, optionally, publish it in a local UDDI registry. This

enables the provider application programming interface to find the DFSMSrmm

system that can return details about volumes, data sets, their associations, and

other resources managed by DFSMSrmm.

If you do not use a UDDI registry, you must define the URL of any DFSMSrmm

Web service in the rmmcust.properties file. Each system (one per RMMplex) that

you want the provider application programming interface to query must have a

separate Web service and each must be either published in a UDDI or defined in

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 91

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

the rmmcust.properties file. The DFSMSrmm CIM provider finds each Web service

and calls each to ensure that all resources across all DFSMSrmm systems can be

reported. The first subcommand determines the settings in use for the DFSMSrmm

subsystem, such as CDSID and DATEFORM. The CDSID value is used to uniquely

identify each RMMplex. Thus, make sure the CDSID is unique. If a duplicate

system is found, only the first occurrence of that system is used. The DATEFORM

value is used to ensure that date values are interpreted correctly and then correctly

converted to date attributes in the CIM classes.

To exploit the DFSMSrmm CIM provider, you must have a CIM-compliant product or

software that acts as the CIM client. You can use the SBLIM-WBEMCLI or the

SBLIM-CIM-CLIENT package available for free via the web at:

http://sourceforge.net/project/showfiles.php?group_id=128809

Common tasks for the DFSMSrmm CIM provider

Table 13 contains tasks that you can perform for the DFSMSrmm CIM provider.

 Table 13. Common tasks for the DFSMSrmm CIM provider

Task CIM operation

List all volumes logical

attributes, but limit it to

100 occurrences

v Define the search limits:

wbemcli mi http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_SearchOperands.Resource="IBMrmm_LogicalVolume"

Operands="Volume(*) Owner(*) Limit(100)"

v Find volumes:

 wbemcli ein http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_LogicalVolume

List all volumes logical

attributes in steps of 10

volumes (The provider

collects all Volumes and

returns the complete list)

v Define the search limits:

wbemcli mi http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_SearchOperands.Resource="IBMrmm_LogicalVolume"

Operands="Volume(*) Owner(*) Limit(10) Continue"

v Find volumes:

 wbemcli ein http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_LogicalVolume

List all volumes physical

attributes starting with A

v Define the search limits:

wbemcli mi http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_SearchOperands.Resource="IBMrmm_PhysicalVolume"

Operands="Volume(*) Owner(*) Volume(A*)"

v Find volumes:

wbemcli ein http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_PhysicalVolume

List all volumes physical

attributes located in

location SHELF

wbemcli ain -ac IBMrmm_PhysicalVolumeCurrentLocation http://<userid>

:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Location

.CdsID="RMM_A", CreationClassName="", LocName="SHELF", LocationType="", Tag=""

List all volumes logical

attributes owned by

SMITH on control data

set RMM_A

wbemcli ain -ac IBMrmm_LogicalVolumeOwner http://<userid>:<password>@<cimserver_ip>

:<port>/ root/cimv2:IBMrmm_Owner

.CdsID="RMM_A",InstanceID="",CreationClassName="",OwnerId="SMITH"

92 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|

|

||

||

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

http://sourceforge.net/project/showfiles.php?group_id=128809

Table 13. Common tasks for the DFSMSrmm CIM provider (continued)

Task CIM operation

List all data sets with

HLQ=TEST

v Define the search limits:

wbemcli mi http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_SearchOperands.Resource="IBMrmm_Dataset"

Operands="Owner(*) Dsname(’TEST.**’)"

v Find data sets:

wbemcli ein http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_Dataset

List all data sets owned

by ADMIN

v Define the search limits:

wbemcli mi http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_SearchOperands.Resource="IBMrmm_Dataset"

Operands="Owner(ADMIN)"

v Find data sets:

wbemcli ein http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_Dataset or wbemcli ain -ac IBMrmm_DatasetOwner

http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Owner

.CdsID="*",InstanceID="",CreationClassName="",OwnerId="ADMIN"

List all data sets created

since

YYYY/DDD=2005/200,

but not more than 100

occurrences

v Define the search limits:

wbemcli mi http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_SearchOperands.Resource="IBMrmm_Dataset"

Operands="Owner(*) Since(2005/200) Limit(100)"

v Find data sets:

wbemcli ein http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Dataset

List all data sets on

volume ″T10000″ from

control data set ″RMM_A″

wbemcli ain -ac IBMrmm_LogicalVolumeDataset http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_LogicalVolume .CdsID="RMM_A", CreationClassName="",

VolumeSerialNumber="T10000"

List all locations wbemcli ein http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_Location

List all owners starting

with M

v Define the search limits:

wbemcli mi http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_SearchOperands.Resource=

"IBMrmm_Owner" Operands="Owner(M*)"

v Find owners:

wbemcli ein http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_Owner

Get details of logical

volume T10000 on control

data set RMM_A

wbemcli gi -nl http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_LogicalVolume .CdsID="RMM_A", CreationClassName="",

VolumeSerialNumber="T10000"

Change description of

logical volume T10000 on

control data set RMM_A

to My text

wbemcli mi http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_LogicalVolume

.CdsID="RMM_A", CreationClassName="", VolumeSerialNumber="T10000"

Operands="Description(My text)"

Create new volume

T10001 as scratch

volume on control data

set RMM_A

wbemcli ci http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_LogicalVolume

.CdsID="RMM_A", CreationClassName="", VolumeSerialNumber="" CdsID="RMM_A",

CreationClassName="", VolumeSerialNumber="T10001", Operands="Status(SCRATCH)

Description(My new volume)"

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 93

|

||

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

||

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

Table 13. Common tasks for the DFSMSrmm CIM provider (continued)

Task CIM operation

Delete logical volume

T10001 permanently from

control data set RMM_A,

but do not eject it

v Define the deletion operands:

wbemcli mi http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_DeleteOperands.Resource="IBMrmm_LogicalVolume"

Operands="Force Noeject"

v Delete the volume:

wbemcli di http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_LogicalVolume .CdsID="RMM_A", CreationClassName="",

VolumeSerialNumber="T10001"

Delete owner SMITH and

transfer volumes to

MAYER

v Define the deletion operands:

wbemcli mi http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_DeleteOperands.Resource="IBMrmm_Owner"

Operands="Newowner(MAYER)"

v Delete the owner:

wbemcli di http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_Owner .CdsID="RMM_A",CreationClassName="",InstanceID="",

OwnerId="SMITH"

Get the logical details of

physical volume T10000

from control data set

RMM_A

wbemcli ain -ac IBMrmm_PhysicalLogicalVolume http://<userid>:<password>@<cimserver_ip>

:<port>/root/cimv2:IBMrmm_PhysicalVolume .CdsID="RMM_A", CreationClassName="", Tag="",

VolumeSerialNumber="T10000"

Get the physical volume,

that resides in shelf

location 4711 of location

SHELF from control data

set RMM_A

wbemcli ain -ac IBMrmm_PhysicalVolumeCurrentShelfLocation http://<userid>

:<password>@<cimserver_ip>:<port>/root/cimv2:IBMrmm_ShelfLocation .CdsID="RMM_A",

CreationClassName="", LocationName="SHELF", MediaName="", ShelfLocationNumber="4711",

Tag=""

List data sets, owner, and

physical volume, that the

logical volume T10000 is

related to on control data

set RMM_A

wbemcli ain http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:

IBMrmm_LogicalVolume .CdsID="RMM_A", CreationClassName="",

VolumeSerialNumber="T10000"

List storage media

locations where logical

volume V00001 is moving

into

wbemcli ain -ar movingInVolume

http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:

IBMrmm_PhysicalVolume .CdsID="RMM_A", CreationClassName="", Tag="",

VolumeSerialNumber="V00001"

List storage media

locations where logical

volume V00001 has

moved out

wbemcli ain -ar movedOutVolume

http://<userid>:<password>@<cimserver_ip>:<port>/root/cimv2:

IBMrmm_PhysicalVolume .CdsID="RMM_A", CreationClassName="", Tag="",

VolumeSerialNumber="V00001"

List all shelf locations

contained in location

″MAINZ″

wbemcli ain -ac IBMrmm_LocationShelfLocation

http://<userid>:<password>@<cimserver_ip>:<port>/

root/cimv2:IBMrmm_Location .CdsID="RMM_TC",CreationClassName="",

LocationName="MAINZ",LocationType="3",Tag=""

List all volumes where

product ″5694A01″

resides for version

″010900″

wbemcli ain -ac IBMrmm_ProductLogicalVolume

http://<userid>:<password>@<cimserver_ip>:<port>/

root/cimv2:IBMrmm_Product .CdsID="RMM_TC",ProductNumber="5694A01",

ProductName="",ProductVersion="010900"

List the next chained

volume for ″T00002″

wbemcli ain -ac IBMrmm_LogicalVolumeChainedLogicalVolume

-arr nextVolume

http://<userid>:<password>@<cimserver_ip>:<port>/

root/cimv2:IBMrmm_LogicalVolume .CdsID="RMM_TC",CreationClassName="",

VolumeSerialNumber="T00002"

94 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

||

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

Table 13. Common tasks for the DFSMSrmm CIM provider (continued)

Task CIM operation

Get the previous chained

volume for ″T00002″

wbemcli ain -ac IBMrmm_LogicalVolumeChainedLogicalVolume

-arr prevVolume

http://<userid>:<password>@<cimserver_ip>:<port>/

root/cimv2:IBMrmm_LogicalVolume .CdsID="RMM_TC",CreationClassName="",

VolumeSerialNumber="T00002"

List all policy rules

(VRSs) that, if applicable,

move a volume to

location ″MAINZ″

wbemcli ain -ac IBMrmm_PolicyRuleLocation

http://<userid>:<password>@<cimserver_ip>:<port>/

root/cimv2:IBMrmm_Location .CdsID="RMM_TC",CreationClassName="",

LocationName="MAINZ",LocationType="",Tag=""

Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider 95

|

||

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

96 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 6. Organizing the Removable Media Library

You can organize your removable media library by performing these tasks:

v Create pools of volumes and shelves in your removable media library

v Use Storage Management Subsystem (SMS) management class and storage

group to manage volumes in your removable media library

v Use special dates to manage volumes

v Use duplicate volume serial numbers

Organizing the Library by Pools

Related Reading:

v “Defining Pools: VLPOOL” on page 205 for details about the DFSMSrmm

EDGRMMxx VLPOOL command.

You can use DFSMSrmm EDGRMMxx VLPOOL command operands to define pool

of volumes and to set installation-defined policies for the volumes in the pool. You

can define pools based on criteria like:

v Systems or subsets of systems

v z/OS or VM usage

v Use of rack pools to hold foreign tapes

v Media names your installation defines, like 3480, TAPE, CASSETTE

v SMS storage group names

v Release actions for volumes in a pool

Pooling Overview

A pool is a group of rack numbers or volumes that share a common prefix. In

DFSMSrmm, there are two categories of pools: rack and scratch.

A rack pool is shelf space that can be assigned to hold any volumes. Although you

can add scratch volumes to these pools, you cannot normally use these volumes to

satisfy non-specific mount requests. A rack pool cannot be used with the

DFSMSrmm system-based scratch pooling. Rack pools can perform these

functions:

v Hold volumes that are temporarily brought into the library but will be returned to

the owner after a period of time

v Hold customer, foreign tapes, and software product volumes

v Contain scratch volumes for use with DFSMSrmm exit-selected scratch pooling

A scratch pool is shelf space assigned to hold volumes for use with the DFSMSrmm

system-based scratch pooling. The volumes assigned to this shelf space can be

used to satisfy scratch requests as long as the volumes are in scratch status. Once

the volume has been written to, it becomes a volume with MASTER status, until the

volume is returned to scratch status. The volume remains in the same DFSMSrmm

system based scratch pool, in that it occupies the same shelf space regardless of

status.

The scratch volumes in a system-managed tape library can be from one or more

pools. DFSMSrmm does not provide pool selection or validation for volumes in an

automated tape library because ACS routines use storage class and storage group

to make allocation decisions, and the library manager picks a scratch volume.

DFSMSrmm provides pool validation for volumes that reside in a manual tape

© Copyright IBM Corp. 1992, 2007 97

library. You can pool by storage group, exit-selected pool prefix, or DFSMSrmm

system-based pooling when using manual tape libraries.

DFSMSrmm allows you to use these basic types of pooling:

v Pools of shelf space that are based on rack number prefixes. Each range

identifies characteristics like management criteria and media name. Use shelf

space pools to store volumes that do not match your installation-selected volume

ranges and to store duplicate volumes. Define shelf space pools by using the

DFSMSrmm EDGRMMxx VLPOOL command that is described in “Defining

Pools: VLPOOL” on page 205.

v Pools of volumes that are based on the volume serial number prefix. These

volumes do not have a rack number or the rack number matches the volume

serial number. Each range identifies characteristics like management criteria and

media name. Define volume prefix pools by using the DFSMSrmm EDGRMMxx

VLPOOL command that is described in “Defining Pools: VLPOOL” on page 205.

v Scratch pools. These can be one or more pools of volumes. Scratch pools can

be based on name, SMS storage group, prefix, or system. You define scratch

pools by using the SYSID, PREFIX, and NAME operands of the DFSMSrmm

EDGRMMxx VLPOOL command that is described in “Defining Pools: VLPOOL”

on page 205.

v Storage groups. When you pool by storage group and use SMS ACS processing

to assign a storage group to a tape data set, or the volume is in a

system-managed manual tape library, DFSMSrmm ensures that a volume from

the correct storage group is mounted. The storage group can be the same

across multiple VLPOOL entries. You can use storage group for scratch pooling

for system-managed manual tape libraries and non-system managed tape.

Volumes that have been assigned storage group names cannot be used to

satisfy scratch mount requests that do not request volumes from a specific

storage group unless the mount request is in a manual system-managed tape

library.

Pools can be used in these ways:

v Adding shelf space - DFSMSrmm matches the rack number prefix to the most

specific VLPOOL prefix. The rack media name is taken from the matching

VLPOOL entry.

v Adding volumes - You can optionally specify RACK or POOL operands to

override default processing. Default processing matches the volume serial

number prefix to the most specific VLPOOL prefix. If a rack number is found that

matches the volume serial number and the specified media name, the volume is

stored in the matching shelf pool. If no rack number is found, the volume is in a

volume pool. When adding a volume you can specify a storage group name so

that the volume can be in a specific scratch pool. If no storage group is specified

by the command, DFSMSrmm checks to see if the matching VLPOOL NAME is a

storage group, and uses that value as the storage group name. In this case, the

scratch pool matches the volume pool.

v Managing access to a volume - For system-managed tapes in a manual tape

library, DFSMSrmm validates the mounted volume for the requested pool. You

can use the installation exit to ignore the storage group pool and use

DFSMSrmm system-based scratch pooling described in “Using Storage Group for

Manual Tape Library Pooling” on page 290.

v Defining actions that should be taken when volumes are ready for release - You

can define release actions for volumes on the pool level that might not already

98 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|

be set for individual volumes. For example, you can set the NOTIFY options so

that DFSMSrmm sets notification on the release action if it is not already on at

the volume level.

v Selecting scratch pools for new tape data sets - For system-managed tape, SMS

ACS processing assigns a storage group. DFSMSrmm uses the storage group

name to pool the volumes into a scratch pool. For non-system managed tape,

DFSMSrmm calls SMS ACS processing to allow a storage group to be assigned.

If no storage group is assigned, the DFSMSrmm installation exit EDGUX100 is

used.

When you pool by pool prefix, selected by EDGUX100 or by SYSID, and the

VLPOOL prefix has an associated NAME, DFSMSrmm uses the pool name for

mount messages and drive displays but always validates mounted volumes by

using the pool prefix and SYSID. Multiple VLPOOL entries can have the same

SYSID values and the same NAME values.

Pooling Considerations

If you do not currently use application or user-oriented scratch pools based on job

names and data set names, use DFSMSrmm system-based pooling or a general,

installation-wide scratch pool. If you currently use application or user-oriented

scratch pools that are based on job names and data set names, use SMS ACS

routines to assign storage groups. You can use storage groups to pool volumes

based on job names and data set names as described in “Using SMS Tape Storage

Groups for DFSMSrmm Scratch Pooling” on page 105. You can also implement

DFSMSrmm pooling using DFSMSrmm VLPOOL options.

If you are already using some form of scratch pooling based on information such as

job name and data set name, review your current use of these pools in order to

plan or change your implementation under DFSMSrmm.

Pool Types

You use scratch pools with DFSMSrmm system-based scratch pooling. Define

scratch volumes in rack pools and use the RMM GETVOLUME subcommand to

claim them or assign them to a user. You can also use EDGUX100 to use rack

pools or scratch pools for non-specific tape output requests.

When you define pools for use with specific groups of users or applications, you

also need to consider how volumes are defined to DFSMSrmm. You can use the

DFSMSrmm ISPF dialog or RMM ADDVOLUME subcommand to define volumes.

To add a volume to a specific pool, provide the pool prefix when you issue the

RMM ADDVOLUME subcommand or use the DFSMSrmm ISPF dialog. You only

need to specify a pool prefix if the volume serial number does not start with the

same characters as the pool prefix. When defining scratch volumes you will

probably use volume serial numbers that match the rack numbers you include in the

pool definition. When adding private volumes which come from another library you

will have to specify a pool prefix. You can also use the DFSMSrmm ISPF dialog or

RMM TSO CHANGEVOLUME subcommand to move an existing volume to a pool

you define, so that the volume becomes part of the pool.

Tape Drive Availability

If you are using specific pools, plan how to set up your scratch tape drives so that a

correct scratch tape can be mounted promptly. The benefit of using scratch tapes is

that almost any unused tape can be mounted and DFSMSrmm will record new

information for the volume. However, as you become more selective about which

Chapter 6. Organizing the Removable Media Library 99

scratch tapes are used for each non-specific volume request, the benefits of using

scratch tapes decrease as your requests become more and more specific.

To make mounting tape volumes easier, consider setting aside certain tape drives

for use with identified scratch pools. When using tape cartridge loaders with

DFSMSrmm pooling, you need to load each drive with volumes from a single

scratch pool, run them in system mode, and direct only the correct non-specific

requests to them. Cartridge loaders must not be run in automatic mode because

DFSMSrmm processing depends on the mount message which is not issued when

the cartridge loader is in automatic mode and a volume is already loaded. Consider

defining different esoteric unit names for each of the tape drives you choose to load

with scratch volumes from a single pool.

You can use the EDGUX100 exit to request DFSMSrmm to disable the tape drive

cartridge loader to prevent specific scratch pool requests from emptying the loaders

through volume rejection. Alternatively, you can direct requests to the correct drives

or run the loaders in a mode that prevents them being automatically indexed when

a mount is received. Also DFSMSrmm disables the loader if a volume is rejected for

a scratch request to prevent the loader from being emptied.

Operator Messages and Tape Drive Displays

To use ACS routines or exit selected scratch pooling, you must define messages

IEC501A, IEF233A, IAT5110, and IAT5210 using the DFSMSrmm MNTMSG

commands in parmlib as described in “Defining Mount and Fetch Messages:

MNTMSG” on page 172. These messages provide the pool identifiers to the

operator, the job name, and data set name information to the EDGUX100 exit.

DFSMSrmm can update mount messages and tape drive displays with the pool

prefix, storage group name, or pool name. DFSMSrmm can also provide information

to some tape automation software installed on your system through the tape mount

messages. DFSMSrmm updates messages IEF233A and IEC501A, and IAT5210 for

JES3 to include the pool identifier that you select. You can define Basic Tape

Library Support (BTLS) category names so that DFSMSrmm can be used to

manage volumes in a BTLS-managed tape library. If you use BTLS scratch

category names as DFSMSrmm pool names, DFSMSrmm can be used to direct

which volumes BTLS will use for each scratch mount.

For JES3, to find out which pool was used to satisfy a request, install the

USERMOD EDG3UX71; users can see mount messages with the pool identifier in

the output from their batch jobs. Users allowed to view the SYSLOG can see the

updated messages in the SYSLOG.

Calculating Pool Size

When planning the size of your pools, remember that the number of characters in

the pool prefix determines the maximum pool size. A pool prefix consists of one to

five alphanumeric, national, or special characters followed by an *, for example,

ABADA*. Table 14 shows the maximum number of volumes each range of pool

prefixes can contain:

 Table 14. DFSMSrmm Volumes in a Pool Determined by Pool Prefix

Pool Prefix Maximum Number of Volumes

A* 100 000

AA* 10 000

AAA* 1000

100 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 14. DFSMSrmm Volumes in a Pool Determined by Pool Prefix (continued)

Pool Prefix Maximum Number of Volumes

AAAA* 100

AAAAA* 10

The maximum numbers in Table 14 on page 100 are for numeric suffixes. If you use

nonnumeric suffixes, such as pool prefix A with suffixes A00000 through AZZZZZ,

you can increase the maximum number of volumes for that pool. For example,

using the suffix AAAAA* with alphanumeric characters, $, #, @, and the special

characters shown in Table 1 on page xxviii, you can have a maximum of 51

volumes. However, by using nonnumeric suffixes, you limit the use of the COUNT

operand on RMM TSO rack and volume related subcommands.

Plan ahead when choosing your pool prefixes, ensuring that the pool prefixes can

satisfy all future volume quantities. It is not necessary to define all shelf locations to

DFSMSrmm at once. Using pool definitions, you can reserve space for library

expansion without taking up space in the control data set. For instance, you could

assign a pool prefix ABC*, allowing space for 1000 volumes, but only defining

shelves ABC000 - ABC099 initially.

When you use the VLPOOL NAME or SMS storage group name for scratch pooling,

you can include multiple VLPOOL PREFIX ranges into the same scratch pool by

specifying the same NAME value on multiple VLPOOL definitions or by assigning

storage group names for each volume.

Defining Pools in Parmlib Member EDGRMMxx

You must define any pool that you plan to use with DFSMSrmm in the parmlib

member EDGRMMxx using the VLPOOL command. This applies to pools used by

DFSMSrmm pooling and by the EDGUX100 exit. See “Defining Pools: VLPOOL” on

page 205 for information on using VLPOOL command in the parmlib member

EDGRMMxx. Also consider shelf space and whether volumes are to be segregated

based on media names for any scratch pooling method you use.

Define at least one pool using the VLPOOL command in the DFSMSrmm parmlib

member. Use the pools to assign a media name for shelf space and volumes based

on a prefix. Define a default pool to ensure that volumes and racks that do not

match to a more specific VLPOOL are added with the correct media name and pool

name.

Figure 36 shows a VLPOOL command example of the default pool that DFSMSrmm

assigns if you do not specify any VLPOOL commands. This default pool includes all

shelf locations, all volumes in those shelf locations, and all volumes with no defined

shelf location.

 In the example:

RACF(N)

Specifies whether to provide RACF tape profile processing for this tape pool.

 VLPOOL RACF(N) TYPE(S) -

 EXPDTCHECK(O) MEDIANAME(parmlib_default_medianame) -

 DESCRIPTION(’DEFAULT POOL’) PREFIX(*)

Figure 36. Default VLPOOL Command

Chapter 6. Organizing the Removable Media Library 101

The value N indicates that RACF tape profiles are not created, changed, or

deleted for tapes in this pool, regardless of the setting of the system-wide

option TPRACF.

TYPE(S)

Specifies the type of pool. The value S means that it is a scratch pool.

EXPDTCHECK(O)

Specifies the processing tape data sets on volumes in this pool that are

expiration date protected. The value O means that DFSMSrmm takes no action

but allows the operator or automated software to reply as necessary to any

write-to-operator messages (IEC507D).

MEDIANAME(parmlib_default_medianame)

Specifies a media name for all volumes in this pool. The MEDIANAME value for

the default pool is the same value that you specify with the EDGRMMxx parmlib

OPTION MEDIANAME value.

 To separate storage locations by media name, any LOCDEF command media

names that you define must be the same as the VLPOOL media names or a

subset of the media names. See “Defining Storage Locations: LOCDEF” on

page 168 for information on defining storage locations.

DESCRIPTION(’DEFAULT POOL’)

Describes the pool.

PREFIX(*)

Specifies a generic shelf location prefix that is used in operator messages, TSO

subcommands, and the DFSMSrmm ISPF dialog. A single asterisk defines the

default pool that contains all rack numbers or volumes not specifically included

in any pool. You also have the option to define a pool name that can be used to

update operator messages, displays, and can be used as a storage group.

You can also specify a SYSID operand on the VLPOOL command. SYSID

associates a scratch pool with a particular system. DFSMSrmm matches the value

with the SYSID operand of the OPTION command, also in EDGRMMxx. If the

VLPOOL SYSID matches the OPTION SYSID, DFSMSrmm performs these

functions:

v A volume from this pool can be used to satisfy a scratch mount request on this

system.

v A volume from any other pool where its SYSID also matches the OPTION SYSID

can be used to satisfy a scratch request on this system.

A volume from a pool that has no explicit VLPOOL SYSID can be used to satisfy a

scratch request on a system if there are no other VLPOOL definitions that have a

SYSID matching the OPTION SYSID. The SYSID values are ignored when a

storage group is selected by ACS processing and when a pool is set for a

non-specific volume request by EDGUX100 processing. The system level pools can

still be used as long as SMS ACS processing does not assign a storage group and

the EDGUX100 exit does not set a specific pool to be use.

Changing Pool Definitions

Use the VLPOOL command in the EDGRMMxx parmlib member to change pool

definitions. See “Defining Pools: VLPOOL” on page 205 for information about using

the VLPOOL command.

If you change a pool definition that include racks defined to an existing pool, you

might need to redefine the shelf locations or volumes to DFSMSrmm. To redefine

102 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

the shelf locations or volumes when the media name for the new pool does not

match the existing pool, use the RMM subcommands or DFSMSrmm ISPF dialog to

change information. For example, to redefine the shelf locations and volumes,

perform these tasks:

1. Add or alter the VLPOOL statements in parmlib and refresh the DFSMSrmm

parameters.

2. Add rack numbers for the new VLPOOL prefixes and those with changed

MEDIANAMEs.

3. Issue the RMM CHANGEVOLUME volser MEDIANAME for each volume

affected.

4. Delete the old rack numbers specifying the old MEDIANAME.

See z/OS DFSMSrmm Guide and Reference for more information about using the

RMM subcommands or the DFSMSrmm ISPF dialog to change the pool definitions.

Designing Rack Pools

If you have several types of media, define pools based on type of media. For

example, you can separate your reels and cartridges from each other by placing

them in separate pools.

The volumes in these pools have no relationship to any specific device type.

Although you can use device type names rather than media type names to define

these pools, DFSMSrmm does not associate device type names with devices.

You might want to provide a pool of scratch volumes for a particular group of users

or application. With EDGUX100, you can use an exit-selected scratch pool to satisfy

non-specific mount requests.

Users can also obtain volumes from a pool using the DFSMSrmm ISPF dialog or

the RMM GETVOLUME subcommand. When you use the GETVOLUME

subcommand, all tape mounts are specific mounts, which means that you cannot

use a scratch pool and cartridge loaders.

If you have any volumes that do not meet your chosen volume naming conventions,

or have a number of volumes that regularly enter and leave the removable media

library, define a pool of empty shelf locations in which you can store these volumes.

When volumes arrive at the installation, define the volume to DFSMSrmm using the

chosen pool ID. DFSMSrmm assigns the next available empty shelf location to the

volume. Place an external label specifying the rack number on the volume to

identify it.

If your removable media library is split across rooms or sites, define pools that allow

easy segregation and identification of volumes based on shelf location number.

Designing Scratch Pools

You can define scratch pools based on the system where the volumes are used.

For example, define a pool prefix A* to cover all volumes in a pool reserved for

system MVSA. Define a pool prefix VM* for a pool reserved for volumes used on a

VM system.

When you define scratch pools by system, you can only use scratch volumes from

those pools on the systems specified for them. If you try to mount a scratch volume

on a different system than the one with which it is associated, DFSMSrmm rejects

Chapter 6. Organizing the Removable Media Library 103

the volume. If a system has no pool defined for it, the system accepts all volumes

except those you have defined to a specific system. Make your scratch volumes

available for use on all systems if you do not want these limitations.

Recommendation: Use one scratch pool for the entire library. You can use a

VLPOOL command similar to the default, shown in Figure 36 on page 101. When

defining scratch pools, do not use no label tapes in the pool.

You can define multiple pools for each system by associating the pools with a

system using the DFSMSrmm EDGRMMxx parmlib VLPOOL command with the

SYSID operand as described in “Defining Pools: VLPOOL” on page 205.

DFSMSrmm accepts a volume from any of the pools defined to that system.

DFSMSrmm updates mount messages and drive displays to indicate the pool from

which the scratch volume should be pulled. The pools are searched in alphabetical

order and the first suitable pool encountered is added to mount and fetch

messages. You can assign the same name to multiple pools to make it easier to

satisfy mount requests.

When you define multiple scratch pools, DFSMSrmm does not use the media name

when selecting the pool to use. If you are not using system based scratch pools,

the operator can mount any volume. Operators use local conventions and operator

procedures to select a scratch volume. For example, the operator should select a

reel tape for a mount on a 3420 drive. For a 3490 drive, the operator should select

a cartridge tape. In most cases, scratch tapes are already pulled and are available

for immediate mounting.

Within the pool for use on a VM system, you can define each volume for use only

on VM, or for use on z/OS and VM. DFSMSrmm uses this information to reject

non-z/OS volumes on z/OS. You can use VM volumes on VM systems.

You can design pools at the user, group, or application level by using DFSMSrmm

calls to SMS ACS to assign storage group names, or you can make use of the

EDGUX100 installation exit to control scratch pool selection. See “Using SMS Tape

Storage Groups for DFSMSrmm Scratch Pooling” on page 105 and “Using the

DFSMSrmm EDGUX100 Installation Exit” on page 267 for more information about

using pool names and implementing exit-selected scratch pools.

Requesting and Using Scratch Pools

DFSMSrmm system-based scratch pooling is always available for you to use,

however, you cannot use it for automated system-managed tape. To use

exit-selected scratch pooling, install the sample EDGUX100 installation exit on your

system and customize the installation exit EDGUX100 to set a specific pool for a

non-specific volume request. See Chapter 13, “Using DFSMSrmm Installation Exits,”

on page 267 for information about how to use the EDGUX100 installation exit.

DFSMSrmm updates the mount message and drive display with the appropriate

pool prefix, pool name, or storage group name. DFSMSrmm validates the mounted

scratch volume against the selected scratch pool prefix, pool name, or storage

group during OPEN processing.

You can set up DFSMSrmm to satisfy each request for a new scratch tape in one of

these ways:

v Set up a default pool using the EDGRMMxx parmlib OPTION VLPOOL

command. DFSMSrmm uses the VLPOOL definitions to select a default

DFSMSrmm pool by using DFSMSrmm system-based pooling when you have

104 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

not set up other pools. DFSMSrmm sets a pool prefix and a pool name if a

specific pool is selected. Set up DFSMSrmm system-based scratch pooling using

the DFSMSrmm VLPOOL command with the SYSID operand. This method

allows you to control which scratch pools can be used based on the system on

which the volumes are used. This enforces pooling based on VLPOOL prefix

pools. DFSMSrmm uses the DFSMSrmm system-based scratch pooling when

you do not select any other method.

v Use ACS routines for scratch pooling based on tape storage group names. Using

ACS processing to set a storage group name overrides all other pool selection

methods. DFSMSrmm provides support for non-system-managed tape and for

system-managed manual tape libraries. This support enables pooling at the

individual volume level. You assign a storage group name to each volume by

using DFSMSrmm TSO subcommands or by using pooling information that you

define with the DFSMSrmm EDGRMMxx parmlib VLPOOL command. See “Using

SMS Tape Storage Groups for DFSMSrmm Scratch Pooling” for additional

information. DFSMSrmm calls ACS routines passing environment information,

including the pool identified by DFSMSrmm system-based pooling. The ACS

routine can optionally set a storage group name, which overrides the

DFSMSrmm system-based pool.

v Customize the DFSMSrmm EDGUX100 installation exit that is described in

Chapter 13, “Using DFSMSrmm Installation Exits,” on page 267 to select a pool

prefix. You can use information in the system to determine which pool to use.

DFSMSrmm calls the EDGUX100 installation exit if ACS processing does not

return a storage group name. The EDGUX100 installation exit can return a pool

prefix value that overrides the DFSMSrmm system-based pool. The pool name is

set based on the selected pool prefix.

v Use pre-ACS processing to obtain the DFSMSrmm system-based pool or the

EDGUX100 installation exit pool prefix as an input value to the ACS routines in

the MSPOOL read-only variable. During pre-ACS processing, DFSMSrmm does

not make the RMMPOOL environment call to the ACS routine. During pre-ACS

processing for new allocations:

– DFSMSrmm uses the VLPOOL definitions to select a default DFSMSrmm pool

using DFSMSrmm system-based pooling. DFSMSrmm sets a pool prefix if a

specific pool is selected.

– DFSMSrmm calls the EDGUX100 installation exit to obtain a pool prefix value.

If a pool prefix value is returned, the pool prefix value returned by the

EDGUX100 installation exit overrides the DFSMSrmm selected pool.

– DFSMSrmm returns the selected value in the MSPOOL read-only variable if

the MSPOOL variable is not already set by the pre-ACS exit.

Using SMS Tape Storage Groups for DFSMSrmm Scratch Pooling

This topic describes how to use storage groups for DFSMSrmm scratch pooling.

Before you begin: To use SMS tape storage groups, first define tape storage

groups using ISMF. To define tape storage groups, you must have at least one

system-managed tape library defined to ISMF. The library can be an automated

tape library or a manual tape library. If you do not have a system-managed tape

library or do not want to associate the new SMS tape storage groups with an

existing library, define a new dummy library to ISMF. Use the ISMF define library

application to define a system-managed tape library. Use a dummy library ID to

identify the library and use appropriate values to complete the other data fields

required for a tape library definition. When you define a dummy library, OAM issues

the CBR3006I and CBR3002E messages at startup time. Ignore these messages

Chapter 6. Organizing the Removable Media Library 105

when they are issued for your dummy library. Once you have defined the dummy

library, you do not need to start OAM or define the OAM1 subsystem to support this

dummy system-managed library.

Making an ACS Storage Group Assignment

To assign a storage group, you must have the SMS subsystem active and have a

valid SMS configuration.

You use the ACS routines to process the special calls that DFSMSrmm makes to

the SMS subsystem for ACS processing. DFSMSrmm requests that the data class,

management class, and storage group routines are run. The environment variable is

set to RMMPOOL so that you can differentiate allocation requests for

system-managed data sets from requests by DFSMSrmm for a storage group

name. When DFSMSrmm calls the ACS routines with the &ACSENVIR variable set

to either RMMPOOL or RMMVRS, the storage class (&STORCLAS variable) is set

to the word USERMM.

Table 15 lists the read-only variables that are set for DFSMSrmm requests:

 Table 15. SMS Read-only Variables Set by DFSMSrmm

&ACCT_JOB &ACCT_STEP &ACSENVIR &DD

&DSN &DSORG &DSTYPE &EXPDT

&FILENUM &GROUP &HLQ &JOB

&LABEL &LIBNAME &LLQ &NQUAL

&PGM &STORGRP &SYSNAME &SYSPLEX

&UNIT &USER &XMODE

The &DD, &PGM, &EXPDT, and &FILENUM variables are optional for JES3 mount

messages. &LIBNAME is optional for JES3 fetch messages.

1. Define your pools by using the DFSMSrmm EDGRMMxx parmlib VLPOOL

command as shown in Figure 37. See “Defining Pools: VLPOOL” on page 205

for information about the VLPOOL command.

2. Code your selection criteria and rules into the management class and storage

group ACS routines as shown in Figure 38 on page 107.

 ...

VLPOOL PREFIX(123*) NAME(POOLA) MEDIANAME(CARTS) -

 DESCRIPTION(’PART OF POOL A’)

VLPOOL PREFIX(99975*) NAME(POOLA) MEDIANAME(REELS) -

 DESCRIPTION(’PART OF POOL A’)

VLPOOL PREFIX(C0*) NAME(TEMP) MEDIANAME(CARTS) -

 DESCRIPTION(’TEMPORARY POOL’)

VLPOOL PREFIX(*) NAME(DEFAULT) MEDIANAME(CARTS) -

 DESCRIPTION(’DEFAULT POOL’)

 ...

Figure 37. Defining Pools with the DFSMSrmm EDGRMMxx Parmlib VLPOOL Command

106 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

If your ACS processing does not set the storage group name, DFSMSrmm

processing continues without using storage group names.

The processing that the STORGRP ACS routine performs is limited to the variables

it can reference. You might want to make your decisions in the MGMTCLAS ACS

routine and use the STORGRP routine to set the STORGRP variable to the

selected value as shown in Figure 39.

Any management class value that you set during ACS processing for the

RMMPOOL ACS environment call is ignored by DFSMSrmm processing.

A Pooling Example

This example describes how pooling might be implemented for an installation that

has:

v An automated tape library and no non-system-managed drives.

v A manual tape library.

PROC 1 MGMTCLAS

 ...

 /***/

 /* RMM POOLING FILTER LISTS */

 /***/

 ...

FILTLIST POOLA INCLUDE(USERA.**,USERY.KEEP.*) -

 EXCLUDE(USERA.POOLB.**)

 ...

 IF &ACSENVIR = ’RMMPOOL’ THEN

 /***/

 /* RMM POOLING DECISIONS */

 /***/

 DO

 SELECT (&DSN)

 WHEN (&POOLA) SET &MGMTCLAS = ’POOLA’

 OTHERWISE SET &MGMTCLAS = ’DEFAULT’

 END

 /* ALLOCATE TEMP POOL FOR TEMPORARY DATA SETS */

 IF &DSTYPE = TEMP THEN SET &MGMTCLAS = TEMP

 ...

 END

 ...

END

Figure 38. Sample Management Class Routine

PROC 1 STORGRP

 ...

 IF &ACSENVIR = ’RMMPOOL’ THEN

 /***/

 /* RMM POOLING DECISIONS */

 /***/

 DO

 SELECT (&MGMTCLAS)

 WHEN (’POOLA’) SET &STORGRP = ’POOLA’

 WHEN (’DEFAULT’) SET &STORGRP = ’DEFAULT’

 WHEN (’TEMP’) SET &STORGRP = ’TEMP’

 END

 ...

 END

 ...

 END

Figure 39. Storage Group Routine Sample

Chapter 6. Organizing the Removable Media Library 107

v Ranges of scratch tapes using a numbering system with consecutive numbers for

volumes spread across a few well identified ranges.

Volume serial numbers, 210000 - 219999, 710000-719999, and 800000 -

805999.

v Foreign tapes from IBM and other vendors with standard labels and random

volume serial numbers that use alphanumeric, national, or special character

prefixes, such as DZ1100 or DP3100.

v Tapes sent from another site for input processing. The other site uses a range of

tapes numbered 401000 - 401999. The tapes are scratch at the other site, but

are private volumes here.

The installation defines pools using the VLPOOL command as shown in Figure 40:

 The installation can now define volumes in the 21*, 71* and 80* pools which

DFSMSrmm manages as scratch pools. The storage group SGMTL01 used as a

VLPOOL NAME must be defined as a valid storage group name to SMS. The

installation can also define some empty racks for the 401* volumes. Each time a

foreign volume comes in, it is defined to DFSMSrmm, with RLSE(RETURN)

RETPD(nn), labeled with a sticky label, and entered into the system-managed tape

library.

RACF and EXPDTCHECK provide:

v RACF(Y) is specified for all pools to ensure that tape volume security is

managed by DFSMSrmm as described in Chapter 10, “Using the Parmlib

Member EDGRMMxx,” on page 167.

v EXPDTCHECK(N) is used for scratch pools, so DFSMSrmm automatically replies

to any IEC507D expiration date protection messages allowing scratch volumes to

be reused. DFSMSrmm does not reply to the IEC507D message issued for tape

volumes when you use the EDGUX100 installation exit to ignore a volume.

v EXPDTCHECK(Y) is used for all non-scratch volumes to ensure that DFSMSrmm

automatically replies to IEC507D to prevent overwrite of expiration date protected

data.

For the remainder of the volumes, when a volume comes in, the installation defines

a rack number that matches the VOL1 label, and then defines the volume using

RLSE(RETURN) RETPD(nnn). This approach should be used since the external

and internal volume serial number must be the same.

In this example, all scratch volumes are system-managed. DFSMSrmm validates

scratch pools for requests in the manual system-managed library, but does not

 VLPOOL PREFIX(21*) TYPE(S) MEDIANAME(CART) RACF(Y) EXPDTCHECK(N) -

 DESCRIPTION(’scratch pool of cartridge system tape’)

 VLPOOL PREFIX(71*) TYPE(S) MEDIANAME(CART) RACF(Y) EXPDTCHECK(N)-

 DESCRIPTION(’scratch pool manual tape library’) -

 NAME(SGMTL01)

 VLPOOL PREFIX(80*) TYPE(S) MEDIANAME(CART) RACF(Y) EXPDTCHECK(N)-

 DESCRIPTION(’scratch pool enhanced capacity cartridge’) -

 NAME(TWOTONE)

 VLPOOL PREFIX(401*) TYPE(R) MEDIANAME(CART) RACF(Y) EXPDTCHECK(Y) -

 NAME(SITE2) -

 DESCRIPTION(’tapes sent from site 2’)

 VLPOOL PREFIX(*) TYPE(R) MEDIANAME(CART) RACF(Y) EXPDTCHECK(Y) -

 NAME(SITE2) -

 DESCRIPTION(’miscellaneous check-in and check-out tapes’)

Figure 40. Defining Pools with VLPOOL Commands

108 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

validate scratch pools for automated tape libraries. DFSMSrmm always ensures that

a scratch volume is mounted in response to a non-specific mount request. Defining

a rack pool is an alternative to using a scratch pool as described here. The rack

pool should have a finite size based on known requirements, and accommodate

any volume serial number as long as it does not conflict with the installation’s

naming conventions.

Anytime the installation wants to have more scratch volumes, existing pools can be

made larger or new pools reserving a new range of numbers can be defined.

This approach for system-managed libraries differs from the way pools might be

used with a non-system-managed library. With a non-system-managed library, you

need to have physical shelving. You also have the option of using different internal

to external labels.

For installations with mixed environments, a combination of these approaches

provides a workable solution.

Managing Pools with Job Name and Data Set Name

You can manage scratch tape pools based on job names and data set names.

Recommendation: Use SMS ACS Storage Group assignment to manage scratch

pooling with jobname and data set name for system-managed volumes. For

information, see “Making an ACS Storage Group Assignment” on page 106. For

non-system-managed volumes, use the DFSMSrmm EDGUX100 installation exit.

See Chapter 13, “Using DFSMSrmm Installation Exits,” on page 267 for information

about using the EDGUX100 installation exit.

Use the DFSMSrmm installation exit EDGUX100 to select the correct scratch pool

for non-specific requests for non-system-managed volumes and to decide whether

the cartridge loader should be used. You can also use EDGUX100 with criteria

other than job names and data set names, but you have to modify the supplied

EDGUX100 installation exit in order to do this.

Assigning Policies

DFSMSrmm provides these methods for the assignment of retention and

management policies:

1. Use ACS routines to assign a management class name that matches a

DFSMSrmm data set vital record specification. DFSMSrmm calls ACS routines

directly to provide support for non-system-managed tape. This DFSMSrmm

processing enables you to use SMS management class to manage

system-managed and non-system-managed tape data.

2. Define DFSMSrmm vital record specifications with data set name masks to

identify the retention and movement policies.

3. Define a vital record specification management value that DFSMSrmm can use

to apply retention and movement policies to datasets. Use the DFSMSrmm

EDGUX100 installation exit described in Chapter 13, “Using DFSMSrmm

Installation Exits,” on page 267 to select a vital record specification

management value. You can use information in the system to determine which

vital record specification management value to use.

4. During pre-ACS processing, use the DFSMSrmm EDGUX100 installation exit to

obtain information that is used by the ACS routines. The EDGUX100 installation

exit can provide a vital record specification management value in the

Chapter 6. Organizing the Removable Media Library 109

MSPOLICY read-only variable, which is used by the ACS routines. During

pre-ACS processing, DFSMSrmm does not make the RMMVRS environment

call to the ACS routine.

Using SMS ACS processing you can consolidate policy assignment decisions in a

single place whether you use system-managed tape or not. You can use SMS ACS

routines to assign management class for your data sets instead of using

EDGUX100 exit assigned vital record specification management values. You can

assign a management policy by name to either a non-system-managed or a

system-managed tape data set.

For non-system-managed tape, DFSMSrmm calls the ACS routines to obtain a

management class. The management class is used in place of the vital record

specification management value assigned by the DFSMSrmm EDGUX100

installation exit. When a management class name is assigned using ACS routines,

the EDGUX100 installation exit is not called for a vital record specification

management value. The decision to call the EDGUX100 installation exit is made

each time a new data set is created on a tape based on whether a construct is

assigned by ACS processing. You have the flexibility to identify one request to be

handled by ACS and the next request to be handled by the EDGUX100 installation

exit. For compatibility, DFSMSrmm passes the vital record specification

management value that is determined by the EDGUX100 installation exit by using

the pre-ACS interface in the MSPOLICY variable. You might use the vital record

specification management value in the MSPOLICY variable as the base for MC

assignment for system-managed tape. Even when you use SMS ACS support to

assign management class names you can have separate policies for retention and

movement by using a primary data set name vital record specification and a

secondary management class vital record specification.

Use the ACS routine to assign the management class as the secondary vital record

specification and the DFSMSrmm data set name vital record specification to assign

the primary vital record specification. You must specify the EDGRMMxx parmlib

OPTION VRSEL(NEW) operand to enable this support.

You can still use the EDGUX100 installation exit to check for either EXPDT= or

ACCODE= specifying special values and override them to ensure correct retention

processing by DFSMSrmm.

Using SMS Management Class to Retain Non-System-Managed

Volumes

The DFSMSrmm EDGRMMxx parmlib OPTION VRSEL operand determines how

DFSMSrmm assigns retention and movement policies. When VRSEL(NEW) is used,

you can define policies using a vital record specification data set name mask, and a

management class, or a vital record specification management value can also be

assigned to manage a data set.

For each new tape data set, DFSMSrmm performs these tasks:

1. During pre-ACS processing for new tape data sets:

a. DFSMSrmm calls the EDGUX100 installation exit for a vital record

specification management value. The vital record specification management

value provides management policy and retention policy information for

datasets.

b. DFSMSrmm returns the selected value in the MSPOLICY read-only variable.

2. During OPEN processing:

110 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

a. DFSMSrmm calls ACS routines and passes environment information. Your

ACS routine can set a management class name.

b. If ACS processing does not return a management class name, DFSMSrmm

calls the EDGUX100 installation exit to obtain a vital record specification

management value.

c. At OPEN time, DFSMSrmm records the specified management class or vital

record specification management value at the data set level.

Making An ACS Management Class Assignment

To assign a management class, you must have the SMS subsystem active and

have a valid SMS configuration.

You use the ACS routines to process the special calls that DFSMSrmm makes to

the SMS subsystem for ACS processing. DFSMSrmm requests that the

management class routine is run. The environment variable is set to RMMVRS so

that you can differentiate allocation requests for system-managed data sets from

requests by DFSMSrmm for a management class name. When DFSMSrmm calls

the ACS routines with the &ACSENVIR variable set to either RMMPOOL or

RMMVRS, the storage class (&STORCLAS variable) is set to the word USERMM.

Table 16 lists the read-only variables that are set for DFSMSrmm requests:

 Table 16. SMS Read-only Variables Set by DFSMSrmm

&ACCT_JOB &ACCT_STEP &ACSENVIR &DD

&DSN &DSORG &DSTYPE &EXPDT

&FILENUM &GROUP &HLQ &JOB

&LABEL &LIBNAME &LLQ &NQUAL

&PGM &STORGRP &SYSNAME &SYSPLEX

&UNIT &USER &XMODE

1. Define vital record specifications for the management class names you plan to

use as shown in Figure 41.

2. You code your selection criteria and rules into the management class ACS

routine as shown in Figure 42 on page 112.

 ...

RMM ADDVRS DSNAME(’CATALOG’) WHILECATALOG

RMM ADDVRS DSNAME(’ONSITE’) DAYS COUNT(31)

RMM ADDVRS DSNAME(’OFFSITE’) CYCLES COUNT(5) LOCATION(STORE1) -

 NEXTVRS(DAYS90)

RMM ADDVRS NAME(DAYS90) DAYS COUNT(90)

 ...

Figure 41. Defining Vital Record Specifications for Non-System-Managed Volumes

Chapter 6. Organizing the Removable Media Library 111

If ACS processing does not set the management class name, DFSMSrmm

processing continues without using management class names.

When your ACS routine sets a management class, no call is made to the

EDGUX100 installation exit to obtain a vital record specification management value.

However, EDGUX100 is still called to update the DFSMSrmm copy of the JFCB

expiration date if necessary.

Managing Volumes with Special Dates

If your current tape management system allows special expiration dates (such as

EXPDT=99000) in JCL to identify management and retention requirements for

system-managed volumes, you can manage those volumes by using management

class to handle the special dates.

You can also use vital record specification management values to manage both

system-managed volumes and non-system-managed tape volumes with JCL

expiration dates that are specified with special dates. A vital record specification

management value is a one-to-eight character name defined by your installation

and used to assign management and retention values to tape data sets.

You define the management policies for management classes and for vital record

specification management values using vital record specifications.

Use the DFSMSrmm EDGUX100 installation exit as described in Chapter 13, “Using

DFSMSrmm Installation Exits,” on page 267 to assign vital record specification

management values to new tape data sets.

During inventory management VRSEL processing, DFSMSrmm uses the vital record

specification management value as determined by the VRSEL parmlib option.

Using Volumes with Special Expiration Dates

If you have volumes with JCL expiration dates specified with special dates, you can

use DFSMSrmm to manage those volumes. You use management classes for

PROC 1 MGMTCLAS

 ...

 /***/

 /* RMM POLICY FILTER LISTS */

 /***/

 ...

 FILTLIST POOLA INCLUDE(USERA.**,USERY.KEEP.*) -

 EXCLUDE(USERA.POOLB.**)

 ...

 IF &ACSENVIR = ’RMMVRS’ THEN

 /***/

 /* RMM VRS ASSIGNMENT DECISIONS */

 /***/

 DO

 SELECT (&DSN)

 WHEN (&OFFSITE) SET &MGMTCLAS = ’OFFSITE’

 WHEN (&ONSITE) SET &MGMTCLAS = ’ONSITE’

 END

 /* CATCH EXPDT=99000 */

 IF &EXPDT = ’1999000’ THEN SET &MGMTCLAS = ’CATALOG’

 ...

 END

 ...

END

Figure 42. Sample Management Class Routine for Managing Non-System-Managed Volumes

112 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

system-managed volumes. You use vital record specification management values

for both system-managed and non-system-managed tape volumes.

For system-managed tape volumes, perform these tasks:

v Define management classes to cover all the special dates used by your

installation.

v Update your ACS routine to assign those management classes to data sets on

tape.

v Define vital record specifications identifying the management policies for

management classes.

v Run DFSMSrmm inventory management vital record processing to identify the

volumes that should be retained based on the management classes that you

define.

For both system-managed and non-system-managed tape volumes, perform these

tasks:

v Define vital record specification management values to cover all the special dates

used by your installation.

v Tailor the EDGUX100 installation exit to assign the vital record specification

management values you define to new tape data sets.

v Define vital record specifications identifying the management policies for vital

record specification management values.

v Run DFSMSrmm inventory management vital record processing to identify the

volumes that should be retained based on the vital record specification

management values that you define.

See “Managing Volumes with Special Dates” on page 112 for more information.

Using Management Class to Retain System-Managed Volumes

This topic presents the steps you need to take to use management class to retain

system-managed volumes.

Step 1: Define Management Class Names

You need to define management class names that cover all the special dates used

by your installation. For example, you can define a management class, M99000, for

the special date 99000 and then define a vital record specification using the data

set name M99000.

The management class name can be one to eight alphanumeric characters and

must begin with an alphabetic character to be acceptable to the z/OS data set

naming standards that apply to DFSMSrmm vital record specifications.

Step 2: Update ACS Routine

Update your ACS routine to use an appropriate filter list and logic to assign

management classes to data sets on tape. When a volume is opened, DFSMSrmm

records the management class name you assign to new tape data sets using your

ACS routine.

Figure 43 on page 114 shows a management class ACS routine that maps the

expiration date 99000 to a management class name M99000, and the expiration

dates 99001 through 99009 to the management class name M99009.

Chapter 6. Organizing the Removable Media Library 113

Step 3: Define Retention Policies for Management Class Names

You define policies for management classes by defining vital record specifications.

Use the RMM subcommand ADDVRS with the DSNAME operand, or the

DFSMSrmm Add Data Set VRS panel in the DFSMSrmm ISPF dialog to define vital

record specifications. Use the data set name masks that match the management

class names you have defined. See z/OS DFSMSrmm Guide and Reference for

more information on defining vital record specifications.

Issue the command shown in Figure 44 to define a vital record specification that

manages the special date 99000.

 You can define a vital record specification data set name mask that matches

multiple management class names. For example you could define a data set name

mask of M99* and use this mask to cover several management classes. Because

the RMM ADDVRS subcommand with DSNAME operand can also be used to

define a vital record specification for an individual data set, the management class

name mask you specify for ADDVRS DSNAME is first used to match a data set

name before any other mask.

Figure 45 on page 115 uses a data set name mask to define a vital record

specification to manage any management class starting with M99. For example,

with this data set name mask you could manage special dates in the range 99001

through 99365.

PROC 1 &MGMTCLAS

/**/

/* DEFINE FILTER FOR KEEP WHILE CATALOGED EXPDT=99000 */

/**/

 FILTLIST SPECIAL_DATE9 INCLUDE(’1999000’)

/**/

/* DEFINE FILTER FOR UP TO 9 CYCLES */

/**/

 FILTLIST SPECIAL_DATEC9 INCLUDE(199900*)

/**/

/* DEFINE FILTER FOR TAPE UNITS */

/**/

 FILTLIST TAPEUNITS INCLUDE(TAPE*,T3420*,T3480*,T3490*,

 ’3420’,’3480’,’3490’,

 T3590*,’3590’)

/**/

/* SELECT VALID MANAGEMENT CLASS */

/**/

 SELECT

 WHEN (&EXPDT = &SPECIAL_DATE9 && &UNIT = &TAPEUNITS)

 SET &MGMTCLAS = ’M99000’

 WHEN (&EXPDT = &SPECIAL_DATEC9 && &UNIT = &TAPEUNITS)

 SET &MGMTCLAS = ’M99009’

 OTHERWISE

 SET &MGMTCLAS = ’NORMAL’

 END

END

Figure 43. Assigning Management Class to Data Sets on Tape

RMM ADDVRS DSNAME(’M99000’) WHILECATALOG

Figure 44. Special Date 99000 Vital Record Specification

114 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Step 4: Run DFSMSrmm Inventory Management Vital Record

Processing

Run DFSMSrmm inventory management vital record processing to identify the

volumes that should be retained based on the management classes you have

defined. DFSMSrmm uses the management class assigned to the data set, rather

than the data set name to select the appropriate vital record specifications. See

“How Vital Record Processing Works” on page 348 for information about vital record

processing.

Using the SMS Pre-ACS Interface

Using the SMS pre-ACS calls to DFSMSrmm, you can use any existing

DFSMSrmm and EDGUX100 exit scratch pool and EDGUX100 exit policy

assignment decisions as input to your SMS ACS logic to enable you to direct new

data set allocations to the correct media. You can use SMS ACS to decide if data

sets are to be system-managed or not system-managed. For system-managed data

sets, you can decide if they are to be DASD or tape. For system-managed tape

data sets, you can decide to which library or library type you would like the

allocation directed. This can help you with VTS implementation.

To use DFSMSrmm and EDGUX100 decisions within your ACS processing, use the

pre-ACS processing. Implement or customize the sample EDGUX100 exit (or the

EDGCVRSX sample of EDGUX100) to feed pool and VRS management value

information into ACS. Base your ACS processing decisions on the MSPOOL and

MSPOLICY values that come from DFSMSrmm scratch pool processing and

EDGUX100 exit processing. You can plan to move the EDGUX100 exit decisions

into your SMS ACS routines to enable the EDGUX100 exit processing to be ignored

or removed some time in the future.

DFSMSrmm always attempts to pass values for the MSPOOL and MSPOLICY ACS

read-only variables. If you do not use an EDGUX100 exit the MSPOOL variable is

set to the DFSMSrmm system-based scratch pool decision. If you do not use the

EDGUX100 exit, there is never a value set for MSPOLICY. DFSMSrmm sets a

pre-ACS variable only if the variable has not yet been set using the pre-ACS exit.

Since DFSMSrmm gets control after the installation exit, any vendor decisions or

any customer decisions take precedence.

Managing Volumes with Duplicate Volume Serial Numbers

In DFSMSrmm, a duplicate volume has these attributes:

v Is defined to DFSMSrmm with a unique external volume serial number.

v Has a VOL1 label.

v The VOL1 label does not match its own external volume serial number.

You can manage volumes with duplicate volume serial numbers by performing

these tasks:

v Define the volumes with duplicate volume serial numbers so that you can use

them without changing the volume serial number as described in “Using Volumes

with Duplicate Volume Serial Numbers” on page 116.

RMM ADDVRS DSNAME(’M99*’)

Figure 45. Managing Management Classes Using a Data Set Name Mask

Chapter 6. Organizing the Removable Media Library 115

v Change the volume serial numbers as described in “Changing Duplicate Volume

Serial Numbers” on page 117.

v Use the volumes with duplicate volume serial numbers and request that they not

be managed by DFSMSrmm. See “Using EDGUX100 to Ignore Duplicate or

Undefined Volume Serial Numbers” on page 271 for information about using

EDGUX100 to ignore duplicate volume serial numbers.

Using Volumes with Duplicate Volume Serial Numbers

Define a VLPOOL rack pool to reserve shelf space for duplicate volumes. You can

use the next available empty rack number as the unique volume serial number for a

new duplicate volume. For example, define a VLPOOL with the PREFIX(D*) to

manage duplicate volumes. Volume ABC001 is a duplicate volume because it has

standard labels that contain the volser ABC001 and it matches the volume ABC001

which is defined to DFSMSrmm. You can define ABC001 to DFSMSrmm as a

duplicate volume by using a unique external volume serial number.

Use the RMM VOLUME subcommands with the VOL1 operand to define a unique

volume serial number for each volume that has a duplicate VOL1 volume serial

number. Change the external label, and optionally the barcode, to match the new

unique volume serial number. In this example, the next available rack in the D* pool

is D00010. Use the D00010 value to add the duplicate volume.

Example:

When you use the DFSMSrmm ISPF dialog to define volumes, DFSMSrmm

automatically detects when you have added a volume that duplicates a volume that

was already defined to DFSMSrmm. The dialog prompts you with options so that

you can add the new volume as a duplicate, or change the existing volume to a

duplicate and add the new volume using its existing name.

Example: Obtain information about duplicate volumes defined to DFSMSrmm by

issuing the RMM SEARCHVOLUME TSO subcommand. You can also use the

DFSMSrmm ISPF dialog by selecting the VOL1 field of the Search Volume panel.

To label a volume as a duplicate volume, use the EDGINERS utility manual

processing with the VOL1 operand on the command in the SYSIN file.Then you can

label the volume. If DFSMSrmm already knows the correct VOL1 label volume

serial number, you do not need the VOL1 operand on the EDGINERS INIT

command. Specify the VOL1 operand on the INIT command to override the value

recorded in the DFSMSrmm control data set. DFSMSrmm writes this value to the

tape label.

Example: Label a volume as a duplicate volume.

RMM ADDVOLUME D00010 STATUS(MASTER) VOL1(ABC001)

RMM SEARCHVOLUME VOLUME(*) VOL1(*) LIMIT(*) OWNER(*)

116 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

If the volume is not defined to DFSMSrmm, specify the VOL1 operand to label the

volume with a value different from the volume serial number used to define the

volume to DFSMSrmm. Add the volume as a MASTER volume rather than a

SCRATCH volume. This example shows how to label a duplicate volume using the

EDGINERS utility.

Example: Define a volume to DFSMSrmm with the external volume serial number

D00001 and label it with the VOL1 label volume serial number ABC123.

When you use EDGINERS automatic processing, the new volume label is written so

that the VOL1 label volume serial number matches the volume serial number and

the VOL1 label volume serial number value recorded by DFSMSrmm is cleared.

Changing Duplicate Volume Serial Numbers

If you want DFSMSrmm to manage volumes with duplicate volume serial numbers

and you cannot remove one of the duplicate volumes serial numbers, you must

change volume serial numbers.

Add the duplicate volume serial number, as follows:

v For volumes with no label (NL), file the duplicate volume under a different unique

volume serial number. Assign the volume a volume serial number equal to the

shelf location, change its external label, and inform the owners of the change.

v For IBM standard label (SL) volumes and ISO/ANSI label (AL) volumes, move all

data sets on the volume to a different, unique volume. Change the external

labels and RACF profiles for the new volume. Inform the owners of the change.

The owners must catalog the data sets on the new volume if the data sets were

cataloged on the original volume.

You might need to perform this step if you have received volumes that contain

software products.

Example: Set the initialize action for a volume that is defined to DFSMSrmm.

Adding a Duplicate Volume into a System-Managed Tape Library

To add a duplicate volume into a system-managed tape library, do these steps:

1. Define a duplicate volume in order to get an unique external volume serial

number.

2. Change the barcode on the cartridge to match the external volume serial

number.

//MANUAL EXEC PGM=EDGINERS

//SYSPRINT DD SYSOUT=*

//TAPE DD UNIT=(tape,,DEFER)

//SYSIN DD *

INIT VOLUME(D00001) LABEL(SL) VOL1(ABC123)

/*

INIT VOLUME(ABC123,D00001) VOL1(ABC123) LABEL(SL) POOL(F*) -

 MEDIANAME(3590)

RMM CHANGEVOLUME D00001 INIT(Y)

Chapter 6. Organizing the Removable Media Library 117

3. Enter the volume into the system-managed tape library.

Managing Undefined Volume Serial Numbers

DFSMSrmm does not manage volumes that are not defined to DFSMSrmm. These

types of volumes are also known as foreign tape volumes. You do not need to have

volumes that are foreign to DFSMSrmm because you can define any volume to

DFSMSrmm including duplicates. DFSMSrmm always rejects foreign volumes when

they are mounted in response to a request for a scratch tape. To control the use of

foreign tapes for non-scratch requests, you can set up DFSMSrmm so that

DFSMSrmm rejects foreign volumes when they are opened. Specify the REJECT

ANYUSE(*) and the REJECT OUTPUT(*) commands in the DFSMSrmm

EDGRMMxx parmlib member as described in “Defining Tapes Not Available on

Systems: REJECT” on page 200. You must use the prefix value ’*’.

To prevent DFSMSrmm from rejecting undefined or foreign volumes, use the

DFSMSrmm EDGUX100 installation exit to request that DFSMSrmm ignore the

undefined volumes. When DFSMSrmm ignores a volume, DFSMSrmm does not

perform these tasks:

v Record information about the volume in the DFSMSrmm control data set.

v Validate that the correct volume has been mounted.

v Perform management functions for the volume.

When DFSMSrmm ignores a volume, DFSMSrmm does, however, perform this

task:

v If the ignore is requested by the EDGUX100 installation exit and you are

authorized to ignore the volume via the FACILITY class profiles, this overrides

any decision taken by RACF during OPEN processing.

See “Using EDGUX100 to Ignore Duplicate or Undefined Volume Serial Numbers”

on page 271 for information about using EDGUX100 to ignore duplicate volume

serial numbers.

Segregating WORM tapes in separate scratch pools

When you use scratch pooling for non-system-managed tape or use a manual tape

library, ensure that WORM tapes are in a separate scratch pool. If you mix WORM

tape and non-WORM tape in a scratch pool, you cannot control the type of tape

that will be mounted for a non-specific volume request.

118 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|

Chapter 7. Running DFSMSrmm with System-Managed Tape

Libraries

DFSMSrmm provides this support for system-managed tape libraries:

v Cartridge entry processing

v Cartridge eject processing

v Expiration management

v Volume-not-in-library support

v Movement between libraries and storage locations

v Partitioning the libraries with other systems

v VTS import/export processing

v Tracking and managing logical, physical, and stacked volumes

If you have volumes in an automated tape library, you need to reserve shelf space

outside the automated tape library if you plan to eject the volumes and retain them

in a manual tape library or non-system-managed tape library. Volumes in a manual

tape library can be logically ejected, left in the same shelf location and used as

non-system-managed volumes.

DFSMSrmm identifies all volumes including volumes that reside in system-managed

tape libraries by using the volume serial number and the rack number.

v The volume serial number is the internal volume serial number recorded in VOL1

label on SL and AL type labels.

v The rack number is the external volume serial number

For volumes that reside in system-managed tape libraries, a rack number is

optional. If you specify a rack number for a volume residing in a system-managed

tape library, the volume serial number and the rack number must be the same. You

cannot change the rack number for volumes that are associated with

system-managed libraries. You cannot define a rack number for logical volumes.

You can manage volume movement between system-managed libraries and storage

locations, between system-managed libraries, and between non-system managed

libraries and system-managed libraries by defining vital record specifications.

This topic describes how to use DFSMSrmm with system-managed tape volumes.

Refer to the EDGRMMxx OPTION command SMSTAPE operand described in

“Defining System Options: OPTION” on page 175 for details about controlling the

functions that are provided by DFSMSrmm.

Using DFSMSrmm with System-Managed Tape Libraries

DFSMSrmm automatically adds volumes to the DFSMSrmm control data set during

entry processing and when you use volumes and when no REJECT ANYUSE

command for the volumes is specified. If a volume defined to DFSMSrmm is

entered into a system-managed tape library without using the RMM

CHANGEVOLUME command to set the volume location to the library name,

DFSMSrmm updates the DFSMSrmm control data set volume record with the

library name, library type, and volume entry status. DFSMSrmm does not update

the home location name for the volume.

If the volume is not defined to DFSMSrmm and is entered into an automated tape

library, DFSMSrmm automatically defines the volume in the DFSMSrmm control

data set with information it obtains from the OAM entry user exit parameter list as

© Copyright IBM Corp. 1992, 2007 119

follows: LOCATION, STATUS, STORGRP, MEDIATYPE, RECORDINGFORMAT,

SPECIALATTRIBUTES, COMPACTION, READDATE, WRITEDATE, EXPDT,

LIBRARY NAME, TYPE, ENTRY STATUS, and HOME LOCATION. This means that

all volumes entered into an automated tape library must be managed by

DFSMSrmm, unless the library is to be partitioned and certain volumes left

undefined. See “Partitioning System-Managed Tape Libraries” on page 145 for

details on partitioning the system-managed tape library.

Recommendation: Define all volumes to DFSMSrmm before entering them into a

library. Define private volumes prior to entry into the automated tape library and set

the ISMF default cartridge entry status to scratch.

If you are inserting cartridges without predefining them to DFSMSrmm, and the

default entry use attribute is private, then DFSMSrmm assigns a default owner. The

default owner is set to the RACF User ID associated with the DFRMM started

procedure name.

Associating Volumes and System-Managed Libraries

Specify a system-managed tape library name for a volume by using the

DFSMSrmm ISPF dialog or the RMM ADDVOLUME or RMM CHANGEVOLUME

subcommand with the LOCATION operand. Figure 46 shows how to use the

ADDVOLUME subcommand to specify the name of an automated tape library,

ATL1, where volume A00001 resides:

 You can provide the library name even if the volume does not yet reside in a

system-managed tape library. When you provide a library name, DFSMSrmm

checks if the library name is already defined in the TCDB. If the library name is

defined in the TCDB, processing continues. If the library name is not defined, then

processing fails.

DFSMSrmm records the library name and the library type; manual tape library or

automated tape library. DFSMSrmm also records whether the volume is currently in

the library.

If the volume is not defined in the TCDB, and the library name specified is an

automated tape library, then DFSMSrmm sets the volume destination to the library

name and waits for the volume to be entered. If the volume is not defined in the

TCDB, and the library name specified is a manual tape library, then DFSMSrmm

uses manual cartridge entry processing so the TCDB is updated for the volume.

Cartridge Entry Processing

DFSMSrmm is called at cartridge entry time by the CBRUXENT installation exit

which DFSMSrmm supplies. During cartridge entry processing in an automated tape

library, the installation exit passes the external volume serial number. DFSMSrmm

checks for the existence of a volume or a rack with the same number. When there

is a conflict, the cartridge entry is denied. DFSMSrmm sets a return code telling

OAM not to process the volume on this system under these conditions.

v If a volume is defined to DFSMSrmm as ″not for use on z/OS″.

v If a volume is not defined to DFSMSrmm and it matches the REJECT ANYUSE

prefixes, and is entered into a tape library.

RMM ADDVOLUME A00001 LOCATION(ATL1)

Figure 46. Specifying a Library Name for a Volume

120 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

If a volume is entered into a library that does not match the library name already

defined for it, DFSMSrmm updates the library name in the control data set. The

home location name is not updated. If a volume is ’intransit’ and the destination is

different than the library the volume is entering, the cartridge entry is prevented.

Manual Cartridge Entry Processing

DFSMSrmm uses manual cartridge entry processing to add information about a

volume residing in a manual tape library into the TCDB. The OAM macro CBRXLCS

is used to get the volume information added to the TCDB when a volume is to

reside in a manual tape library. The information provided by DFSMSrmm using

CBRUXENT, is the same as for automated libraries, and includes: storage group

name, recording format, compaction, special attributes, owner name, and expiration

date.

DFSMSrmm uses the volume’s media type as defined to DFSMSrmm when

requesting manual cartridge entry; you must ensure that DFSMSrmm has the

correct media type to avoid allocation and mount problems when the volumes are

later used. You use the RMM ADDVOLUME or CHANGEVOLUME subcommands

with the MEDIATYPE operand to set the media type.

When volumes are entered into a manual tape library, DFSMSrmm ensures that

both private and scratch volumes meet these DFSMS requirements: that only

supported label types are used and that internal volume serial number matches

external volume serial number.

Managing Scratch Pools

The DFSMSrmm scratch pool function in VLPOOL definitions is not honored for

scratch mount requests on automated system-managed library resident drives, even

if the storage group assigned matches a VLPOOL name. In an automated

system-managed library, DFSMS and the library manager control the pooling of

scratch volumes with one pool for each media type. There is currently no method to

direct mount processing to select a subset of the volumes in a scratch category.

For scratch mount requests on manual system-managed library resident drives, you

can decide to implement scratch pools based on storage group names or on any

other pooling method provided by DFSMSrmm. When you are pooling based on the

storage group name assigned by your ACS routine, any mounted volume must be

from that storage group; either in a VLPOOL associated with a tape storage group

or the volume has the requested storage group name. When you are pooling using

any other method provided by DFSMSrmm, the storage group names are ignored

for validation. DFSMSrmm records the storage group name assigned by the SMS

ACS routine and ignores any existing storage group name for that volume.

When system managed volumes are moved from being system-managed to

non-system-managed, be sure to clear the storage group name unless you plan to

continue using storage group pooling. For non-system-managed scratch mount

requests that do not request a volume by storage group, DFSMSrmm rejects any

volume that already has a storage group name.

Ejecting Volumes from System-Managed Libraries

You can eject physical volumes from a system-managed library by using various

methods. One way is to list a number of volumes and then enter eject commands

from the list. You normally use export processing to eject logical volumes. For

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 121

|
|
|
|
|
|
|
|
|

|
|
|
|
|

information about export processing, see “Using DFSMSrmm with the IBM

TotalStorage Peer-to-Peer Virtual Tape Server (PtP VTS)” on page 128.

You can also eject volumes from a system-managed library by changing the library

name with the RMM CHANGEVOLUME subcommand. When you issue the

command, DFSMSrmm requests that the volume is ejected from the original library.

Information about the volume is changed in the control data set, and the TCDB

record is optionally deleted. If the target library is an automated tape library, the

operator must physically transfer the volume. If the source and target libraries are

both manual tape libraries, then physical movement is only needed if the volume is

to be moved to another shelf location.

You can also mark a volume as ejected from a system-managed library or change

the location name to SHELF when the library is not known or offline by using the

RMM CHANGEVOLUME subcommand with the FORCE operand. To use the

FORCE operand, you must have access to the STGADMIN.EDG.MASTER and

STGADMIN.EDG.FORCE RACF profiles. When you use the FORCE operand to

update a volume in a system-managed library, DFSMSrmm attempts to update the

TCDB. Your request to update DFSMSrmm is completed even when the TCDB is

not updated.

DFSMSrmm does not automatically eject volumes from system-managed libraries

after completing vital record processing and storage location management

processing. See “How Storage Location Management Processing Works” on page

353 for information about adding a job step to eject volumes at a time you

determine.

The DFSMSrmm control data set is updated even if ejects are not driven by

DFSMSrmm. The eject is detected using the OAM eject installation exit, and

DFSMSrmm can control the disposition of the TCDB volume information. During

eject processing, DFSMSrmm checks the setting of the DFSMSrmm EDGRMMxx

OPTION SMSTAPE(PURGE) operand to determine whether to request deletion of

volume information from the TCDB. This optionally overrides the ISMF default

cartridge eject option you might have specified. If the volume record is not deleted,

DFSMSrmm sets the volume destination information into the TCDB volume shelf

location field.

Figure 47 shows how you can eject a volume from an automatic tape library or from

a manual tape library to a convenience output station using the RMM

CHANGEVOLUME subcommand or the RMM DELETEVOLUME subcommand.

 You can specify the EJECT operand on the RMM CHANGEVOLUME and

DELETEVOLUME subcommands. Specify the EJECT(BULK) operand to direct the

ejected volume to the high capacity input/output station. Specify the

EJECT(CONVENIENCE) operand to direct the ejected volume to the convenience

output station. If you specify EJECT(BULK) and the high capacity output station is

not installed, then the eject is routed to a convenience output station. If there is no

RMM CHANGEVOLUME A12345 EJECT(CONVENIENCE)

RMM CHANGEVOLUME A12345 LOCATION(new_lib)

RMM CHANGEVOLUME A12345 LOANLOC(set_loc)

RMM DELETEVOLUME A12345 REMOVE

RMM DELETEVOLUME A12345 FORCE

Figure 47. Requesting the Eject of a Volume

122 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

convenience output station, the eject is then routed to a single cell facility. In a

manual tape library, DFSMSrmm ignores the BULK values and the CONVENIENCE

values and the cartridge is ejected.

The RMM CHANGEVOLUME subcommand with the HOME operand does not

cause an eject or a move as it is only used to update the home location name.

Returning Volumes to the System-Managed Library

Normally system-managed volumes remain resident in the system-managed library

unless they are removed for movement to an offsite location, for physical

inspection, or for error recovery. When volumes are to be returned to an automated

system-managed library, enter the volumes into the appropriate entry station.

DFSMSrmm is notified that the move has taken place. When volumes are returned

to a manual system-managed library, you must confirm the movement to

DFSMSrmm so that DFSMSrmm can initiate entry processing.

There might be times when a volume is not in a system-managed library but is

needed for processing to continue. z/OS includes a function called

Volume-Not-In-Library (VNL) processing that allows a volume to be identified for

re-entry to a system-managed library at various stages of system processing:

v Job step setup

v Device allocation

v Library mount

The CBRUXVNL OAM installation exit provides support so that a volume that is

needed for processing to continue can be entered back into the library. Logical

volumes that are exported must be imported to enable them to be used for

processing.

For volumes that are defined in the DFSMSrmm control data set, information is

provided to determine if the volume can be entered into the library. DFSMSrmm

issues messages that provide location, movement, and status information during

VNL processing.

If the volume entering the library is marked as “intransit” to other than a

system-managed library, ensure that the move for the volume is confirmed as

completed. Otherwise the volume entry will be rejected.

Refer to “Managing System-Managed Tape Library Volumes: EDGLCSUX” on page

248 for information on using CBRUXVNL and other OAM installation exits.

Volume-Not-In-Library Processing

When a volume is requested for a job and is not in a system-managed tape library,

the DFSMSrmm supplied CBRUXVNL exit is called so the volume can be inserted

into a library to prevent job failures from occurring. The CBRUXVNL exit can be

modified to suit your requirements.

In the past, for all calls to the CBRUXVNL exit, the supplied sample code linked to

EDGLCSUX to retrieve the DFSMSrmm information for the volume. Now, calls to

EDGLCSUX can be made only when it is determined that the request is for a tape

volume. However, exit customization may be required in order to get complete

benefit from this new support. The new input fields in CBRUXNPL are used during

the job setup call to the exit to make an informed decision. The decision is added to

CBRUXVNL and is partly selectable via conditional assembly to enable easy

customization by you. An informed decision can be made when catalog information

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 123

|
|
|
|
|
|
|
|

is available that confirms whether a volume is a tape or not. By default, the initial

call to EDGLCSUX is made in these cases:

v Job information is unavailable.

v Catalog information is available, and the device type is a tape device. When

catalog information is available, but the device type is not tape, the exit skips the

link to EDGLCSUX.

DFSMSrmm provides the possibility to further enhance the EDGLCSUX calls by

providing an option to compare the JCL esoteric unit name against a list of your

known tape unit names. You can enable this additional option by customizing the

default processing by:

v Turning on the tape unit name checking code by changing the setting

&TAPEDEC SETC to ’YES’, and

v Customizing the hardcoded list of tape unit names. The tape unit names are

listed in the shipped table called TAPEUNITS. Ensure that you include in this

table all the tape unit names your users code in their JCL. You can include

esoteric, generic, and specific unit names. The default table is also shown.

When you have &TAPEDEC set to ’YES’, CBRUXVNL checks the supplied unit

name and calls EDGLCSUX only in the case where it matches some tape unit

name within the TAPEUNITS table. Otherwise, the EDGLCSUX call is skipped.

In addition, the decision to issue message EDG8197I for non-RMM managed

volumes is made selectable via an option flag in the EDGLCSUP parameter list.

The CBRUXVNL exit shipped by DFSMSrmm sets this option flag ON when the

device type supplied by catalog is a tape device or &TAPEDEC is set to ’YES’.

Otherwise, this option flag is OFF. To change this decision, you can customize the

CBRUXVNL source code. This ensures that you will see message EDG8197I when

you believe the volume is a tape volume, and the tape volume is not managed by

DFSMSrmm.

TAPEUNITS DC A(TAPFIRST,8,TAPLAST)

**

* Tape units list - may be customized

**

TAPFIRST DC CL8’TAPE’

* insert your location tape unit names here

* or edit any entry

 DC CL8’3400-6’

 DC CL8’3420-8’

 DC CL8’CART’

 DC CL8’3480’

 DC CL8’3480X’

 DC CL8’3490’

 DC CL8’3490E’

 DC CL8’3590’

 DC CL8’3590-1’

 DC CL8’3590-E’

 DC CL8’3590-B’

 DC CL8’3590-H’

 DC CL8’3590L’

 DC CL8’3592’

 DC CL8’3592-J’

 DC CL8’SYS3480R’

 DC CL8’SYS348XR’

 DC CL8’VTS’

 DC CL8’MTL’

 DC CL8’ ’ any blank entry is ignored

TAPLAST DC CL8’ATL’

Figure 48. Contents of the shipped table: TAPEUNITS

124 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

CBRUXVNL calls DFSMSrmm once to retrieve volume information, and then for a

limited set of circumstances, it calls DFSMSrmm a second time to request the

operator to enter the volume into a system-managed tape library. The second call is

made under these conditions:

v CBRUXVNL is called from job setup, and the exit determines that the volume

needs to be directed to a system-managed tape library.

v CBRUXVNL is called from other than job setup.

CBRUXVNL checks for the requested volume as follows:

v If the volume resides in a loan location and the volume is system-managed, the

exit fails the request.

v The exit attempts to get a volume entered into a system-managed library if the

volume can be used on the system and when:

– The volume is in location SHELF and is not moving to a storage location, and

its home location is system-managed.

– DFSMSrmm volume information indicates the volume resides in a

system-managed library.

– The volume destination is a system-managed location.

DFSMSrmm uses the information to build a WTOR message that includes the

volume location and that prompts the operator to enter the volume into the

system-managed library. For volumes that reside in a VTS, DFSMSrmm returns

additional information for a volume. DFSMSrmm indicates if the volume is a

physical volume or a logical volume and provides the stacked volume on which the

logical volume is exported.

The CBRUXVNL exit does not allow a volume to be used under these conditions:

v The volume is pending release or is in scratch status.

v The initialize volume action is pending.

v The volume is not to be used on z/OS™.

In all other cases the CBRUXVNL exit allows the volume to be used, but a

non-system managed tape drive is allocated by the system.

Confirming Volume Movement for System Managed Libraries

DFSMSrmm automatically confirms volume moves during cartridge entry

processing. When you manually confirm the moves for volumes to an automated

tape library, DFSMSrmm checks for the volume and library name in the TCDB and

only confirms movements if the volume is library resident. DFSMSrmm If there is a

mismatch between the information in the TCDB and the DFSMSrmm control data

set, use the RMM CHANGEVOLUME subcommand with the LOCATION operand to

update the destination information in the control data set to match the library name

in the TCDB.

If a volume is returning to a manual tape library, there is no automatic confirmation.

You must explicitly confirm that the move has taken place when the volume is

entered into the library. When you confirm that a volume has moved to a manual

tape library, DFSMSrmm requests that the volume location in the TCDB is updated

with the new location. DFSMSrmm also changes the volume location information in

the TCDB when you issue the DFSMSrmm CHANGEVOLUME volser LOCATION

(mtl_name) to change the volume location to a manual tape library.

If you specify the RMM CHANGEVOLUME subcommand with the EJECT operand

for a volume for which no move has been identified, DFSMSrmm does not set a

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 125

destination for the volume but the volume is set to be ’intransit’. Once the volume is

ejected and cannot be entered again, you should specify the location where the

volume is placed and then confirm the move.

When you specify the RMM CHANGEVOLUME subcommand with the LOCATION

operand, DFSMSrmm sets a destination for the volume. You only need to confirm

the move after the eject.

Defining System-Managed Volume Information

System-managed tape volumes are defined in the tape configuration database

(TCDB). The TCDB is a catalog that is marked as a volume catalog (VOLCAT)

containing tape volume and tape library records. For more information about the

TCDB, see z/OS DFSMS OAM Planning, Installation, and Storage Administration

Guide for Tape Libraries.

System-managed tapes should be defined to the DFSMSrmm control data set for

the volumes to be managed by DFSMSrmm. To define volumes to both

DFSMSrmm and the TCDB, use the RMM ADDVOLUME subcommand for volumes

not yet known to DFSMSrmm, and the RMM CHANGEVOLUME subcommand for

volumes already defined to DFSMSrmm but not the TCDB. For information on using

DFSMSrmm commands, see z/OS DFSMSrmm Guide and Reference.

When you use DFSMSrmm to request that a volume should move to a

system-managed tape library, DFSMSrmm ensures volume information is recorded

in the TCDB.

Keeping System-Managed Volume Information Consistent

DFSMSrmm uses information in the TCDB to verify requests or to obtain

information about volumes that are being added to DFSMSrmm. When you define

volumes to DFSMSrmm by using the RMM ADDVOLUME subcommand with the

STATUS(VOLCAT) operand, DFSMSrmm uses TCDB information to update the

DFSMSrmm control data set. When there is a conflict between information in the

TCDB and information in the control data set, DFSMSrmm uses the value in the

TCDB.

To control the way DFSMSrmm updates the information in the TCDB, specify the

DFSMSrmm EDGRMMxx parmlib OPTION command SMSTAPE operand and the

OPTION command OPMODE operand. See “Defining System Options: OPTION” on

page 175 for information about the DFSMSrmm EDGRMMxx parmlib OPTION

command. When you run DFSMSrmm in PROTECT mode, DFSMSrmm updates

the TCDB. If you are running DFSMSrmm in other modes, you can decide if and

when you want DFSMSrmm to update the TCDB. DFSMSrmm updates this TCDB

information:

Volume owner information

DFSMSrmm uses the first 8 characters of the 64 bytes of owner information in

the TCDB to store the DFSMSrmm volume owner information. DFSMSrmm

does not overlay any information you might have entered into the first 8 bytes.

Keep the first bytes of the field blank and DFSMSrmm maintains the volume

information for you.

Expiration date

The expiration date is updated in the tape volume record whenever the

DFSMSrmm control data set is updated.

Volume use attribute (status)

DFSMSrmm updates this information when an RMM TSO subcommand is

126 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

issued and a volume’s status is changed. For example, if you issue the RMM

CHANGEVOLUME subcommand with the STATUS(USER) operand or the RMM

GETVOLUME subcommand, the TCDB volume use attribute is changed to

PRIVATE. Volume status is also changed when volumes are returned to scratch

status during inventory management.

Storage group name

DFSMSrmm updates this information when an RMM TSO subcommand is

issued to change TCDB information.

You can use the DFSMSrmm EDGUTIL utility to perform these tasks:

v Check the consistency of the control data set with the TCDB and the library

manager database and use EDGUTIL MEND(SMSTAPE) to synchronize the

TCDB and library manager database from the DFSMSrmm control data set.

v Mend information in the control data set based on information in the TCDB and

the library manager database.

For more information about EDGUTIL, see “Using EDGUTIL for Tasks Such as

Creating and Verifying the Control Data Set” on page 392.

Use the RMM CHANGEVOLUME subcommand with the LOCATION(mtl_name)

operand to rebuild manual tape library information in the TCDB.

If you use DFSMSrmm, ISMF, or operator commands to eject a volume,

DFSMSrmm notes that the volume is ’intransit’. During eject processing,

DFSMSrmm checks the setting of the DFSMSrmm EDGRMMxx OPTION

SMSTAPE(PURGE) operand to determine whether to request deletion of volume

information from the TCDB. This optionally overrides the ISMF default cartridge

eject option you might have specified. If the volume record is not deleted,

DFSMSrmm sets the volume destination information into the TCDB volume shelf

location field.

Initializing Scratch Volumes in System-Managed Libraries

You can use these methods to label volumes in an automated tape library:

v Use EDGINERS or IEHINITT to label them before they are entered.

v For scratch volumes, let the volume be labeled the first time that the volume is

used for output after it enters the automated tape library. DFSMSdfp performs

labeling during OPEN processing.

v Use EDGINERS or IEHINITT for volumes in all system-managed tape libraries.

To label volumes by using the EDGINERS initialize function, set the DFSMSrmm

initialize action by using the DFSMSrmm ISPF dialog or the RMM TSO

subcommand.

If you set the initialize action for a scratch volume before it enters an automated

tape library and then enter the volume into the automated tape library, DFSMSrmm

defers initialization to DFSMSdfp labeling support. If you later eject the scratch

volume before it is used DFSMSrmm reinstates the initialize action.

If you set the initialize action for a scratch volume while it is resident in an

automated tape library, the initialize action is set outstanding and you must use the

DFSMSrmm EDGINERS utility to create the labels. See “Using EDGINERS with

System-Managed Tape Libraries” on page 430 for additional information.

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 127

When you use the DFSMSdfp labeling support in an automated tape library,

DFSMSdfp obtains the volume serial number from the library vision system, but still

issues the WTOR IEC704A to prompt the operator to provide optional owner

information. The IEC704A message text includes an indicator that the volume is

system managed. Normally, DFSMSrmm provides information to bypass the issuing

of the message. If DFSMSrmm is running in record mode or a volume is rejected in

warning mode, the WTOR is issued and must be replied to by the operator.

The DFSMSdfp labeling support for manual tape libraries cannot obtain the volume

serial number from the vision system. DFSMSdfp still uses the WTOR IEC704A to

prompt the operator for it.

You can decide to exploit DFSMSdfp automatic labeling to avoid unnecessary

mounting of volumes or use EDGINERS before volumes enter the tape library or

after volumes are resident in the tape library.

Using Storage Group Names

You can specify a storage group name for each volume defined in the control data

set. Setting the name is optional.

DFSMSrmm validates the storage group name by using services that are provided

by the Storage Management Subsystem. For system-managed volumes,

DFSMSrmm passes the storage group name to OAM unless the volume is in

scratch status. For non-system managed volumes, you can use the assigned

storage group names for scratch pooling. For more information about using SG for

scratch pooling, see “Using SMS Tape Storage Groups for DFSMSrmm Scratch

Pooling” on page 105.

When a volume is moved from one system-managed tape library to another,

DFSMSrmm does not change the storage group name. OAM validates the storage

group name during entry to the new library and fails the entry if the storage group is

not defined for use in that new library.

DFSMSrmm uses the OAM installation exits to record any changes that ISMF and

Automatic Class Selection Routine processing make to the storage group name.

This function enables DFSMSrmm to provide the storage group name at cartridge

re-entry time, if the volume information had been removed from the TCDB.

For information on how DFSMSrmm records data class, management class, storage

class, and storage group information, see z/OS DFSMSrmm Guide and Reference.

Using DFSMSrmm with the IBM TotalStorage Peer-to-Peer Virtual Tape

Server (PtP VTS)

DFSMSrmm supports Virtual Tape Server (VTS) libraries such as automated

system-managed libraries with extensions to that support to handle the special

requirements for different volume types and functional capability. DFSMSrmm

supports virtual tape server import/export in different ways depending on whether or

not DFSMSrmm stacked volume support is enabled. When you enable stacked

volume support, DFSMSrmm tracks logical volumes and stacked volumes.

When you do not enable stacked volume support, DFSMSrmm does not track the

stacked volumes. DFSMSrmm supports the IBM Peer-to-Peer VTS by ensuring that

you cannot use the names of distributed VTS libraries with DFSMSrmm. You must

only use the names of consolidated libraries with DFSMSrmm.

128 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Related Reading:

v See z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide

for Tape Libraries for information about using OAM for virtual tape server support.

v See z/OS DFSMSrmm Reporting for information about the DFSMSrmm

EDGRPTD utility that you can use to obtain information about volumes that

reside in virtual tape server libraries.

v See IBM TotalStorage Enterprise Automated Tape Library (3494) Introduction and

Planning Guide, IBM TotalStorage Enterprise Automated (3494) Tape Library

Operator Guide, TotalStorage Automated Tape Library (3495) Introduction, and

IBM TotalStorage Enterprise Automated Tape Library (3495) Operator’s Guide for

information about the format for the import and export lists.

Defining Logical Volumes in a Virtual Tape Server Library

A logical volume is a volume that resides in a virtual tape server library either on

DASD (in the tape volume cache as a virtual volume) or on a stacked volume (as a

logical volume) and is referenced from the host as if it were a physical volume.

The way you define and enter logical volumes is common regardless of how you

set up DFSMSrmm. Other functions are dependent on how you request stacked

volumes to be managed. For details of how DFSMSrmm supports export and import

processing for logical volumes refer to “DFSMSrmm Support for Stacked Volumes

When Stacked Volume Support Is Enabled” on page 133 and “DFSMSrmm Support

for Stacked Volumes When Stacked Volume Support Is Not Enabled” on page 137.

When volumes are automatically added to DFSMSrmm, DFSMSrmm sets the

volume type based on where the volume resides. If the volume resides in a VTS,

DFSMSrmm sets the volume type to logical. If the volume does not reside in a VTS,

DFSMSrmm sets the volume type to physical. You can chose to define the volumes

to DFSMSrmm rather than having the volumes automatically defined when they are

entered into the library. Specify the correct volume type for each volume that you

define. If you do not specify the correct volume type for volumes residing in

system-managed tape libraries, these volumes will not be processed successfully.

To ensure that all logical volumes are correctly identified to DFSMSrmm as logical

volumes, use the DFSMSrmm TSO subcommand example shown in Figure 49 to

change the volume type of previously defined volumes. DFSMSrmm allows you to

identify any volume as a logical volume as long as it is not resident in a

system-managed automated tape library.

Logical Volume Cartridge Entry Processing

DFSMSrmm processes new logical volumes and imported volumes differently at

entry time.

v DFSMSrmm automatically defines both new logical volumes and imported logical

volumes if they are not defined to DFSMSrmm already. DFSMSrmm does not

define rack numbers for these volumes.

v DFSMSrmm checks the rack number for a logical volume that is already defined

to DFSMSrmm. If the rack number does not match the logical volume’s volume

serial number, DFSMSrmm fails the entry request and issues message

RMM SEARCHVOLUME VOLUME(*) LIMIT(*) OWNER(*) LOCATION(vts) -

 CLIST(’RMM CHANGEVOLUME ’,’ TYPE(LOGICAL)’)

 EXEC EXEC.RMM.CLIST

Figure 49. Changing Volume Type

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 129

EDG8189I. If the rack number matches the volume serial number, DFSMSrmm

continues processing the request. DFSMSrmm frees the rack number for the

logical volume so the logical volume is no longer associated with the rack

number.

v DFSMSrmm checks that an imported logical volume that is already defined to

DFSMSrmm, is also a logical volume and does not reside in a virtual tape server

library. When a logical volume is being imported, DFSMSrmm checks that the

volume, if it is already defined to DFSMSrmm, is correctly defined as an exported

logical volume. DFSMSrmm issues message EDG8183I when the entry request

fails.

v DFSMSrmm accepts new scratch logical volumes that match existing scratch

logical volumes. DFSMSrmm updates the volume information with information for

the new volume. If the volume serial numbers match but the volume is not

defined as a scratch volume, DFSMSrmm fails the entry request and issues

message EDG8182I.

Table 17 describes the entry processing decisions DFSMSrmm makes.

 Table 17. DFSMSrmm Entry Processing Decisions

Case Physical Volume Stacked Volume Logical Volume Imported Volume

Volume is not defined; no REJECT. Added Not applicable

Added scratch or

private

Added private

Volume is not defined; REJECT. Ignored Not applicable Ignored Ignored

Volume is defined for use with z/OS. Updated Not applicable Updated Updated

Volume is defined for use with VM. Ignored Not applicable Ignored Ignored

Rack number associated with the

volume is the same as the volume

serial number.

Updated Not applicable

Updated;

DFSMSrmm

clears the rack

number.

Updated;

DFSMSrmm

clears the rack

number.

Rack number associated with the

volume is not the same as the

volume serial number.

Entry fails;

DFSMSrmm

issues EDG8189I.

Not applicable

Entry fails;

DFSMSrmm

issues EDG8189I.

Import fails;

DFSMSrmm

issues EDG8189I.

No rack number is present. Updated Not applicable Updated Updated

Volume is a scratch and not logical

volume.

Updated Not applicable

Entry fails;

DFSMSrmm

issues EDG8182I.

Import fails;

DFSMSrmm

issues EDG8182I.

Volume is private and not a logical

volume.

Updated Not applicable

Entry fails;

DFSMSrmm

issues EDG8182I.

Import fails;

DFSMSrmm

issues EDG8182I.

Volume is a logical volume and not

an exported volume.

Entry fails;

DFSMSrmm

issues EDG8184I.

Not applicable Update

Import fails;

DFSMSrmm

issues EDG8183I.

Volume is a logical exported volume.

Entry fails;

DFSMSrmm

issues EDG8184I.

Not applicable

Entry fails;

DFSMSrmm

issues EDG8184I.

Updated

Volume destination is not the library.

Entry fails;

DFSMSrmm

issues EDG8192I.

Not applicable

Entry fails;

DFSMSrmm

issues EDG8192I.

Import fails;

DFSMSrmm

issues EDG8192I.

Volume owner is not valid.

Entry fails;

DFSMSrmm

issues EDG8195I.

Not applicable

Entry fails;

DFSMSrmm

issues EDG8195I.

Import fails;

DFSMSrmm

issues EDG8195I.

130 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 17. DFSMSrmm Entry Processing Decisions (continued)

Case Physical Volume Stacked Volume Logical Volume Imported Volume

Defined rack number=vol is not

available.

Entry fails;

DFSMSrmm

issues EDG8198I.

Not applicable

Entry fails;

DFSMSrmm

issues EDG8198I.

Import fails;

DFSMSrmm

issues EDG8198I.

Maximum retention period is

exceeded.

Entry fails;

DFSMSrmm

issues EDG8196I.

Not applicable Not applicable

Import fails;

DFSMSrmm

issues EDG8196I.

Managing Stacked Volumes

A stacked volume is a volume in a virtual tape server library that is used to store

one or more logical volumes.

DFSMSrmm can manage volume movement based on the logical volume or the

stacked volume. You control the way DFSMSrmm manages stacked volumes by

enabling stacked volume support as described in “Enabling Stacked Volume

Support” on page 139. If you do not enable stacked volume support, you can

always use the DFSMSrmm TSO subcommands to add, change, or delete

information about stacked volumes. You can also perform export and import

processing of logical volumes.

If you do not enable stacked volume support, DFSMSrmm bases volume movement

on the logical volume. DFSMSrmm records the stacked volume as the in container

value but does not use the stacked volumes to determine volume movement. See

“DFSMSrmm Support for Stacked Volumes When Stacked Volume Support Is Not

Enabled” on page 137 for details about how DFSMSrmm supports stacked volumes

when stacked volume support is not enabled.

If you enable stacked volume support, DFSMSrmm tracks stacked volumes and

bases volume movement on the stacked volume. See “DFSMSrmm Support for

Stacked Volumes When Stacked Volume Support Is Enabled” on page 133 for

details about how DFSMSrmm supports stacked volumes when stacked volume

support is enabled.

Stacked volumes normally start and end their movement in a VTS automated tape

library. The host system is not notified when stacked volumes enter or leave an

automated tape library so stacked volumes cannot be managed the same way that

physical volumes in an automated tape library are managed.

When you use a DFSMSrmm command for a stacked volume, DFSMSrmm checks

both the TCDB and the library manager database to see if the volume is known. If

the volume is not known to the library manager, you cannot define the volume as

being in the VTS library, but the destination is set to the VTS library name. Once

the volume is entered into the VTS, you can use the CHANGEVOLUME

subcommand with CONFIRMMOVE to inform DFSMSrmm that the volume is now in

the VTS.

When a stacked volume containing exported logical volumes is ejected from the

library, as the logical volumes expire, DFSMSrmm places the volumes in pending

release status. When the logical volumes are imported back into the library,

DFSMSrmm completes the return to scratch process enabling the volumes to be

reused. As the exported logical volumes expire, you can do off-site stacked volume

management to determine when to bring a stacked volume back on-site for possible

reuse. Use REPORT17: Inventory of Stacked Volumes by Percent Active to report

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 131

|
|
|
|
|
|
|

on the percentage of active data on a stacked volume and the percentage of active

logical volumes on a stacked volume. This EDGRRPTE REXX report, REPORT17,

is a helpful tool to aid with stacked volume management. See z/OS DFSMSrmm

Reporting for additional information on REPORT17.

Defining Stacked Volumes to DFSMSrmm

Before you begin: Use the library manager console to ensure that the ranges of

stacked volumes for containers are defined correctly. By doing so, you can avoid

accidentally entering stacked volumes into the library as physical volumes.

Recommendation: Always define stacked volumes to DFSMSrmm. This ensures

that the volumes cannot be used outside of the VTS. It also ensures that

DFSMSrmm checks at cartridge entry processing time that a physical volume or

logical volume does not duplicate a stacked volume.

You can define stacked volumes whether stacked volume support is enabled or not.

DFSMSrmm defines the stacked volumes automatically at export time when stacked

volume support is enabled. There is no automatic host notification when stacked

volumes enter the VTS, leave the VTS, or change category, so you must use

DFSMSrmm commands if you want to have all stacked volumes defined to

DFSMSrmm.

To define stacked volumes to DFSMSrmm and ensure that they can only be used

as stacked volumes inside a VTS, perform these steps:

1. Issue the RMM ADDVOLUME subcommand with the TYPE(STACKED) operand

to manually define stacked volumes to DFSMSrmm.

2. Take one of these steps to prevent the use of stacked volumes outside the VTS:

v Specify the DFSMSrmm EDGRMMxx parmlib command REJECT

ANYUSE(*) to prevent the use of any volumes not defined to DFSMSrmm.

See “Defining Tapes Not Available on Systems: REJECT” on page 200.

v Specify the DFSMSrmm EDGRMMxx parmlib command REJECT

ANYUSE(prefix*) to prevent the use of ranges of stacked volumes.

v Specify the RMM ADDVOLUME subcommand with the USE(VM) operand

and the TYPE(STACKED) operand to manually define stacked volumes which

cannot be used on z/OS to DFSMSrmm.

Changing Stacked Volume Information

Once you have defined a stacked volume to DFSMSrmm you do not normally need

to change information about that volume. Once stacked volume support is enabled,

DFSMSrmm manages the information about stacked volumes and logical volumes

and the movement of stacked volumes as they are exported from the VTS library.

You do need to use the CHANGEVOLUME command to confirm the movement of

the stacked volume as you would for a physical volume that was moving.

Assigning a Shelf Location for a Stacked Volume

You can optionally assign a shelf location to a stacked volume. When a stacked

volume is resident in a VTS library, no shelf location is needed; however, if it is

stored outside the VTS assigned to location SHELF you can assign a rack number

using either the RACK or POOL operands. Specify RACK with a specific rack

number or use POOL to allow DFSMSrmm to select the first empty rack number in

that pool of shelf locations. During normal processing, DFSMSrmm storage location

management processing assigns shelf locations to a stacked volume that must

move to a shelf-managed storage location.

132 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|

Deleting Stacked Volume Information

You can only delete an empty stacked volume. Ensure that all logical volumes have

been imported or removed from the stacked volume. To remove a volume from a

stacked volume, use the RMM CHANGEVOLUME subcommand with the

CONTAINER(’ ’) operand to clear the container name.

DFSMSrmm Support for Stacked Volumes When Stacked Volume

Support Is Enabled

With DFSMSrmm stacked volume support enabled, you can manage the movement

of logical volumes by using stacked volumes. To enable stacked volume support,

see “Enabling Stacked Volume Support” on page 139.

To ensure that stacked volumes are managed correctly, DFSMSrmm inventory

management processing checks that stacked volumes reside in a library. At the

completion of export processing for a single stacked volume, DFSMSrmm uses the

required location of the stacked volume to attempt to start its movement. If the

required location is not shelf-managed, DFSMSrmm sets the destination, but does

not mark the stacked volume as being ’intransit’. If the required location is

shelf-managed, DFSMSrmm storage location management processing starts the

volume move. Inventory management checks to see if closed, not-empty stacked

volumes still reside in their location, and marks those no longer resident as

’intransit’. Storage location management processing starts movement of stacked

volumes by assigning bin numbers for storage locations and setting the destination

for the volume.

The next time inventory management is run, DFSMSrmm checks the library to see

if the stacked volume has been ejected, and if so, the stacked volume is marked as

being ’intransit’. Those stacked volumes which are ’intransit’ to a destination VTS

are checked for library residence at their destination and the move confirmed if

found resident. Stacked volumes that are ’intransit’ to storage locations are

confirmed only if a global confirm move has been requested for the location and

destination pair. When stacked volumes move from storage locations they are set

’intransit’ by storage location management processing. The result is that

DFSMSrmm can automatically determine some of the moves for stacked volumes

and needs you to confirm those to storage locations.

Resolving Movement Conflicts

If there is a movement conflict for multiple logical volumes in a stacked volume,

DFSMSrmm resolves the conflict by using location priority to determine where the

stacked volume should be moved. See “Moving Volumes” on page 351 for

information about how DFSMSrmm prioritizes volume movement.

Confirming Stacked Volume Movement

You confirm the movement of stacked volume containers to storage locations when

their movement is completed. Use the RMM CHANGEVOLUME * CMOVE

subcommand. The READYTOSCRATCH option is not applied to stacked volume

moves and container moves are confirmed either with the ALL option or the

NOTREADYTOSCRATCH option.

 The stacked volume is used to identify the media that is used for the export

container volume, to track its location, and to aggregate the logical volumes

contained in the volume. All movement for exported logical volumes is managed

and tracked using the stacked volume. You can move a stacked volume manually,

but normally you control the movement automatically using vital record

specifications. The vital record specifications identify movement for data sets on

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 133

logical volumes. The movement specified for the logical volumes in the stacked

volume container direct the movement of the stacked volume. DFSMSrmm

automatically defines stacked volumes at EXPORT time. DFSMSrmm keeps track of

the ″in container″ information only while the logical volume is exported.

DFSMSrmm Support for Export Processing When Stacked

Volume Support Is Enabled

To use DFSMSrmm for export processing, you must first make sure that the volume

information reflects the most current required location information. Perform

DFSMSrmm inventory management vital record processing to set the required

location for any volume moves that are required.

As logical volumes are exported, DFSMSrmm tracks the ″in container″ stacked

volume and drives the stacked volume movement based on the required location of

the contained volumes.

Use DFSMSrmm export processing to remove logical volumes from a VTS.

1. Define vital record specifications that specify locations to which data sets in the

VTS should be moved. Use the vital record specification location name as the

key for managing export. You could associate location names with different

types of retention to have more control over the volumes that you want to

export. All the volumes with the same required location name, in the same

export request, get exported together.

2. Run DFSMSrmm inventory management vital record processing to determine

which logical volumes should be moved and to set the required location for

each volume to be moved.

3. Create a list of volumes to export after you run vital record processing. The

required moves are volume moves that are identified during vital record

processing or by changes made when you issue the RMM CHANGEVOLUME

subcommand. Use the RMM SEARCHVOLUME subcommand with the

REQUIRED and CLIST operands for each storage location to obtain volume

information for the list as shown in Figure 50. DFSMSrmm returns a list of

volumes to export that you can use as input for creating the export list logical

volume file 1. Consider using the RETDATE operand to group the volumes that

are expiring in the same time period into the same export request. You can use

the EDGJIMPC sample to reformat the CLIST file for use in the export list.

See z/OS DFSMSrmm Guide and Reference for information about the RMM

SEARCHVOLUME subcommand. See these examples in SYS1.SAMPLIB for

the format and required files for the export list volume:

v CBRSPSXP is the sample JCL for export list volume scratch request.

v CBRSPPXP is the sample JCL for export list volume private request.

When stacked volume support is enabled, you can no longer track the

movement of logical volumes using the LOCATION and DESTINATION fields of

the volume information. Any volume exported on a stacked volume resides in a

container and has no assigned location name. DFSMSrmm continues to

manage the volume movement using vital record specifications for data sets

and volumes but uses this information only to set the REQUIRED location.

DFSMSrmm never assigns a destination to a logical volume.

RMM SEARCHVOLUME VOLUME(*) OWNER(*) LIMIT(*) REQUIRED(STORE1) LOCATION(vts) -

 CLIST(’’,’ STORE1’) RETDATE(2001/020)

Figure 50. Searching the Required Location for Logical Volumes

134 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

4. Start the export process as described in the z/OS DFSMS OAM Planning,

Installation, and Storage Administration Guide for Tape Libraries using the

LIBRARY EXPORT command or use the CBRSPLCS sample program.

The VTS export process runs asynchronously to DFSMSrmm processing. Once

the export request has been initiated, VTS library signals trigger DFSMSrmm

actions related to export processing.

During the VTS export process, logical volumes are copied to a stacked volume

and the stacked volume is completed. For each logical volume copied to the

stacked volume, DFSMSrmm is notified of both the logical volume and stacked

volume. DFSMSrmm updates the DFSMSrmm control data set with the volume

serial number of the stacked volume as the ’in container’.

During export processing, DFSMSrmm updates the ’In container’ value for each

logical volume exported. DFSMSrmm updates the stacked volume and tracks

export completion, marking the stacked volume closed.

5. In a single run of DFSMSrmm inventory management, perform these tasks:

v Set the required location for the volumes by running vital record processing.

v Set the destinations for the volumes by running storage location management

processing.

v Create an extract data set after VTS export processing is completed.

6. Create movement report and pick lists by using the DFSMSrmm EDGRPTD

report utility.

7. Use the movement reports to eject the stacked volumes from the VTS using the

library manager and move them to the destination storage location. Transfer the

stacked volumes in the export hold category to the exit station using the library

manager console. Physically move the stacked volumes listed in your

movement report from the VTS exit station to the destination storage location.

8. Confirm that volumes have been moved. When the volumes have been moved,

use the RMM CHANGEVOLUME subcommand, as shown in Figure 51 to

confirm the completion of the movement of volumes.

 When the stacked volume is moved, you must confirm the move for all the

logical volumes that reside on the volume. You can use the RMM

CHANGEVOLUME subcommand with the CONFIRMMOVE operand to confirm

the move. You must confirm the move of stacked volumes from the VTS. When

DFSMSrmm stacked volume support is enabled, confirm that the stacked

volume has moved.

DFSMSrmm Support for Import Processing When Stacked

Volume Support Is Enabled

DFSMSrmm supports the importing of logical volumes that are defined to

DFSMSrmm or not defined to DFSMSrmm. During import processing for a logical

volume, DFSMSrmm automatically adds the volume information to the DFSMSrmm

control data set or leaves the volume to be processed on another system.

DFSMSrmm does not automatically add rack numbers for logical volumes because

rack numbers are not supported for logical volumes.

You can initiate the import of logical volumes as follows.

1. Use the library manager console to transfer stacked volumes to be imported

from the Unassign category to the Import category. See TotalStorage Automated

RMM CHANGEVOLUME * CONFIRMMOVE(vts,ALL)

Figure 51. Confirming Volume Moves for Exported Volumes

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 135

Tape Library (3495) Introduction and TotalStorage Automated Tape Library

(3495) Operator’s Guide for more information about the library manager.

2. Create an import list. See these examples in SYS1.SAMPLIB for the format and

required files for the import list volume.

v CBRSPSIM is the sample JCL for import list volume scratch request.

v CBRSPPIM is the sample JCL for import list volume private request.

To create the volume list for file 1 of the import list logical volume, you can

search in the DFSMSrmm control data set, tailor the DFSMSrmm report extract

data set, or use any other method to identify the volumes to be imported.

You can use the RMM SEARCHVOLUME subcommand to build the list of

logical volumes with their containing stacked volume and status as shown in

these examples. When you specify the TYPE(LOGICAL) operand, DFSMSrmm

returns the container volume serial number, logical volume serial number, and

volume status between your specified CLIST prefix and suffix strings. The

SEARCHVOLUME output file can be used as input for creating the import list

logical volume file 1 after it is reformatted using the EDGJIMPC sample.

When stacked volumes are returned to the library, you can build import lists by

either using the logical volumes or using the stacked volumes. To build a list of

stacked volumes to be imported, you can issue the DFSMSrmm TSO

subcommand shown in Figure 52.

To build a list of logical volumes to import from a single stacked volume, you

can issue the DFSMSrmm TSO subcommand shown in Figure 53.

To build a list of logical volumes to import from multiple stacked volumes, you

can issue the DFSMSrmm TSO subcommand shown in Figure 54.

3. Request import processing by using the CBRXLCS macro, the OAM

CBRSPLCS sample programs, or the LIBRARY command.

During import processing, the imported volumes can be automatically defined to

DFSMSrmm or the volumes can be left for processing by another system if the

library is partitioned. If the volume is already known to DFSMSrmm, the volume

is accepted for processing if it is defined as an exported logical volume,

otherwise the volume is rejected.

4. To complete the import process, DFSMSrmm uses the cartridge entry

processing installation exit to track logical volumes that are imported by the

VTS. OAM calls the exit once for each logical volume imported. For logical

volumes, DFSMSrmm removes the stacked volume association. The stacked

volume is updated to remove information for each imported volume.

RMM SEARCHVOLUME VOLUME(*) OWNER(*) LIMIT(*) TYPE(STACKED) DESTINATION(vts) -

 CLIST

Figure 52. Building a List of Stacked Volumes to be Imported from a Single Stacked Volume

RMM SEARCHVOLUME CONTAINER(S12345) VOLUME(*) OWNER(*) LIMIT(*) TYPE(LOGICAL) CLIST

Figure 53. Building a List of Logical Volumes to be Imported from a Single Stacked Volume

RMM SEARCHVOLUME VOLUME(*) LIMIT(*) OWNER(*) CONTAINER(*) -

 REQUIRED(vts) TYPE(LOGICAL) CLIST

Figure 54. Building a List of Logical Volumes to be Imported from Multiple Stacked Volumes

136 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

5. When all logical volumes on a stacked volume are imported, the count of

contained volumes is set to 0. You now must decide what to do with the stacked

volume. For example, you can return the scratch volume to the pool of empty

stacked volumes for use by the VTS; use the library manager console to

transfer empty stacked volumes to other categories within the VTS so they

ready for reuse.

DFSMSrmm Support for Stacked Volumes When Stacked Volume

Support Is Not Enabled

A stacked volume is a volume in a virtual tape server library that is used to store

one or more logical volumes. When stacked volume support is not enabled,

DFSMSrmm does not track stacked volumes, but allows you to define them to

DFSMSrmm. DFSMSrmm records the name of the exported stacked volume as the

’In container’ information for each logical volume. DFSMSrmm keeps track of the ’In

container’ information only while the logical volume is exported.

DFSMSrmm Support for Export Processing When Stacked

Volume Support Is Not Enabled

To use DFSMSrmm for export processing, you must first make sure that volume

information reflects the most current location information. Perform DFSMSrmm

inventory management storage location processing to set the destinations for any

volume moves that are required.

As logical volumes are exported, DFSMSrmm tracks the ’in container’ stacked

volume and drives movement based on the destination of logical volumes. Use

DFSMSrmm export processing to remove logical volumes from a VTS.

1. Define vital record specifications that specify locations to which data sets in the

VTS should be moved.

2. Run DFSMSrmm inventory management vital records and storage location

management processing to determine which logical volumes should be moved.

DFSMSrmm allocates a bin number to the volume if the volume’s destination is

shelf-managed. There will be unused bin numbers for logical volumes that are

moving to shelf-managed storage locations. You will waste bin numbers

because EDGRPTD ignores the assigned bin numbers for logical volumes.

3. Create a list of volumes to export. Create the list after you run storage location

management. The moves are those that are identified during vital record

processing or those changes that are made when you issue the RMM

CHANGEVOLUME subcommand. Use the RMM SEARCHVOLUME

subcommand to obtain volume information for the list as shown in Figure 55.

 DFSMSrmm returns a list of volumes to export that you can use as input for

creating the export list logical volume file 1. See these examples in

SYS1.SAMPLIB for the format and required files for the export list volume.

v CBRSPSXP — sample JCL for export list volume scratch request.

v CBRSPPXP — sample JCL for export list volume private request.

You can track the movement of logical volumes by using the LOCATION field

and DESTINATION field of the volume information.

RMM SEARCHVOLUME VOLUME(*) LIMIT(*) LOCATION(vts)-

 DESTINATION(dest) CLIST(’’,’,dest’) -

 INTRANSIT(N)

Figure 55. Creating a Volume Export List

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 137

4. Start the export process as described in the z/OS DFSMS OAM Planning,

Installation, and Storage Administration Guide for Tape Libraries using the

LIBRARY EXPORT command or use the CBRSPLCS sample program.

The VTS export process runs asynchronously to DFSMSrmm processing. Once

the export request has been initiated, VTS library signals trigger DFSMSrmm

actions related to export processing.

During the VTS export process, logical volumes are copied to a stacked volume,

and the stacked volume is completed. For each logical volume copied to the

stacked volume, DFSMSrmm is notified of both the logical volume and stacked

volume. DFSMSrmm updates the DFSMSrmm control data set with the volume

serial number of the stacked volume as the ’in container’.

5. After export VTS processing is completed, you can run DFSMSrmm inventory

management report extract processing to obtain information about the volumes

that were processed.

6. Create movement report and pick lists by using the DFSMSrmm EDGRPTD

report utility.

7. Use the movement reports to eject the stacked volumes from the VTS using the

library manager and move them to the destination storage location. Transfer the

stacked volumes in the export hold category to the exit station using the library

manager console.

8. Physically move the stacked volumes listed in your movement report from the

VTS exit station to the destination storage location.

9. Confirm that volumes have been moved. When the stacked volume is moved,

you must confirm the move for all the logical volumes that reside on the volume.

Use the RMM CHANGEVOLUME subcommand as shown in Figure 56 to

confirm the completion of the movement of volumes.

DFSMSrmm Support for Import Processing When Stacked

Volume Support Is Not Enabled

DFSMSrmm supports the importing of logical volumes that are defined to

DFSMSrmm or not defined to DFSMSrmm. During entry processing for a logical

volume, DFSMSrmm automatically adds the volume information to the DFSMSrmm

control data set or leaves the volume to be processed on another system.

DFSMSrmm does not automatically add rack numbers for logical volumes because

rack numbers are not supported for logical volumes.

You can initiate the import of logical volumes independently of DFSMSrmm by using

the library manager console and creating an import list volume.

1. Use the library manager console to transfer stacked volumes to be imported

from the Unassign category to the Import category. See TotalStorage Automated

Tape Library (3495) Introduction and TotalStorage Automated Tape Library

(3495) Operator’s Guide for more information about the library manager.

2. Create an import list volume. See these examples in SYS1.SAMPLIB for the

format and required files for the import list volume.

v CBRSPSIM -- sample JCL for import list volume scratch request.

v CBRSPPIM -- sample JCL for import list volume private request.

RMM CHANGEVOLUME * CONFIRMMOVE(vts,ALL)

Figure 56. Confirming Volume Moves for Exported Volumes

138 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

To create the volume list for file 1 of the import list logical volume, you can

search in the DFSMSrmm control data set, tailor the DFSMSrmm report extract

file tailoring, or use any other method to identify the volumes to be imported.

You can use the RMM SEARCHVOLUME subcommand to build the list of

logical volumes with their containing stacked volume and status as shown in

Figure 57. Specify the TYPE(LOGICAL) operand and DFSMSrmm returns the

container volume serial number, logical volume serial number, and volume

status between your specified CLIST prefix and suffix strings. The resultant

output file can be used as input for creating the import list logical volume file 1

after it is reformatted using the EDGJIMPC sample.

3. Request import processing by using the CBRXLCS macro, the OAM

CBRSPLCS sample programs, or the LIBRARY command.

During import processing, the imported volumes can be automatically defined to

DFSMSrmm or the volumes can be left for processing by another system if the

library is partitioned. If the volume is already known to DFSMSrmm, the volume

is accepted for processing if it is defined as an exported logical volume,

otherwise the volume is rejected.

4. To complete the import, DFSMSrmm uses the cartridge entry processing

installation exit to track logical volumes that are imported by the VTS. OAM calls

the exit once for each logical volume imported. DFSMSrmm removes the

stacked volume association for logical volumes. DFSMSrmm removes the ’in

container’ value for the logical volumes.

5. When all logical volumes on a stacked volume are imported, you must decide

what to do with the stacked volume. For example, you can return the scratch

volume to the pool of empty stacked volumes for use by the VTS; use the

Library Manager console to transfer empty stacked volumes to other categories

within the VTS so they are ready for reuse.

Enabling Stacked Volume Support

With DFSMSrmm stacked volume support enabled, you can manage the movement

of logical volumes using stacked volumes. Without stacked volume support enabled,

you can define and list stacked volumes using the DFSMSrmm ADDVOLUME TSO

subcommand with the TYPE(STACKED) operand. DFSMSrmm inventory

management ignores any stacked volumes that you have defined and uses just the

container name in the volume records.

Prior to enabling stacked volume support, consider these conditions:

v You cannot disable stacked volume support once it is enabled.

v Do not enable support unless all systems using a control data set support

stacked volumes. If the control data set is shared with a lower level and support

is enabled you can create inconsistent information in the control data set. Correct

inconsistencies by using the DFSMSrmm EDGUTIL MEND utility before you can

run inventory management.

To enable stacked volume support, perform these tasks:

1. Update all systems sharing a control data set to the DFSMSrmm level of code

containing stacked volume support.

RMM SEARCHVOLUME VOLUME(*) LIMIT(*) OWNER(*) DESTINATION(vts) -

 TYPE(LOGICAL) CLIST

Figure 57. Creating a Volume Import List

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 139

2. If you have stacked volumes defined to DFSMSrmm, but not as stacked

volumes, you need to change volume information. Use the RMM

SEARCHVOLUME subcommand to set the correct location information and

volume type for non-exported stacked volumes. You need to do this before

running EDGUTIL MEND. Although the EDGUTIL processing changes the

volume type to stacked, it does not set the correct location information unless

the stacked volume is exported and contains volumes.

You can use the RMM SEARCHVOLUME subcommand to build the command

to change the volumes:

3. Use EDGUTIL UPDATE with the STACKEDVOLUME(YES) operand on the

CONTROL statement of the SYSIN file.

Once you have enabled support, you can use EDGUTIL with VERIFY(VOLUME)

to check if the container information is consistent.

4. Use the RMM LISTCONTROL CNTL subcommand to display the status of

support.

If support shows MIXED, run the EDGUTIL MEND utility to make the container

information consistent. The inconsistency is the result of having container

information in volume records in the control data set.

During EDGUTIL MEND processing, DFSMSrmm creates the necessary stacked

volumes if you have not previously defined them to DFSMSrmm using the

DFSMSrmm TSO subcommands.

During EDGUTIL MEND processing, DFSMSrmm converts each volume in a

container as being in the container instead of a DFSMSrmm location. The

location and bin number information in volumes which are in a container is

removed, and bins returned to empty status. A bin number is assigned to the

stacked volume if the location it is in is bin managed. The bin number is

selected from one of the contained volumes by using location priority. The bin

number choice should reflect the processing used by EDGRPTD in producing

movement reports before stacked volume support is enabled.

From now on, when you run storage location processing, DFSMSrmm moves

the stacked volumes based on the required location and priority of the contained

logical volumes.

5. Update your procedures used to export or import logical volumes to use the

required location of the logical volume instead of using the destination. See

“DFSMSrmm Support for Stacked Volumes When Stacked Volume Support Is

Enabled” on page 133.

Performing a Virtual Export of Logical Volumes

You can use DFSMSrmm subcommands to perform a virtual export for a private

logical volume to an existing exported stacked volume container. A virtual export is

when you use the DFSMSrmm subcommands rather than VTS export processing to

export a volume. This is possible if you have imported a logical volume from a

stacked volume, processed the logical volume only for input, and now want to

re-associate the logical volume with the previously exported volumes on the original

stacked volume container. You use the CHANGEVOLUME subcommand with the

CONTAINER operand to do the virtual export. For example:

RMM SEARCHVOLUME VOLUME(ST*) OWNER(*) LIMIT(*) -

 CLIST(’RMM CHANGEVOLUME ’,’ TYPE(STACKED) LOCATION(vts_name) NORACK’)

140 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm changes the status of the logical volume to scratch in the library

manager database prior to ejecting the volume. This results in a logical eject which

deletes the logical volume from the library manager database. DFSMSrmm then

adds the volume logically back into the container.

For the logical eject to work and delete the logical volume from the TCDB and the

library manager data base, the scratch categories in the VTS must be defined with

the ’Fast Ready’ attribute. If you do not use the fast ready attribute for your scratch

categories, do not use virtual export. If you do so, you will receive messages

CBR3650I and EDG3726I with error code ’06’ and the volume will not be deleted

from the TCDB and the library manager data base.

Recovering a Logical Volume from an Exported Stacked Volume

DITTO is used to recover a logical volume from an exported stacked volume in

situations where no VTS is available. DITTO does not go through OPEN processing

nor issue regular mount messages. DITTO recovers the logical volume as a

physical volume. As a result, managing these recovered logical volumes requires

some additional consideration and processing.

Here are some considerations:

v When you specify DFSMSrmm EDGRMMxx REJECT command values to

manage volumes, DFSMSrmm relies on information available at OPEN. These

REJECT command values do not apply because DITTO does not issue OPEN

requests.

v DFSMSrmm does not update existing volume information when DITTO copies

the data.

v The DITTO output volume is a physical volume but might have the same volume

serial number as the original logical volume. If you use the original logical volume

serial number for the recovered volume, you can convert the logical volume in

the DFSMSrmm control data set to a physical volume by issuing the DFSMSrmm

CHANGEVOLUME subcommand as shown in Figure 58

Use the recovered volume as a normal physical volume. If the output volume

serial number is different from the original logical volume serial number , the

volume information, the data set information and other details can be reused by

issuing the DFSMSrmm CHANGEVOLUME subcommand as shown in Figure 59.

v You can also add data set information for the DITTO output volume from the

original logical volume.

RMM CHANGEVOLUME V12345 CONTAINER(S26901)

RMM CHANGEVOLUME volser TYPE(PHYSICAL) CONTAINER(’ ’)-

LOCATION(SHELF) CONFIRMMOVE FORCE

Figure 58. Converting A Logical Volume to a Physical Volume

RMM CHANGEVOLUME volser TYPE(PHYSICAL) CONTAINER(’ ’)-

LOCATION(SHELF) CONFIRMMOVE NEWVOLUME(pvolser)

Figure 59. Reusing Volume Information for a Recovered Volume

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 141

To copy details for the original logical volume to the new physical volumes, use

DFSMSrmm subcommands to obtain the data set and volume details for the

volumes you want to redefine.

Setting Up DFSMSrmm for the System-Managed Tape Library

To get started with the system-managed tape library, information about the volumes

in the system-managed tape library must be defined to DFSMSrmm. This topic

describes scenarios for getting volumes defined to DFSMSrmm.

Using the System-Managed Tape Library With New Volumes

If you intend to populate the system-managed tape library with new scratch

volumes, you do not need to explicitly define them to DFSMSrmm. During entry

processing, with DFSMSrmm active, DFSMSrmm automatically records information

about each volume in its control data set. DFSMSrmm uses the defaults you

specified in ISMF for the library entry values; you should set the default entry status

to scratch. See “Partitioning System-Managed Tape Libraries” on page 145 for

additional information.

Using the System-Managed Tape Library with Volumes Already Defined

in DFSMSrmm

Volumes that are already defined to DFSMSrmm have location and other

information known to DFSMSrmm. If you plan to use these volumes with the

system-managed tape library, you need to update the volume location and home

location to a system-managed library name. Here are two methods to implement

the system-managed tape library with DFSMSrmm.

Method 1

1. For volumes that are going to a system-managed tape library, use the RMM

CHANGEVOLUME subcommand with the LOCATION operand to change the

location to the correct automated tape library name. This sets the automated

tape library name as the destination name and home location name for each

volume going to an automated tape library. For volumes that are going to a

manual tape library, specify a manual tape library name and you are now ready

to use the volumes.

You can use the RMM SEARCHVOLUME subcommand with the CLIST operand

to build a data set containing the required CHANGEVOLUME LOCATION

requests.

 This subcommand builds a command list that you can execute. Repeat this step

for each storage location from which you intend to move volumes.

2. Run EDGHSKP with the PARM=’REPTEXT’ and use EDGRPTD to generate a

list of volumes to insert into the automated tape libraries.

3. Insert the volumes. You are now ready to use the volumes.

4. To return volumes from storage locations to the system-managed tape library

when the volumes no longer need to be retained, use the RMM

CHANGEVOLUME subcommand to change the volume HOME location from

SHELF to the library name.

RMM SEARCHVOLUME VOLUME(A*) LIMIT(*) -

 OWNER(*) LOCATION(SHELF) -

 CLIST(’RMM CHANGEVOLUME ’,’ LOCATION(ATL1)’)

142 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Example:

Method 2

1. Pull all volumes that are to go into the system-managed tape library and

physically load them.

2. Run the inventory process of the system-managed tape library and let it drive

the adding of volumes to the volume catalog. This also flags the volume location

as an automated tape library, but does not change the home location name.

3. Use the RMM SEARCHVOLUME subcommand with the CLIST operand to

create a CLIST to create CHANGEVOLUME commands for all the volumes in

the library to set the HOME location to the automated tape library. For example,

specify:

 If you do not change the home location name, all private volumes are eligible

for moving out of the automated tape library when you next run vital record

processing as part of inventory management.

4. If you have volumes in storage locations that you want returned to the

system-managed tape library when they no longer need to be retained, change

the volume HOME location from SHELF to the library name, using the RMM

CHANGEVOLUME subcommand. For example, specify:

Using the System-Managed Tape Library with Existing Volumes

To use the system-managed tape library with existing volumes that are not defined

to DFSMSrmm or if you are usingDFSMSrmm to manage these volumes for the first

time, ensure that information about your volumes is recorded in the DFSMSrmm

control data set.

You need to ensure that the correct status is recorded for each private and scratch

volume you want to use with the system-managed tape library. One way to do this

is to predefine all the private volumes. You can use any existing information you

have for the volumes either from an existing tape management system or based on

data set catalog entries. You use this information to build a list of RMM

ADDVOLUME subcommands to define the volumes to DFSMSrmm. For example,

for a private volume:

RMM SEARCHVOLUME VOLUME(A*) LIMIT(*) -

 OWNER(*) LOCATION(LOCAL) -

 CLIST(’RMM CHANGEVOLUME ’,’ HOME(ATL1)’)

RMM SEARCHVOLUME VOLUME(A*) LIMIT(*) -

 OWNER(*) LOCATION(ATL1) -

 CLIST(’RMM CHANGEVOLUME ’,’ HOME(ATL1)’)

RMM SEARCHVOLUME VOLUME(A*) LIMIT(*) -

 OWNER(*) LOCATION(LOCAL) -

 CLIST(’RMM CHANGEVOLUME ’,’ HOME(ATL1)’)

RMM ADDVOLUME volser LOCATION(ATL1) STATUS(MASTER) –

 OWNER(owner) STORGRP(storagegroup)

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 143

Adding rack numbers is optional. You can define shelf space first by using the

ADDRACK subcommand so there are empty rack numbers for each volume you

add.

Depending on the ISMF library entry defaults, you might be able to avoid defining

scratch volumes to DFSMSrmm as this can happen automatically during entry

processing.

Using DFSMSrmm with an Existing Automated Tape Library

If you have been using an automated tape library without DFSMSrmm, volume

status information and retention requirements from the TCDB must be recorded in

the DFSMSrmm control data set for private and scratch volumes in the automated

tape library.

Assuming that you are using a single range of volume serial numbers that start with

S00000 in the automated tape library, follow these steps to obtain the information:

1. Adding shelf space is optional for physical volumes and not supported for logical

volumes. Define shelf space for the volumes to DFSMSrmm using the RMM

ADDRACK subcommand:

2. Use the RMM ADDVOLUME subcommand to define the volumes to

DFSMSrmm and get the correct status information from the volume catalog. You

can provide an owner on the RMM ADDVOLUME subcommand. If you do not

specify the EXPDT operand, DFSMSrmm obtains the expiration date from the

volume catalog. If there is no date in the volume catalog, DFSMSrmm uses the

DFSMSrmm parmlib RETPD default.

If you do not provide an owner, DFSMSrmm assigns a default owner as

described in z/OS DFSMSrmm Guide and Reference. If you are not using a

single range of volumes in the automated tape library, issue multiple

ADDVOLUME subcommand requests to define all volumes.

It is likely that while implementing DFSMSrmm with the automated tape library you

are converting from an existing tape management system. If so, add this step to

your overall conversion plan. Instead of using the RMM ADDVOLUME subcommand

to define the volumes, use information from your existing tape management system

to define the volumes to DFSMSrmm during the conversion.

Returning Volumes to Scratch Status

When a volume in a system-managed tape library is returning to scratch status,

DFSMSrmm can inform OAM during expiration processing for each volume being

changed to scratch status. Return to scratch processing for system-managed

volumes can be either synchronous or asynchronous with EXPROC processing.

You use the SYSIN EXPROC command EDGSPLCS operand to select the type of

processing you want. This function also allows DFSMShsm volumes to return to the

scratch category.

RMM ADDRACK S00000 COUNT(5000)

RMM ADDVOLUME S00000 COUNT(5000) STATUS(VOLCAT) OWNER(owner) -

 STATUS(USER) EXPDT(yyyy/ddd)

144 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|

If DFSMSrmm is to return volumes to scratch during EXPROC processing,

DFSMSrmm informs OAM to update the TCDB volume status during expiration

processing or when the status of a volume is changed using the RMM

CHANGEVOLUME subcommand based on the DFSMSrmm EDGRMMxx parmlib

OPTION SMSTAPE operand value you specify. See “Defining System Options:

OPTION” on page 175 for information about the DFSMSrmm EDGRMMxx parmlib

OPTION SMSTAPE operand.

See “Using EDGSPLCS to Issue Commands to OAM for System-Managed

Volumes” on page 411 for additional information about the EDGSPLCS utility. See

“EDGSPLCS File for the EDGHSKP Utility” on page 340 for information about the

EDGSPLCS file for the EDGHSKP utility.

DFSMSrmm uses the OAM status change exit, CBRUXCUA, to allow DFSMSrmm

to be notified of all volume status changes made by others, for example, by ISMF.

CBRUXCUA performs this processing:

v If a volume is not defined to DFSMSrmm, but is resident in an automated tape

library, it is automatically defined to DFSMSrmm. If any errors are encountered,

as for cartridge entry processing, the status change is rejected.

v If a volume is defined to DFSMSrmm:

– All changes from PRIVATE to SCRATCH status are returned to scratch by any

OAM CBRUXCUA request, such as those generated by the EDGSPLCS utility

or the ISMF mountable tape volume list processing. Attempts to use OAM

CBRUXCUA requests to change the status of a non-scratch-candidate volume

to a scratch volume fail with message EDG8194I.

– All changes from PRIVATE to PRIVATE and SCRATCH to SCRATCH are

supported to enable OAM to correct discrepancies that might exist with the

library manager inventory.

– All changes from SCRATCH to PRIVATE status are accepted. This includes

open processing.

– Storage group name changes are recorded in the DFSMSrmm control data

set.

– Any change to make TCDB information consistent with DFSMSrmm

information is accepted.

The objective is to keep the TCDB and the DFSMSrmm control data set

information consistent.

Recommendation:Use the STGADMIN.IGG.LIBRARY resources to protect the new

catalog facilities define, alter, and delete of library entries, and volume entries to

ensure changes go through the OAM installation exits. Use IDCAMS as an error

recovery tool.

Partitioning System-Managed Tape Libraries

You can partition a system-managed library including a VTS by performing these

tasks:

v Specify the USE operand value on the RMM ADDVOLUME or RMM

CHANGEVOLUME subcommands. You can set this value to MVS or VM or both.

If you do not specify MVS for a volume, DFSMSrmm prevents the volume from

being defined in the volume catalog on this system.

v Define parmlib member EDGRMMxx REJECT prefixes as described in “Defining

Tapes Not Available on Systems: REJECT” on page 200. You can use REJECT

to prevent a volume not defined to DFSMSrmm from being defined in a

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 145

|

|
|
|
|

|
|
|
|
|

system-managed tape library. The REJECT ANYUSE(prefix) operand prevents a

volume from being defined in the system-managed tape library on the current

system. The REJECT OUTPUT(prefix) operand allows you to define the volume

to the system-managed tape library but only use the volume for input processing.

When you enter a volume into a system-managed tape library, if the volume is

defined to DFSMSrmm and you have specified the USE operand without MVS, or

the volume matches a specified REJECT ANYUSE(prefix), EDGLCSUX sets a

return code of 12 to pass to OAM. OAM leaves the volume in the system-managed

tape library in the INSERT category; it does not create a volume entry in the TCDB.

The volume is then available for another sharing system to process the insert

request. The sharing system could be another VM or z/OS system.

If DFSMSrmm allows the volume entry to be performed, OAM creates an entry in

the TCDB. If the volume matches a specified REJECT OUTPUT(prefix), at OPEN

time DFSMSrmm fails any requests for output processing while allowing requests

for input processing.

To tailor partitioning when the REJECT ANYUSE option cannot be used, add code

to the DFSMSrmm-supplied OAM installation exit to check the volume serial

number and set a return code of 12 if the volume is not for use on this system. See

“Managing System-Managed Tape Library Volumes: EDGLCSUX” on page 248 for

information about the DFSMSrmm EDGLCSUX installation exit.

Sharing a System-Managed Library and a BTLS-Managed Library

When you share an IBM TotalStorage Enterprise Automated Tape Library (3494) or

IBM TotalStorage Enterprise Automated Tape Library (3495) between DFSMS and

BTLS, there are restrictions on the sharing of volumes between the systems. For

example, although a private volume is defined in the TCDB on DFSMS, it cannot be

shared unless it is also defined in the BTLS catalog.

Consider partitioning the IBM TotalStorage Enterprise Automated Tape Library

(3494) or IBM TotalStorage Enterprise Automated Tape Library (3495) using some

volumes under DFSMS and other volumes under BTLS. This is important when you

plan to use scratch volumes. Volumes that are part of scratch pools cannot be

effectively shared.

Only volumes that are long-term private volumes can be shared effectively. You can

define each private volume to both systems, but if the volume changes status, it is

likely that the BTLS catalog and the TCDB will not match the volume status defined

in the DFSMSrmm control data set. You can modify the CBRUXENT exit supplied

with DFSMSrmm to force the Library Control System to not process the volumes

intended for BTLS management.

If you want to designate specific scratch volumes for use on DFSMS and others for

use with BTLS:

1. Modify the DFSMSrmm supplied CBRUXENT exit by setting the return code to

12 (UXEIGNOR) for all volumes that are to be managed by BTLS.

2. Use the AMS LIBRARY SETCATEGORY command to set the appropriate BTLS

private or scratch category for all volumes entering the IBM TotalStorage

Enterprise Automated Tape Library (3494) or IBM TotalStorage Enterprise

Automated Tape Library (3495) that are ignored by the Library Control System.

146 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

If you modify the CBRUXENT exit, issue a WTO that you trap in Netview or

equivalent. Use this event to trigger the start of the AMS LIBRARY SETCATEGORY

command on the system where BTLS resides.

An easier implementation would be possible using separate control data sets, one

for DFSMSrmm with system-managed tapes, and one for DFSMSrmm with BTLS

volumes. The disadvantage of this is extra administration and total segregation of

volumes.

Moving from a Non-System-Managed to a System-Managed IBM

Automated Tape Library

When moving volumes from a non-system-managed to a system-managed IBM

automated tape library, update the DFSMSrmm control data set to reflect the new

locations for the volumes. Issue the RMM CHANGEVOLUME subcommand on the

DFSMSrmm system to update both the home location and current location of the

volumes.

 To return volumes from a storage location to a system-managed instead of a

non-system-managed IBM automated tape library, use the RMM CHANGEVOLUME

subcommand to change the home location for the volumes.

 See “Defining Pools: VLPOOL” on page 205 for information about retaining and

moving volumes.

RMM CHANGEVOLUME volser LOCATION(sms_lib_name)

RMM CHANGEVOLUME volser HOME(sms_lib_name)

Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries 147

|
||

|
||

|

|

|
|
|
|
|
|

|
|
|
||

|

148 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 8. Running DFSMSrmm with BTLS

You can use DFSMSrmm with Basic Tape Library Support (BTLS). BTLS is an IBM

program offering that provides basic automation support for the IBM TotalStorage

Enterprise Automated Tape Library (3494) and IBM TotalStorage Enterprise

Automated Tape Library (3495) in a non-system-managed library environment.

DFSMSrmm does not interact directly with BTLS or the IBM TotalStorage Enterprise

Automated Tape Library (3494) or IBM TotalStorage Enterprise Automated Tape

Library (3495), so you must update the BTLS catalog to reflect changes to volumes

that are managed by DFSMSrmm.

DFSMSrmm adds information to the DFSMSrmm control data set when you define

volumes to DFSMSrmm. If you plan to use any of the volumes defined to

DFSMSrmm with BTLS, use the access methods services LIBRARY command to

define the volumes in the BTLS catalog. Refer to the Basic Tape Library Support

Version 1 Release 1 User’s Guide and Reference for more information.

If you plan to use DFSMSrmm for volumes managed by BTLS, set up procedures

to return scratch volumes to scratch status in the BTLS catalog after DFSMSrmm

expiration processing.

Here is a summary of the steps you follow to use BTLS with DFSMSrmm:

1. Use the NAME operand on the VLPOOL parmlib command to identify the BTLS

scratch pools to be used.

2. Optionally, if you use data set name and jobname for your volume pools, use

the EDGUX100 installation exit to select a pool for new tape data sets.

3. Set up the procedures to return BTLS-managed volumes to scratch status after

you run inventory management.

4. Set up the procedures to update BTLS when volumes are added to or removed

from the installation media library.

Setting Up Scratch Pools for BTLS-Managed Volumes

“Defining Pools: VLPOOL” on page 205 provides information on defining VLPOOL

and other EDGRMMxx options.

Both DFRMM and DFSMSrmm use VLPOOL scratch pool definitions to perform

these functions:

v Update mount messages.

v Update 3480 and 3490 drive displays if the MSGDISP installation exit

IGXMSGEX is called.

v Reject scratch volumes which are not from the correct pools.

If you plan to use DFSMSrmm with BTLS, you must define and use scratch pools

with special care to prevent DFSMSrmm from rejecting volumes needlessly.

DFSMSrmm does not know that volumes managed by BTLS reside in an IBM

TotalStorage Enterprise Automated Tape Library (3494) or IBM TotalStorage

Enterprise Automated Tape Library (3495) and attempts to control scratch tape

assignment for mounts inside the IBM TotalStorage Enterprise Automated Tape

Library (3494) or IBM TotalStorage Enterprise Automated Tape Library (3495).

DFSMSrmm, on the other hand, does not attempt to control scratch tape

© Copyright IBM Corp. 1992, 2007 149

assignment for mounts inside a system-managed IBM TotalStorage Enterprise

Automated Tape Library (3494) or IBM TotalStorage Enterprise Automated Tape

Library (3495).

If you have scratch volumes that reside in an IBM TotalStorage Enterprise

Automated Tape Library (3494) or IBM TotalStorage Enterprise Automated Tape

Library (3495) managed by BTLS, define pool definitions to include all the volumes

that you want to use. DFSMSrmm accepts or rejects volumes that are based on the

VLPOOL definitions that you provide in parmlib member, EDGRMMxx. For volumes

that reside in an IBM TotalStorage Enterprise Automated Tape Library (3494) or IBM

TotalStorage Enterprise Automated Tape Library (3495) and are managed by BTLS,

ensure that the VLPOOL definitions do not cause conflicts when scratch volumes

are used.

For example, consider these VLPOOL definitions:

 On system A when a scratch volume is requested, if the IBM TotalStorage

Enterprise Automated Tape Library (3494) or IBM TotalStorage Enterprise

Automated Tape Library (3495) contains volumes from both pools A* and B*, it can

select a scratch volume from either pool. If the Library Manager selects a volume in

pool B*, DFSMSrmm rejects it. The Library Manager might never select a volume

that can be used because all available scratch volumes are selected until a volume

that is acceptable to DFSMSrmm is found.

If you want DFSMSrmm to manage pool selection when using BTLS, use the

NAME operand on the VLPOOL definition for the pool to specify a pool name. For

example, you could define VLPOOL definitions as follows:

DFSMSrmm uses the value in the NAME operand to update messages and tape

drive displays for non-specific mount requests. Do not use the NAME operand if

your operations depend on a pool prefix rather than a pool name.

For scratch pools of volumes that are contained in a IBM TotalStorage Enterprise

Automated Tape Library (3494) or IBM TotalStorage Enterprise Automated Tape

Library (3495) that are managed by BTLS, use the NAME operand when specifying

the SYSID operand on VLPOOL definitions. For more information, refer to

“Returning BTLS-managed Volumes to Scratch” on page 152.

Running DFSMSrmm Inventory Management with BTLS

Use the EDGHSKP utility to run inventory management activities which include: vital

record processing, expiration processing, storage location management processing,

backing up the control data set and journal and creating an extract data set. See

Chapter 16, “Performing Inventory Management,” on page 325 for more information.

Consider how to perform inventory management if you are using DFSMSrmm with

BTLS. You need to complete the update to the BTLS catalog after inventory

VLPOOL PREFIX(A*) SYSTEM(A) TYPE(S)

VLPOOL PREFIX(B*) SYSTEM(B) TYPE(S)

VLPOOL PREFIX(A*) NAME(SCRTCH5) TYPE(S) SYSID(SY1) DESC(’BTLS pool 5’)

VLPOOL PREFIX(B*) NAME(SCRTCH3) TYPE(R) DESC(’BTLS pool 3’)

150 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

management is completed. Use the Access Method Services (AMS) LIBRARY

SETCATEGORY command to update the status of the volumes managed by BTLS.

For example, to keep track of volumes that are managed by BTLS and to update

information about volumes that are returning to scratch in the BTLS catalog,

perform these tasks:

1. Put all your BTLS-managed volumes in racks with a specific media name, for

example: BTLS. Any other method to identify BTLS volumes, such as rack

number or volume prefix could be used instead.

2. After inventory management is complete, issue this command to create a list of

BTLS racks in scratch status.

3. Use the resulting data set with the scratch volume list as the LIBIN DD input to

an IDCAMS job with this command:

Running EDGINERS for BTLS-managed Volumes

For volumes that are managed only by BTLS, use EDGINERS. Use the TAPE DD

to allocate a tape drive in the IBM TotalStorage Enterprise Automated Tape Library

(3494) or IBM TotalStorage Enterprise Automated Tape Library (3495). Use the

POOL parameter or any other execution parameter to restrict processing to specific

volumes that are managed by BTLS.

Restrictions

DFSMSrmm does not ensure that the volumes you use with BTLS in the IBM

TotalStorage Enterprise Automated Tape Library (3494) or IBM TotalStorage

Enterprise Automated Tape Library (3495) meet the z/OS labeling restrictions that

apply for system-managed tape volumes. You must make sure that only z/OS

standard label volumes with the same external and internal volume serial number

are entered into the IBM TotalStorage Enterprise Automated Tape Library (3494) or

IBM TotalStorage Enterprise Automated Tape Library (3495). Failure to do so can

result in incorrect processing by DFSMSrmm. For example, DFSMSrmm records

the internal volume serial number of the mounted volume in the DFSMSrmm control

data set, while BTLS uses the external volume serial number to request a mount.

When you migrate from BTLS management to system-managed tape, migration is

easier if you use only z/OS standard label volumes. Also, under system-managed

tape processing, DFSMSrmm ensures that the volume serial number and rack

number match, rejecting volumes that do not meet this requirement. Considering

these restrictions during BTLS implementation will make migration to

system-managed tape easier.

RMM SEARCHRACK RACK(*) LIMIT(*) MEDIANAME(BTLS) SCRATCH -

 CLIST NOLIST

LIBRARY SETCATEGORY UNIT(xxx) CATEGORY(SCRTCH)

Chapter 8. Running DFSMSrmm with BTLS 151

Defining Volume Information for BTLS-managed Volumes

DFSMSrmm does not interface with BTLS so volumes are not automatically defined

to the BTLS catalog. If you plan to use any of the volumes defined to DFSMSrmm

in an IBM TotalStorage Enterprise Automated Tape Library (3494) or IBM

TotalStorage Enterprise Automated Tape Library (3495) managed by BTLS, you

must also define the volumes in the BTLS catalog using the AMS LIBRARY

SETCATEGORY command.

When you delete volumes from DFSMSrmm, if the volumes are managed by BTLS

you also need to ensure the volumes are deleted from the BTLS catalog and

ejected from the IBM TotalStorage Enterprise Automated Tape Library (3494) or IBM

TotalStorage Enterprise Automated Tape Library (3495), if appropriate.

Returning BTLS-managed Volumes to Scratch

When volumes that reside in an IBM TotalStorage Enterprise Automated Tape

Library (3494) or IBM TotalStorage Enterprise Automated Tape Library (3495) are

returned to scratch by DFSMSrmm, information needs to be updated in the TCDB

or the BTLS catalog. DFSMSrmm provides no support to automatically update the

BTLS catalog.

If you perform scratch management of volumes that reside in an IBM TotalStorage

Enterprise Automated Tape Library (3494) or IBM TotalStorage Enterprise

Automated Tape Library (3495) that are managed by BTLS, ensure that BTLS

volume status information matches DFSMSrmm volume status information. After

you run expiration processing, prepare a list of volumes that are in scratch status.

Issue the LIBRARY SETCATEGORY command to update the status of each volume

to scratch. Issue this command for each volume even if the status of the volume is

scratch:

 LIBRARY SETCATEGORY UNIT(addr) VOLSER(volser) CATEGORY(SCRTCH)

You can use DFSMSrmm to help build the input to the SETCATEGORY function.

The TMP step shown in Figure 60 uses the RMM SEARCHVOLUME subcommand

to produce a simple list of scratch volumes in the CLIST data set. This list is then

input to IDCAMS in the LIBIN DD file. You can tailor the RMM SEARCHVOLUME

subcommand to list volumes that are based on more selective criteria.

 You need to modify this example if you are using system-managed tape with

DFSMS and BTLS-managed volumes. Limit the search to volumes that are in the

BTLS scratch pool. Otherwise all scratch volumes will become BTLS scratch and

will not be available for use as scratch on the DFSMS system. Refer to Basic Tape

//jobname JOB

//TMP EXEC PGM=IKJEFT01

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

RMM SEARCHVOLUME VOLUME(*) OWN(*) STATUS(SCRATCH) LIMIT(*) -

 CLIST

/*

//AMS EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//LIBIN DD DSN=userid.EXEC.RMM.CLIST,DISP=SHR

//SYSIN DD *

 LIBRARY SETCATEGORY UNIT(addr) CATEGORY(SCRTCH)

/*

Figure 60. Sample JCL to Return Volumes to Scratch

152 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Library Support Version 1 Release 1 User’s Guide and Reference for more

information on using the LIBRARY command.

Chapter 8. Running DFSMSrmm with BTLS 153

154 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 9. Managing Storage Locations

Storage locations are those places outside the removable media library where you

send removable media. Storage locations can be destinations for disaster recovery

related activities or any other purpose your installation chooses.

DFSMSrmm provides shelf-management of storage locations by assigning bin

numbers to shelf locations within a storage location. You can specify that

DFSMSrmm make bins available for reuse when volume moves have started or

make bins available only when volume moves have been confirmed.

DFSMSrmm automatically provides shelf-management for the built-in locations. This

means that DFSMSrmm assigns bin numbers to each volume in a built-in storage

location. You can request shelf-management of installation defined storage locations

when you create your location definitions using the parmlib LOCDEF command.

You can also specify media names in the parmlib LOCDEF command to provide a

way to segregate shelf locations in an installation defined storage location. The

media names you specify for a storage location should be the same as or a subset

of the media names you specify for pools in your removable media library. See

“Defining Pools in Parmlib Member EDGRMMxx” on page 101 for information about

pooling.

The movement and retention of volumes in and out of storage locations is done

during DFSMSrmm inventory management. During vital record processing,

DFSMSrmm sets the required location for each volume using information from vital

record specifications. The volume does not move to the required location during

vital record processing. During storage location management processing,

DFSMSrmm sets the destination for a volume using the required location

information if that volume can be moved. If a move is required, and the move is to

a shelf-managed storage location, DFSMSrmm assigns an empty bin in the target

location to the volume based on the media name and LOCDEF information. If no

empty bin numbers of the required media name are available, DFSMSrmm issues

message EDG2403E, and inventory management processing continues.

When the volume is returned from the storage location, the bin number is identified

for reuse as part of move confirmation processing. See Chapter 16, “Performing

Inventory Management,” on page 325 for information about inventory management

vital record processing and storage location management.

When stacked volume support is enabled, DFSMSrmm sets the destination for a

stacked volume at the completion of export processing. There is no destination set

for logical volumes. Logical volumes use the stacked volume destination.

You can also override the inventory management processing of specific volumes by

manually assigning destinations.

Types of Storage Locations

DFSMSrmm recognizes two types of storage locations: DFSMSrmm built-in storage

locations and installation defined storage locations. There are three DFSMSrmm

built-in storage locations named: LOCAL, DISTANT, and REMOTE.

© Copyright IBM Corp. 1992, 2007 155

Installation defined storage locations can be used for volumes for disaster or vital

records, or for controlling any media moving outside your installation. Using

DFSMSrmm installation defined storage locations, you can perform these tasks:

v Define more than three storage locations.

v Use any name up to 8 characters in length to name the storage location.

v Change the movement priority for the installation defined storage locations.

v Continue to use the DFSMSrmm built-in storage locations.

v Select shelf-management or no shelf-management for the installation defined

storage locations.

Defining Storage Locations

Use the LOCDEF parmlib command to define installation defined storage locations.

Storage locations can be any 1 to 8 character named location except for the

DFSMSrmm reserved location names ALL, HOME, and CURRENT. You can also

use the DFSMSrmm built-in storage location names as installation defined storage

locations. You can also define characteristics of system-managed storage locations

using the LOCDEF parmlib command. Table 18 shows the differences between

built-in and installation defined storage locations.

 Table 18. Differences between Built-in and Installation Defined Storage Locations

To

For Built-in Storage

Locations

For Installation-defined

Storage Locations

Segregate shelf locations by

media name

You cannot segregate built-in

storage locations by media

name or type of media.

You can segregate shelf

locations by specifying media

names

Define storage locations You do not need to define

built-in storage location

names. The three

are:LOCAL, DISTANT, and

REMOTE.

You can define an unlimited

number of storage location

names.

Define bin numbers DFSMSrmm uses bin

numbers 1 through 999999.

You can use any 6 character

value.

Shelf-manage DFSMSrmm automatically

provides shelf-management.

You can decide.

Determine location priority DFSMSrmm uses the default

priority.

You can define the priority in

the LOCDEF location

definitions.

Implementing Installation Defined Storage Locations

You might implement installation defined storage locations for these reasons:

v To choose the storage location names you want

v To change the dominance priority of the locations for inventory management vital

record processing for use when moves conflict

v To separate volumes by shape when sending them to storage locations

v To use storage locations without shelf management

v To use more than 3 storage locations

156 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

To implement installation defined storage locations, follow these steps:

 1. Identify:

a. The number of storage locations you require. DFSMSrmm provides you

with three built-in storage locations. If you use more than three storage

locations, use the LOCDEF parmlib command to define additional storage

locations. You can identify any location as an installation defined storage

location except the locations ALL, HOME, and CURRENT which are

DFSMSrmm reserved location names.

b. The location names you will use.

c. The priority you want to use for each location. Priority is used to resolve

movement conflicts that occur when more than one policy applies to a

volume or when multiple logical volumes reside on a stacked volume. The

relative priority of the locations is used to determine where a volume is

sent. Include the location name SHELF and any system-managed libraries

to develop your location priority.

d. The media names you will use in your installation. If you have different

media shapes in your installation, you can set movement policies based on

the different shapes. For example, you might have separate shelving for

tape reels, cartridge tape, and optical media due to differences in their

shape.

e. If you require storage locations without shelf management.

 2. Define LOCDEF parameters in parmlib. See “Defining Storage Locations:

LOCDEF” on page 168.

 3. Restart or refresh the DFSMSrmm procedure to use the updated parmlib

member.

 4. Define the bin numbers for the shelf-managed storage locations using the

RMM ADDBIN subcommand. See z/OS DFSMSrmm Guide and Reference for

information.

When the new location and bin numbers are defined, they are available for

assignment to volumes moving to the storage location. In order for

DFSMSrmm to use the new storage locations and bin numbers for storage

management, you must continue with step 5. Inventory management

sequentially assigns the bin numbers to moving volumes. If you do not define

vital record specifications and run inventory management, the locations and bin

numbers can only be assigned manually by using the RMM CHANGEVOLUME

subcommand.

 5. Create new vital record specifications or update existing vital record

specifications specifying the location names and media names you defined

using LOCDEF.

 6. Run inventory management vital record processing to produce a Vital Records

Retention Report. Check the report to ensure that the correct destination is

selected for each data set and volume retained by a vital record specification.

 7. If you plan to export logical volumes, run export processing before running

DFSMSrmm storage location management.

 8. Once the retention report is correct, run inventory management storage

location management and report extract processing to assign destinations and

bin numbers and to prepare an extract data set which you use as input to

EDGRPTD.

 9. Run EDGRPTD to produce the movement and inventory reports for use to pull

and ship the volumes to the correct locations.

10. Once volumes have been moved, use the RMM CHANGEVOLUME

subcommand to confirm volume movement.

Chapter 9. Managing Storage Locations 157

Implementing Storage Locations As Home Locations

When you use storage locations as the home location for volumes you can decide

how volumes are shelf managed. Shelf management is required if you want

volumes stored in a specific slot such as a rack number or a bin number. A shelf

location is not required if the volume is stored in a robotic tape library.

To avoid using shelf locations, define the storage location using

MANAGEMENTTYPE(NOBINS) and do not define rack numbers that match to the

volume serial numbers.

To use the rack number as the shelf location, define the storage location using

MANAGEMENTTYPE(NOBINS) and either, define rack numbers that match to the

volume serial numbers or use the POOL operand when adding or moving volumes.

To use the bin number as a shelf location define the storage location using

MANAGEMENTTYPE(BINS) and do not define rack numbers that match to the

volume serial numbers.

To implement storage locations as home locations, follow these steps:

1. Update the DFSMSrmm PARMLIB LOCDEF commands to include

TYPE(STORAGE,HOME) for those storage locations you want to also define as

home locations.

2. Refresh DFSMSrmm parameters by issuing the command

3. Use the RMM CHANGEVOLUME subcommand to set the home location of

volumes to be assigned to a specific storage home location.

4. Use the RMM CHANGEVOLUME subcommand to set the current location of

volumes already at the storage home location.

 If the storage location is not shelf-managed, you can include the

CONFIRMMOVE operand to confirm the move is completed. If the storage

location is shelf-managed, you must run EDGHSKP storage location

management processing to assign shelf locations to the volumes. If you want

specific shelf locations assigned, you can include the BIN operand on the RMM

CHANGEVOLUME subcommand.

F DFRMM,M=xx

RMM CHANGEVOLUME volser HOME(storname)

RMM CHANGEVOLUME volser LOCATION(storname)

158 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Managing Shelf Space for Home Locations

To assign or to change the assignment of shelf locations for volumes in the SHELF

location or a system-managed library, use the RMM ADDVOLUME subcommand

and the RMM CHANGEVOLUME subcommand with the RACK operand or the

POOL operand. DFSMSrmm does not automatically initiate assignment of rack

numbers as the shelf location for these volumes.

To automatically manage shelf space in a home location, use a shelf-managed

storage location as the volume’s home location. When a volume moves from or to a

storage location, DFSMSrmm automatically assigns a bin number as the shelf

location for the volume.

You can use either the rack number or the bin number as the shelf location for a

volume. DFSMSrmm issues message EDG4013I at mount time when a volume is in

a storage location, so that the location and bin number is available for the operator.

Reusing Bins in Storage Locations

If you enable extended bin support, you can specify that DFSMSrmm make bins

available for reuse when volume moves have started. To make bins available for

reuse when a volume move is started, specify the DFSMSrmm parmlib OPTION

command REUSEBIN(STARTMOVE) operand. The default operand is

REUSEBIN(CONFIRMMOVE), whether extended bin support is enabled or is not

enabled. See “Defining System Options: OPTION” on page 175 for detailed

information.

To enable extended bin support, create or update the control data set control record

using EDGUTIL with the EXTENDEDBIN(YES) option. See “Creating or Updating

the Control Data Set Control Record” on page 400 for detailed information.

Moving Volumes to Storage Locations

You can move volumes to storage locations using these methods:

v By location. See “Moving Volumes by Location” for additional information.

v By media shape. See “Moving Volumes by Media Shape” for additional

information.

v Manually. See “Moving Volumes Manually” on page 161 for additional

information.

Moving Volumes by Location

You can request that DFSMSrmm move volumes from specific locations by running

the EDGHSKP utility and using the LOCATION parameter, specifying both the

originating location and destination. If you use the INSEQUENCE parameter,

DFSMSrmm assigns volumes to bins in sequential volume serial number order and

bin number order.

Moving Volumes by Media Shape

You can describe removable media by their shape. For example, you can identify all

round media, all square media, all small size media, or all cartridge media. You can

use the VLPOOL parmlib command to define pools of media that are based on

shape and to set the default media name. You can use media shape to identify the

type of media that is allowed in a storage location. For example, you can keep tape

Chapter 9. Managing Storage Locations 159

reels, cartridges, and optical disks in different ranges of shelf space, where each

type of media requires a differently shaped slot for storage.

When you decide which media names to use, consider the different media you have

or might have in the future. You should use the same media names for storage

locations that you use for pools. Use the LOCDEF command MEDIANAME operand

to define each media name for each location to allow or restrict storage using

media name. You can also aggregate similar media to use the same range of shelf

space by using a media name of *.

Consider an installation with these types of media:

 Mini tape reels

 Tape reels

 Cartridge system tape

 Enhanced capacity cartridge system tape

There are four different types of media that fall into three basic media shapes: mini

reels, reels, and cartridges. The number of reels in use in the installation is

declining. Table 19 shows how the VLPOOL MEDIANAME and the LOCDEF

MEDIANAME values can be defined. A different VLPOOL MEDIANAME has been

defined for each different type of media. The media names describe the shape of

the volumes or a physical characteristic like TWOTONE for enhanced capacity CST.

In Table 19 (Case 1), the same LOCDEF media names are used to describe the

media that can reside in the storage location. All volumes are segregated by their

media name. In (Case 2), the cartridge system tape and enhanced capacity

cartridge system tape are defined with the same media name and can be stored

together because they are the same shape.

 Table 19. Storing Media of the Same Shape

Type of Media

VLPOOL

MEDIANAME

LOCDEF

MEDIANAME

(Case 1)

LOCDEF

MEDIANAME

(Case 2)

Mini tape reels MINI MINI MINI

Tape reels REELS REELS REELS

Cartridge system tape CART CART *

Enhanced capacity CST TWOTONE TWOTONE *

In Table 20, the media names REELS and CARTRDGE are used in the VLPOOL

command to describe media shape. Each basic type of media has been allocated a

different media name that gives information about the volumes. When the volumes

are moved to a storage location, as shown in Table 20 (Case 3), all volumes are

segregated by their media name. In (Case 4), all volumes are segregated by their

media name but use is made of the * media name.

 Table 20. Storing Media of Different Shapes

Type of Media

VLPOOL

MEDIANAME

LOCDEF

MEDIANAME

(Case 3)

LOCDEF

MEDIANAME

(Case 4)

Mini tape reels REELS REELS REELS

Tape reels REELS REELS REELS

Cartridge system tape CARTRDGE CARTRDGE *

Enhanced capacity CST CARTRDGE CARTRDGE *

160 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

By careful selection of media names you can segregate shelf space in your

removable media library using the VLPOOL parmlib command and in your storage

locations using LOCDEF. See “Organizing the Library by Pools” on page 97 for

information about the use of VLPOOL.

You can also use media name to control movement of volumes to

non-shelf-managed storage locations. For example, you might have a customer that

can only accept cartridge system tape. You can control the type of media sent to

that customer by defining the LOCDEF command with a specific media name. In

Figure 61, only volumes with a media name of CART can be moved to the CUST1

location.

 During inventory management DFSMSrmm checks the media name for the location

and prevents volume movement when the media name does not match.

DFSMSrmm issues message EDG2412E for each volume that cannot be moved

because its media name is not supported at the location.

Moving Volumes Manually

You can override automatic processing and control volume movement manually by

using the RMM CHANGEVOLUME subcommand with the MANUALMOVE operand.

To return the volume to automatic movement control, use the RMM

CHANGEVOLUME subcommand with the AUTOMOVE operand.

When you put a volume under manual move control, DFSMSrmm does not move

the volume anywhere automatically, even when it expires and is pending release.

Volume movement occurs only if you request it using the RMM CHANGEVOLUME

subcommand with the LOCATION operand.

To allow release processing, you must remove the volume from manual move

control unless the volume is in its home location. When a volume is in its home

location, DFSMSrmm performs release processing even if the volume is under

manual move control.

You might use manual move control to keep a volume on-site even though the

volume is flagged to be sent off-site for disaster recovery. To keep the volume

on-site or to request that the volume be moved back to its home location, you could

use this command:

 When a volume is put under manual move control, any outstanding move is

canceled. Moves can also be canceled by issuing the RMM CHANGEVOLUME

command with the LOCATION operand. The operand LOCATION(HOME) is

specified in Figure 62 to cancel any pending moves because the volume is in its

home location.

You might use manual move control for volumes you create on one system and

then send to other systems for processing. Define the other systems as locations

 LOCDEF LOCATION(CUST1) TYPE(STORAGE) MANAGEMENTTYPE(NOBINS) -

 MEDIANAME(CART)

Figure 61. Using Media Name to Control Volume Movement

RMM CHANGEVOLUME volser MANUALMOVE LOCATION(HOME)

Figure 62. Keeping Volumes On-site

Chapter 9. Managing Storage Locations 161

using the parmlib LOCDEF command. When a volume is ready to be sent to the

other system, you can confirm the volume move and put the volume under manual

move control at the same time. For example, to send a volume to another system

defined on a LOCDEF command as OTHER1, you could issue this command:

 The CONFIRMMOVE operand shown in Figure 63 confirms that the volume move

has completed. The MANUALMOVE operand shown in Figure 63 puts the volume

under manual move control and prevents the volume from being moved

automatically. When the volume is returned from the other system, remove the

volume from manual move control. Then confirm that the volume is back in its

home location by issuing this command.

Assigning Bins in Storage Locations

If you use the REASSIGN parameter, DFSMSrmm reassigns volumes to bins during

storage location management processing. See “EXEC Parameters for EDGHSKP”

on page 333 for a detailed description. Use both INSEQUENCE and REASSIGN

and specify the DFSMSrmm parmlib OPTION command REUSEBIN(STARTMOVE)

operand to maximize reuse of bins.

Changing Storage Locations

To change the bin management for a storage location information, follow these

steps:

1. Identify the storage locations information you want to change and the vital

record specifications that specify the storage location names.

2. Build RMM ADDVRS subcommands using the information from the vital record

specifications you want to change. Later you will issue these subcommands to

add the vital record specifications you delete. Build RMM DELETEVRS

subcommands for each vital record specification that contains the storage

location name you want to change.

3. Issue the RMM DELETEVRS subcommands in the background to delete all vital

record specifications that use the storage location you want to change.

4. Update the DFSMSrmm EDGRMMxx parmlib member LOCDEF command

MANAGEMENTTYPE operand for a storage location.

5. Restart the DFSMSrmm subsystem (F DFRMM,M=xx.) described in “Step 16:

Restarting z/OS with DFSMSrmm Implemented” on page 51.

6. Use the RMM ADDBIN subcommand to add bins required for the storage

location if the new MANAGEMENTTYPE is BIN.

7. Issue the RMM ADDVRS subcommands in the background to add the vital

record specifications that you previously deleted.

8. If you changed the management type for a location defined with

TYPE(STORE,HOME), follow these additional steps:

a. Issue the RMM CHANGEVOLUME subcommand with the HOME operand

for all the volumes that have the changed location defined as their home

location. This is done to correctly update the home location information

RMM CHANGEVOLUME volser LOCATION(OTHER1) CONFIRMMOVE MANUALMOVE

Figure 63. Sending a Volume to Another System

RMM CHANGEVOLUME volser LOCATION(HOME) CONFIRMMOVE AUTOMOVE

Figure 64. Returning a Volume from Another System

162 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

previously saved in the volume records. Use this command:

 followed by EXEC EXEC.RMM.CLIST to make this change.

b. Issue the RMM CHANGEVOLUME subcommand with the AUTOMOVE

operand followed by the RMM CHANGEVOLUME subcommand with the

MANUALMOVE operand for all the volumes that are under manual move

control and have the changed location being set as their required location.

This is done to clean up the required location information previously saved

in the volume records. For instance, you can use this command:

 followed by EXEC EXEC.RMM.CLIST to clean up the required location

information. Next, edit the EXEC.RMM.CLIST data set to change

AUTOMOVE to MANUALMOVE in all lines and then execute the edited data

set to return all the changed volumes back to the manual move control.

c. Issue the RMM CHANGEVOLUME subcommand with the MANUALMOVE

operand followed by the RMM CHANGEVOLUME subcommand with the

AUTOMOVE operand for all the volumes that are in automatic move mode

and have the changed location being set as their required location. This is

done to clean up the required location information previously saved in the

volume records. For instance, you can use this command:

 followed by EXEC EXEC.RMM.CLIST to clean up the required location

information. Next, edit the EXEC.RMM.CLIST data set to change

MANUALMOVE to AUTOMOVE in all lines and then execute the edited data

set to restore the automatic move mode for all the changed volumes.

9. Perform inventory management vital record processing and storage location

management to move volumes to the updated storage location.

Deleting Storage Locations

You can delete storage locations by removing the EDGRMMxx parmlib LOCDEF

definition for the location. Before removing the LOCDEF definition in parmlib, check

that:

v All bin numbers have been deleted in the location you want to delete.

v There are no volumes that are marked to be moved to the location.

v DFSMSrmm does not list any volumes for the location by using the RMM

SEARCHVOLUME subcommand with the LOCATION operand.

v There are no vital record specifications that use the location you want to delete.

RMM SEARCHVOLUME VOLUME(*) LIMIT(*) OWNER(*) -

 HOME(home_storage_location_name) -

 CLIST(’RMM CV ’,’ HOME(home_storage_location_name)’)

RMM SEARCHVOLUME VOLUME(*) LIMIT(*) OWNER(*) -

 REQUIRED(home_storage_location_name) -

 MANUALMOVE CLIST(’RMM CV ’,’ AUTOMOVE’)

RMM SEARCHVOLUME VOLUME(*) LIMIT(*) OWNER(*) -

 REQUIRED(home_storage_location_name) -

 AUTOMOVE CLIST(’RMM CV ’,’ MANUALMOVE’)

Chapter 9. Managing Storage Locations 163

Switching Volumes to Installation Defined Storage Locations

You can switch volumes from built-in storage locations to the installation defined

storage locations without moving the volumes.

Make sure you have defined the LOCDEF command in parmlib to identify the target

installation defined storage location and its attributes as shown in Figure 65.

 Issue the RMM CHANGEVOLUME subcommand with the BIN operand to assign

bin numbers for the volumes you are switching from the built-in storage location to

the installation defined storage location. For example, the volume MIKE01 resides

in the built-in storage location REMOTE in bin number 000010. To switch the

volume to the installation defined storage location REMOTE, issue:

The volume is allocated to the bin number in the installation defined storage

location and the original bin number in built-in location REMOTE is empty. To move

all the volumes you can use the data in the report extract file to generate the RMM

CHANGEVOLUME subcommands.

DFSMSrmm provides sample JCL as EDGJCVB in SAMPLIB. You can use this

sample to switch the storage location name to any installation defined storage

location name while keeping the assigned shelf location number the same.

Substitute the LOCATION(REMOTE) with LOCATION(storage_locname) you

choose.

Converting from Built-In Storage Locations

If you already have volumes stored in the DFSMSrmm built-in storage locations,

you need to decide if you migrate the volumes to installation defined storage

locations or allow the built-in storage locations to fall out of use when volumes are

moved out and not replaced.

Once you decide to move to installation defined storage locations, whether or not

you decide to continue to use the same names (LOCAL, DISTANT, and REMOTE),

you must redefine the vital record specification definitions so that DFSMSrmm

knows you are using installation defined storage locations.

The built-in storage locations LOCAL, DISTANT and REMOTE can be defined on

LOCDEF parameters. This gives you the ability to use the existing built-in names

rather than having to change the storage location names in use. When you use the

DFSMSrmm built-in storage locations in a LOCDEF parmlib command, the

DFSMSrmm built-in storage locations are treated like any other installation defined

storage location.

LOCDEF LOCATION(REMOTE) TYPE(STORAGE) MEDIANAME(CART) -

 MANAGEMENTTYPE(BINS)

Figure 65. Identifying an Installation Defined Storage Location

RMM CHANGEVOLUME MIKE01 LOCATION(REMOTE) BIN(000010) CONFIRMMOVE

164 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

You cannot use the LOCDEF command to change the PRIORITY of LOCAL,

DISTANT or REMOTE and have them otherwise continue to work as before. Once

you have defined the built-in names using LOCDEF:

v You can no longer use previously assigned bin numbers. You must define new

bin numbers using the media names that are specified in the LOCDEF

command.

v You must redefine the vital record specifications which reference these locations

so that volumes can be scheduled to move to the installation defined location.

If the built-in storage location names are defined using LOCDEF without the

PRIORITY operand, the default installation defined location priority is used.

Going Back to Built-In Storage Locations

If you converted built-in storage locations to installation defined storage locations as

described in “Converting from Built-In Storage Locations” on page 164, you can go

back to using the storage locations as built-in storage locations.

1. Remove the LOCDEF commands that use the built-in names.

2. Restart or refresh the DFSMSrmm procedure to use the updated parmlib

member.

3. Define the bin numbers for the built-in storage locations using the RMM

ADDBIN subcommand.

4. If LOCAL, DISTANT, or REMOTE were used as installation defined storage

location names, any vital record specification using the names must be deleted

and then redefined.

5. Run inventory management vital record processing to produce a Vital Records

Retention report.

6. Run inventory management storage location management processing to assign

destinations and bin numbers. Request a report extract file for EDGRPTD.

7. Run EDGRPTD to produce the movement and inventory reports for use to pull

and ship the volumes to the correct locations.

8. Once volumes have been moved, use the RMM CHANGEVOLUME

subcommand to confirm volume movement.

9. Delete the empty bins used for the installation-defined storage location.

Chapter 9. Managing Storage Locations 165

166 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 10. Using the Parmlib Member EDGRMMxx

This topic describes the options that you can specify in the parmlib member

EDGRMMxx. You can use system symbols to enable easier sharing of the

EDGRMMxx parmlib member. See z/OS MVS Initialization and Tuning Reference

for how to use system symbols in parmlib members.

Do not specify duplicate operands. If you do, DFSMSrmm uses the last value you

specified.

Note: DFSMSrmm does not ignore columns 72 to 80 in the parmlib member.

However, if you wish to take advantage of the symbolic parmlib parser, you

should avoid placing any data, even comments, in columns 72 to 80.

Specify the options using this format:

You can include comments in the parmlib member by enclosing your comments

within /* */ as shown in this example. Comments can precede and follow the

parameters as well as appear within the parameters:

 /*Your command syntax example*/

 command operand1(value1) operand2(value2) /* comment */ -

 operand3(value3) /*end of command*/

DFSMSrmm processes the commands in the EDGRMMxx parmlib member and

then, if there is a second member named, processes the second member. Any

OPTION operands specified, other than MEMBER, override the values set in the

first member. The MEMBER operand is ignored if it is also specified in the second

parmlib member. Any other parmlib commands can add to, but not replace, update

or duplicate, any command from the first parmlib member. The processing by

DFSMSrmm is as if all of the parmlib contents of both members had been specified

in a single parmlib member.

The parmlib member EDGRMMxx uses these commands:

v LOCDEF that is described in “Defining Storage Locations: LOCDEF” on page

168.

v MNTMSG that is described in “Defining Mount and Fetch Messages: MNTMSG”

on page 172.

v OPTION that is described in “Defining System Options: OPTION” on page 175.

v REJECT that is described in “Defining Tapes Not Available on Systems:

REJECT” on page 200.

v SECCLS that is described in “Defining Security Classes: SECCLS” on page 202.

v VLPOOL that is described in “Defining Pools: VLPOOL” on page 205.

 command operand1(value1) operand2(value2) -

 operand3(value3)

 command operand1(value1,value2, +

 value3,value4) +

© Copyright IBM Corp. 1992, 2007 167

|
|
|

|
|
|

|
|
|
|
|
|
|
|

Use the OPTION command to set defaults for DFSMSrmm on a system. Use the

VLPOOL command to override the system-wide defaults for particular tape pools.

Commands in the parmlib member EDGRMMxx are processed for symbols

substitution before the commands are parsed.

Defining Storage Locations: LOCDEF

Use the LOCDEF command to define installation defined storage locations to

DFSMSrmm. You can also use LOCDEF to set the priority for shelf locations and

system-managed tape libraries. The LOCDEF command in Figure 66 defines the

location MIKESLOC, which accepts media with the media name SQUARE, and

which is shelf-managed.

LOCDEF Command Syntax

Figure 67 shows the syntax of the LOCDEF Command for defining storage

locations.

 Figure 68 shows the syntax of the LOCDEF Command for defining shelf locations

and system-managed libraries.

 /* LOCDEF - Add a location definition */

LOCDEF LOCATION(MIKESLOC) MEDIANAME(SQUARE) TYPE(STORAGE) -

 MANAGEMENTTYPE(BINS)

Figure 66. Parmlib Member EDGRMMxx LOCDEF Command Example

�� LOCDEF LOCATION(DISTANT)

LOCAL

REMOTE

installation_defined_location_name

 �

�

�

 ,

MEDIANAME(

medianame

)

*

STORAGE

,HOME

TYPE(

)

�

� MANAGEMENTTYPE(BINS)

NOBINS

PRIORITY(priority)
 ��

Figure 67. Parmlib Member EDGRMMxx LOCDEF Command for Defining Storage Locations

�� LOCDEF LOCATION(SHELF)

system_managed_library_name
 �

�
LIBRARY

TYPE(

)

PRIORITY(priority)
 ��

Figure 68. Parmlib Member EDGRMMxx LOCDEF Command for Defining Shelf and

System-Managed Libraries

168 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|

LOCDEF Command Operands

LOCATION(installation_defined_location_name|

system_managed_library_name|LOCAL|DISTANT|REMOTE|SHELF)

Specifies the name of the location being defined.

installation_defined_location_name can be any 1 to 8 character name or

LOCAL, DISTANT, REMOTE, or SHELF. system_managed_library_name can

be any 1 to 8 character name starting with a nonnumeric. The DFSMSrmm

reserved location names HOME, CURRENT or ALL cannot be used as location

names. When you use SHELF or a system-managed library, the only other

operands that can be specified are PRIORITY and TYPE.

 All LOCDEF location names must be unique. DFSMSrmm issues message

EDG0225E if you define duplicate location names. You cannot have a storage

location with the same name as a system-managed library. If you specify the

same name, DFSMSrmm issues message EDG0233E. You cannot specify a

distributed library name. If you specify a distributed library name, DFSMSrmm

issues message EDG0235E.

MANAGEMENTTYPE(BINS|NOBINS)

Use this operand to identify the shelf-management technique you want for the

location. This operand is required when defining a location of type STORAGE.

BINS DFSMSrmm shelf-manages the location by assigning bin numbers to

volumes in the location.

NOBINS

Specifies that the location is not to be shelf-managed. Volumes sent to

this location are not assigned bin numbers. However, they will still only

be eligible to be sent to the location if their medianame or * appears in

the LOCDEF media name list.

 You can change the type of a location by specifying the LOCDEF command

with the TYPE operand. The changed value applies to the vital record

specifications you define after you make the change. To implement the change,

you must change the location information in existing vital record specifications

and run inventory management vital record processing. During vital record

processing, DFSMSrmm changes the required location and location type for

each volume. See “Changing Storage Locations” on page 162 for additional

information.

 Although vital record specifications must be updated and inventory management

vital record processing must be run to implement the new LOCDEF

MANAGEMENTTYPE, you can use the new LOCDEF MANAGEMENTTYPE

when issuing DFSMSrmm CHANGEVOLUME subcommands with the

LOCATION operand.

MEDIANAME(medianame|*)

Specifies a list of the media names that are acceptable for the storage location.

medianame can be any 1 to 8 character name you choose to describe a media

name, type of media, a shape, or size. Examples of MEDIANAME include:

CART, ROUND, SQUARE, 3490, 3590, TAPE, OPTICAL, CASSETTE, and so

on. The media names you use on the LOCDEF commands should be the same

as or a subset of the media names you use for your installation VLPOOL

commands. See “Defining Pools: VLPOOL” on page 205.

 When you specify MEDIANAME(*) using the parmlib LOCDEF command or the

RMM ADDBIN or RMM ADDRACK subcommands, any volume with any media

Parmlib Member LOCDEF Command

Chapter 10. Using the Parmlib Member EDGRMMxx 169

name can be sent to the location and DFSMSrmm does not segregate the

volumes by shape. For example, if you specified a LOCDEF command with the

media names:

LOCDEF LOCATION(MYLOC) MEDIANAME(3480,*)

then you could use these media names on RMM ADDBIN subcommand

requests:

RMM ADDBIN KG0002 LOCATION(MYLOC) MEDIANAME(3480)

and

RMM ADDBIN KG0100 LOCATION(MYLOC) MEDIANAME(*)

The example shown in Figure 69 is not valid because the MEDIANAME(3420)

was not listed on the LOCDEF parameters for the storage location.

PRIORITY(1-9999)

Defines the priority of this location relative to other locations. Lower numbers

have higher priorities. PRIORITY is used to determine where to move a volume

when a volume is assigned multiple destinations based on matching to two or

more vital record specification definitions. PRIORITY is used to select a location

in case of a move conflict. Move conflicts include:

v Multiple data sets with different required locations on one volume.

v Multiple volumes with different required locations in one volume set and the

DFSMSrmm EDGRMMxx parmlib option is set for movement by volume set.

v Multiple logical volumes with different required locations on one stacked

volume.

You can override this value by specifying a PRIORITY on the vital record

specification. If PRIORITY is omitted, priority is based on the location type:

Priority Location Name or Type

2000 Installation defined STORAGE type, including LOCAL,

DISTANT, and REMOTE if they are specified on LOCDEF.

4800 AUTO automated tape libraries

4900 MANUAL manual tape libraries

5000 SHELF location

For each location you do not specify in a LOCDEF, the default priority is

determined from this list:

Priority Location Name or Type

100 REMOTE location

200 DISTANT location

300 LOCAL location

2000 installation-defined STORAGE type

4800 AUTO automated tape libraries

4900 MANUAL manual tape libraries

RMM ADDBIN KG0005 LOCATION(MYLOC) MEDIANAME(3420)

Figure 69. Using a Medianame Not Defined in the LOCDEF Command

Parmlib Member LOCDEF Command

170 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

5000 SHELF location

TYPE(STORAGE|LIBRARY)

Use this operand to identify the type of location you are defining. The value can

be either STORAGE or LIBRARY. This operand is optional. If MEDIANAME or

MANAGEMENTTYPE are specified, only TYPE(STORAGE) is valid. If you do

not specify the TYPE operand DFSMSrmm sets a default value based on

whether you specify the MEDIANAME or MANAGEMENTTYPE operands.

STORAGE,HOME

Specifies that the location is a storage location, either shelf-managed or

non-shelf-managed. You can identify a storage location as a home location

by specifying TYPE(STORAGE,HOME). When you identify a storage

location as a home location, you can manage volumes in a storage location

like volumes that reside in a LIBRARY location. You can:

v Schedule release actions for volumes when they return to their storage

home location

v Return volumes to scratch status while they reside in their storage home

location

You can use STORAGE,HOME to define location names for

non-system-managed robot libraries in your installation and assign a

storage location name to that library instead of using the default value of

SHELF.

LIBRARY

Specifies that the location is either SHELF or a system-managed library.

The only reason to define these locations on LOCDEF parameters is to

change the default priority for the location. For a LIBRARY type location the

only LOCDEF operands you can use are PRIORITY and LOCATION.

 You can change the shelf-management technique used in a location by

specifying the LOCDEF command with the TYPE operand. The changed value

applies to the vital record specifications you define after you make the change.

To implement the change, you must change the location information in existing

vital record specifications and run inventory management vital record

processing. During vital record processing, DFSMSrmm changes the required

location and location type for each volume.

 Although vital record specifications must be updated and inventory management

vital record processing must be run to implement the new LOCDEF TYPE

value, you can use the new LOCDEF TYPE when issuing DFSMSrmm

CHANGEVOLUME subcommands with the LOCATION operand.

Points on Usage:

1. A LOCDEF parameter is required in the DFSMSrmm parmlib member for each

installation defined storage location name and when you want to define a

movement priority for the location.

If you have multiple systems sharing a control data set, use the same LOCDEF

commands on all sharing systems. However, you only need to define storage

locations to the systems where you will use any RMM ADDVRS, ADDBIN or

CHANGEVOLUME subcommands, and where you plan to run inventory

management. During storage location management processing, DFSMSrmm

ensures that the storage locations used during vital record processing are

defined by LOCDEF commands. If you specify a system-managed library name

on a LOCDEF command, DFSMSrmm validates that it is a library which is

defined on the current system. If your system-managed libraries are not defined

Parmlib Member LOCDEF Command

Chapter 10. Using the Parmlib Member EDGRMMxx 171

on all systems, DFSMSrmm assumes a TYPE(LIBRARY) location is manual

tape library if it is not defined as a system-managed library. During inventory

management vital record selection processing, if no priority is obtained from a

vital record specification, DFSMSrmm obtains the priority from the LOCDEF

commands. If no LOCDEF command is specified and DFSMSrmm knows that

the location is a system-managed library, DFSMSrmm uses the default priority

for the location type. Otherwise DFSMSrmm uses a priority of 9999.

2. If a LOCDEF parameter is altered or removed, existing bin numbers which are

now in a location which is not defined via LOCDEF, or which have a media

name which is no longer listed under the LOCDEF MEDIANAME operand, are

handled correctly. Bin numbers are freed up when a volume is moved from the

storage location or can be removed using the RMM DELETEBIN subcommand.

You cannot add more bin numbers nor assign the bin numbers to new volumes

going to the location.

3. Changes to LOCDEF PRIORITY or MEDIANAME operands take effect during

the first run of vital record processing after DFSMSrmm has been stopped and

restarted, or the MODIFY command used to update the changed LOCDEF

parameters in parmlib.

4. Changes to LOCDEF MANAGEMENTTYPE or TYPE operands only take effect

after the vital record specifications that refer to the value have been redefined,

or when using the LOCATION operand on the RMM ADDVOLUME or

CHANGEVOLUME subcommands.

5. See Chapter 9, “Managing Storage Locations,” on page 155 for more

information on LOCDEF and storage locations.

Defining Mount and Fetch Messages: MNTMSG

Use the MNTMSG command to tailor mount and fetch messages so they display

the volume serial number, rack number, and pooling decision. The pooling decision

can be a pool prefix, pool name, or storage group name. The operator can use this

information to pull and mount volumes.

MNTMSG is an optional parmlib command. Specify a MNTMSG command for any

message you want DFSMSrmm to update. When you specify the MNTMSG

command, you must include all the MNTMSG operands.

DFSMSrmm inserts the required information within the message text (if the

message has no continuation lines) or at the end of the message based on the

value you use with the RACK operand. For nonspecific mount requests, if you have

defined a pool name with the VLPOOL command, DFSMSrmm provides a pool

name or storage group name rather than a pool prefix in the message. DFSMSrmm

updates mount messages with a pool name only when DFSMSrmm updates

messages at the end of the message text.

Use the VOLUME operand to define the position of the volume serial number in a

message. Figure 70 on page 173 shows examples of the parmlib member

EDGRMMxx MNTMSG command specified with the VOLUME operand defined for

4-digit device numbers. If your definitions specify a volume serial number offset 1

less than the value shown in the examples, your definitions are from z/OS

supported 3-digit device numbers and should be updated to match the position of

the volume serial number when 4-digit device numbers are used.

Parmlib Member LOCDEF Command

172 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

JES3 Considerations: When you use the JES3 IATUX71 exit, use the RACK

operand to determine if you want the rack number to replace the volume serial

number in the message or appended to the end of the message. If the RACK

operand value indicates a position within the length of the message, DFSMSrmm

replaces the volume serial number in the message with the required information. If

the RACK operand value exceeds the message length, DFSMSrmm appends the

information to the end of the message.

When the JES3 IATUX71 exit is not used, use the TYPE=MCS keyword on at least

one CONSOLE statement in the JES3 parmlib. This activates JES3 MCS console

support so JES3 issues messages as WTO messages rather than directly to JES3

consoles.

MNTMSG Command Syntax

Figure 71 shows the syntax of the MNTMSG command:

 DFSMSrmm supplies a sample set of mount messages for your use. You can define

additional MNTMSG commands to include other IBM operator messages and

messages produced by your installation.

For example, if you define:

MNTMSG MSGID(IEF233A) ID(1) VOLUME(16) RACK(999)

your mount message displays:

IEF233A M 0480,999003,,J1400001,S0300 - RACK = T14103

If you specify:

MNTMSG MSGID(IEF233A) ID(1) VOLUME(16) RACK(16)

your mount message displays:

IEF233A M 0480,T14103,,J1400001,S0300

If you have a non-specific mount request where you have defined scratch pool AB*

for that system, and you specify:

 /* MNTMSG - Add RACK= or POOL= at end of WTOs */

MNTMSG MSGID(IEF233A) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(IEF233D) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(’IEF234E K’) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(’IEF234E R’) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(’IEF234E D’) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(’IEF455D’) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(IEC501A) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(’IEC502E K’) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(’IEC502E D’) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(’IEC502E R ’) ID(1) VOLUME(16) RACK(999)

MNTMSG MSGID(’IEC502E RD’) ID(1) VOLUME(17) RACK(999)

MNTMSG MSGID(’IEC502E RK’) ID(1) VOLUME(17) RACK(999)

MNTMSG MSGID(IAT5110) ID(1) VOLUME(44) RACK(999)

MNTMSG MSGID(IAT5210) ID(1) VOLUME(50) RACK(999)

MNTMSG MSGID(IAT5410) ID(1) VOLUME(20) RACK(999)

Figure 70. Parmlib Member EDGRMMxx MNTMSG Command Examples for 4-digit Devices

�� MNTMSG MSGID(nnnnnnnnnnnn) ID(nnn) RACK(nnn)

999
 VOLUME(nnn) ��

Figure 71. Parmlib Member EDGRMMxx MNTMSG Command Syntax

Parmlib Member MNTMSG Command

Chapter 10. Using the Parmlib Member EDGRMMxx 173

MNTMSG MSGID(IEF233A) ID(1) VOLUME(16) RACK(999)

your mount message displays:

IEF233A M 0480,PRIVAT,,J1400001,S0300 - POOL = AB****

If you specify:

MNTMSG MSGID(IEF233A) ID(1) VOLUME(16) RACK(16)

your mount message displays:

IEF233A M 0480,AB****,,J1400001,S0300

MNTMSG Command Operands

ID(nnn) Specifies the starting position of the message identifier. Specify a

value between 1 and 128.

 Default: None. You must specify ID when you define a MNTMSG

command in parmlib.

MSGID(nnnnnnnnnnnn)

Specifies message text 1 to 12 characters long. Normally the text is

the message number, but it can include additional characters and

blanks. You must enclose the MSGID value in quotes if you use

blanks or special characters.

 Default: None. You must specify MSGID when you define a

MNTMSG command in parmlib.

RACK(nnn|999)

Specifies the position to insert the rack number, pool prefix, pool

name, or storage group in the message. Specify a value between 1

and 128 to insert the value within the message text.

 Use 999 if you want to add the value to the end of the message.

 If the message has continuation lines, DFSMSrmm adds the

required information to the end of the message regardless of the

value specified with the RACK operand.

 DFSMSrmm adds either RACK=rack_number or POOL=pool_value

to the end of the message if there is enough space for the

additional information. If you specify RACK(999), DFSMSrmm adds

’- POOL=pool_value’ if a pool name or storage group is substituted

for a non-specific volume mount. For a rack number, DFSMSrmm

writes nnnnnn. For a pool prefix, DFSMSrmm writes nnnnn*. For a

pool name or storage group, DFSMSrmm writes nnnnnnnn.

v If you specify RACK(999), DFSMSrmm adds - RACK=nnnnnn if a

rack number is added:

IEF233A M 0480,999003,,J1400001,S0300 - RACK=T14103

v If you specify RACK(999), DFSMSrmm adds - POOL=ppp* if a

pool prefix is substituted for a non-specific volume mount:

IEF233A M 0480,PRIVAT,,J1400001,S0300 - POOL=AB****

v If you specify RACK(999), DFSMSrmm adds - POOL=pool_value

if a pool name is substituted for a non-specific volume mount.

IEF233A M 0480,PRIVAT,,J1400001,S0300 - POOL=SCRTCH00

Parmlib Member MNTMSG Command

174 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

If there is not enough space to add the information, DFSMSrmm

overlays the end of the message text with the 6 to 8 character rack

number or pool value preceded by a -.

 To display the pool prefix in the message, you must specify the

SYSID operand on the VLPOOL command as described in

“Defining Pools: VLPOOL” on page 205.

 Default: None. You must specify RACK when you define a

MNTMSG command in parmlib.

VOLUME(nnn) Specifies the position of the volume serial number in the message.

Specify a value between 1 and 128.

 Default: None. You must specify VOLUME when you define a

MNTMSG command in parmlib.

Defining System Options: OPTION

Use the OPTION command to define the installation options for DFSMSrmm.

Figure 72 on page 176 shows an example of the OPTION command and the

operands that you can code in the parmlib member EDGRMMxx.

Parmlib Member MNTMSG Command

Chapter 10. Using the Parmlib Member EDGRMMxx 175

OPTION Command Syntax

Figure 73 shows the syntax of the OPTION command:

�� OPTION

JOB

ACCOUNTING(

)

STEP

BACKUPPROC(proc_name)

RMM

BLP(

)

NORMM

 �

 OPTION OPMODE(P) /* protect mode */ -

 ACCOUNTING(J) /* Account information */ -

 BACKUPPROC(RMMBKUP) /* backup procedure */ -

 BLP(RMM) /* bypass label process */ -

 CATRETPD(12) /* catalog retention */ -

 CATSYSID(SYSTEM1,SYSTEM2,SYSTEM3,SYSTEM4,SYSTEM5, +

 SYSTEM6,SYSTEM7,SYSTEM8) /* CATALOG SYS */ -

 CDSID(MVS2) /* control data set ID */ -

 COMMANDAUTH(OWNER) /* security check */ -

 DATEFORM(E) /* European dates */ -

 DISPDDNAME(DISPDD) /* DD card name */ -

 DISPMSGID(EDG4054I) /* WTO message number */ -

 DSNAME(RMM.CONTROL.DSET) /* control data set */ -

 IPLDATE(NO) /* ipl date */ -

 JOURNALFULL(75) /* journal percentage */ -

 /* threshold */ -

 JRNLNAME(RMM.JOURNAL.DSET) /* journal */ -

 LINECOUNT(60) /* lines per page */ -

 LOCALTASKS(10) /* number of tasks */ -

 MASTEROVERWRITE(LAST) /* overwrite default */ -

 MAXHOLD(100) /* number of records */ -

 MAXRETPD(NOLIMIT) /* maximum retention */ -

 MEDIANAME(3480) /* media name */ -

 MEMBER(&SYSCLONE) /* system specific membe*/ -

 MOVEBY(VOLUME) /* movement processing */ -

 MSG(M) /* message mixed case */ -

 NOTIFY(N) /* no notification */ -

 PDA(ON) /* PDA trace enabled */ -

 PDABLKCT(255) /* PDA block count */ -

 PDABLKSZ(12) /* PDA blocksize */ -

 PDALOG(OFF) /* Disable trace logging*/ -

 PREACS(NO) /* Preacs option */ -

 RETAINBY(VOLUME) /* retention processing */ -

 RETPD(5) /* default retention */ -

 REUSEBIN(CONFIRMMOVE) /* reuse bin */ -

 SCRATCHPROC(RMMSCR) /* scratch procedure */ -

 SMFAUD(248) /* SMF records */ -

 SMFSEC(249) /* SMF records */ -

 SMSACS(NO) /* SMSACS option */ -

 SMSTAPE(UPDATE(EXITS,SCRATCH,COMMAND),PURGE(YES)) -

 /* TCDB update and purge*/ -

 SYSID(DG4) /* system name */ -

 TPRACF(AUTOMATIC) /* automatic */ -

 TVEXTPURGE(RELEASE) /* EDGTVEXT action */ -

 UNCATALOG(Y) /* catalog option */ -

 VRSCHANGE(VERIFY) /* VRS change information*/ -

 VRSEL(NEW) /* VRS processing */ -

 VRSJOBNAME(2) /* retention by job name*/ -

 VRSMIN(1,FAIL) /* VRS minimum */

Figure 72. Parmlib Member EDGRMMxx OPTION Command Examples

Figure 73. Parmlib Member EDGRMMxx OPTION Command Syntax

Parmlib Member OPTION Command

176 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

�
12

CATRETPD(

ret_hours

)

�

CATSYSID(

*

)

,

sys_ID_list

CDSID(ID)
 �

�
CLIENT(SERVERNAME(Servername) PORT(PortNumber))

�

,

OWNER

COMMANDAUTH(

DSN

)

 �

�
JULIAN

DATEFORM(

)

EUROPEAN

AMERICAN

ISO

DISPDDNAME(DD_name)

EDG4054I

DISPMSGID(

)

message_id

 �

�
MASTER DD

DSNAME(

)

name

NO

IPLDATE(

)

YES

75

JOURNALFULL(

)

nn

 �

�
JOURNAL DD

JRNLNAME(

)

name

54

LINECOUNT(

)

nnn

10

LOCALTASKS(

)

number

 �

�
LAST

MASTEROVERWRITE(

)

MATCH

USER

ADD

100

MAXHOLD(

)

nnn

NOLIMIT

MAXRETPD(

)

nnnn

 �

�
3480

MEDIANAME(

medianame

)

MEMBER(parmlib_suffix)

VOLUME

MOVEBY(

)

SET

 �

�
MIXED

MSG(

)

UPPER

NO

NOTIFY(

)

YES

PROTECT

OPMODE(

)

MANUAL

RECORD

WARNING

ON

PDA(

)

NONE

OFF

 �

�
255

PDABLKCT(

)

nnn

blksz

PDABLKSZ(

)

nn

ON

PDALOG(

)

OFF

NO

PREACS(

)

YES

 �

�
VOLUME

RETAINBY(

)

SET

5

RETPD(

)

nnnn

CONFIRMMOVE

REUSEBIN(

)

STARTMOVE

 �

�
EDGXPROC

SCRATCHPROC(

)

proc_name

10

SERVER(PORT(port_number) SERVERTASKS(

))

number

 �

�
No SMF audit records

SMFAUD(

)

nnn

No SMF security records

SMFSEC(

)

nnn

 �

�
NO

SMSACS(

)

YES

SMF System name

SYSID(

)

System name

 �

�
SMSTAPE(

)

ASIS

UPDATE

(

)

PURGE

(

)

EXITS

SCRATCH

COMMAND

NO

YES

 �

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 177

�
NONE

TPRACF(

)

AUTOMATIC

CLEANUP

PREDEFINED

RELEASE

TVEXTPURGE(

)

NONE

EXPIRE

YES

UNCATALOG(

)

NO

SCRATCH

 �

�
VERIFY

VRSCHANGE(

)

INFO

(1)

OLD

VRSEL(

)

NEW

2

VRSJOBNAME(

)

1

 �

�
1

FAIL

VRSMIN(

,

)

countrange

WARN

INFO

 ��

Notes:

1 The VRSEL(OLD) option will be removed in a future release of z/OS. Please

migrate to using VRSEL(NEW).

OPTION Command Operands

ACCOUNTING(JOB|STEP)

Specifies whether DFSMSrmm records JOB or STEP accounting

information along with volume information.

JOB DFSMSrmm records the accounting information from the JOB

statement of the JCL.

STEP DFSMSrmm records the accounting information from the EXEC

statement of the JCL. If you specify STEP and there is no

accounting information in the EXEC statement, DFSMSrmm records

the JOB statement accounting information.

 Default: ACCOUNTING(JOB).

BACKUPPROC

Specifies the name of the procedure that you want to be started

automatically when the journal percentage full threshold is reached.

 Specify a valid alphanumeric procedure name from 1 to 8 characters. If no

name is specified, then no automatic start command is issued. See “Steps

for Automating Control Data Set Backup and Journal Clearing” on page 369

for more information.

 Default: None. DFSMSrmm ignores BACKUPPROC on the client system.

BLP(RMM|NORMM)

Specifies how DFSMSrmm controls bypass label processing (BLP).

 Authorization to perform BLP is still dependent on the ICHBLP resource in

the RACF FACILITY class, and the ability to use BLP can still be controlled

via JES.

Note: DFSMSrmm allows BLP processing to continue if a volume is

mounted with a VOL1 header label that matches the volume serial

number specified in JCL or if the volume has no label. When a

labeled volume is mounted and the volume serial number does not

match the requested volume, DFSMSrmm prevents processing when

either volume is defined to DFSMSrmm. To circumvent this

DFSMSrmm processing, you can request that DFSMSrmm ignores

Parmlib Member OPTION Command

178 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

the volume serial number as described in “Using EDGUX100 to

Ignore Duplicate or Undefined Volume Serial Numbers” on page 271.

RMM

You can use BLP for input from and output to volumes in user status,

and for input from volumes in master status.

NORMM

You can use BLP under the normal system controls and DFSMSrmm

records the activities you perform on tapes. You can also use BLP for

input from and output to volumes in user and master status, and for

output to scratch tapes. BLP can be used for reading and writing of

master and user status tapes and for output to scratch tapes. BLP read

of scratch tapes is not supported.

 For scratch tapes written using BLP, DFSMSrmm changes the volume

to master status and sets the initialize release action so that the tape is

correctly labeled on return to scratch. DFSMSrmm also overrides the

logical volume serial number generated by OPEN for BLP output to

scratch tapes, so that the correct volume serial number is used for

cataloging of data sets.

 DFSMSrmm does not allow no label (NL) tapes to be mounted in

response to a scratch request. However, you can use BLP to create NL

tapes during scratch processing.

 Default: BLP(RMM)

CATRETPD(ret_hours)

Specifies the number of hours from creation that a data set should be

retained if it has not been cataloged and matches a vital record

specification with the WHILECATALOG operand.

 DFSMSrmm retains the data set for the catalog retention period if the data

set has never been cataloged. DFSMSrmm does not retain the data set if

DFSMSrmm detected that the data set was cataloged and then uncataloged

during the catalog retention period.

 ret_hours is 0-9999 hours. For example, CATRETPD(24) keeps data sets

for 24 hours. Set ret_hours to 0 to request that DFSMSrmm does not

perform this processing.

 Default: CATRETPD(12).

CATSYSID(*|sys_ID_list)

Specify CATSYSID to enable DFSMSrmm catalog synchronization. Use the

CATSYSID operand to identify the user catalogs you want tracked when

you run the DFSMSrmm EDGHSKP utility with the CATSYNCH operand to

exploit catalog status tracking. All the systems you identify must have the

code that supports catalog synchronization. See“Running DFSMSrmm

Catalog Synchronization” on page 359 for more information.

 CATSYSID(*) means that all catalogs are fully shared. You must specify an

* to specify that catalogs are fully shared so that any data set can be

processed by DFSMSrmm on any DFSMSrmm subsystem.

 CATSYSID(sys_ID_list) provides a list of DFSMSrmm system IDs that share

tape data set user catalogs with this DFSMSrmm subsystem. You can

identify up to 16 system IDs for DFSMSrmm subsystems. You must specify

a list of system IDs when user catalogs are not shared and must ensure

they are synchronized with the DFSMSrmm control data set before you run

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 179

inventory management vital record processing. Be sure to include IDs for

systems that you no longer use but for which you are still retaining tape

data sets.

 Default: None.

CDSID(ID)

Specifies the identifier of the control data set that must be used on this

system. Specify a value one to eight alphanumeric characters long. This ID

is used by DFSMSrmm Web services to distinguish retrieved data between

multiple control data sets. Ensure that each DFSMSrmm control data set

has a unique CDSID ID.

 When you start DFSMSrmm, the CDSID ID is compared to the ID in the

control data set control record. If the IDs match, DFSMSrmm startup

continues. If the control data set does not have an ID, DFSMSrmm creates

the ID in the control record from the CDSID. If the IDs do not match,

DFSMSrmm startup fails and DFSMSrmm issues a message to the

operator to select another parmlib member.

 If you do not specify a value for CDSID, you cannot start DFSMSrmm (on

toleration systems, a warning message is issued and startup continues as

long as the DFSMSrmm control data set does not have a CDSID). See

“Creating or Updating the Control Data Set Control Record” on page 400 for

information about how the DFSMSrmm EDGUTIL utility sets the control

data set ID.

 Default: None.

CLIENT(SERVERNAME(ServerName) PORT(PortNumber))

Specifies the type of system you want to set up. CLIENT is mutually

exclusive with SERVER. If neither client nor server are specified,

DFSMSrmm starts as a standard system

SERVERNAME(servername)

The servername can either be an IP address, a fully

qualified domain name, or a server host name. DFSMSrmm

uses the domain name system (DNS) to resolve a domain

name or a host name into an IP address. SERVERNAME is

a required operand when you specify CLIENT. servername

can be 63 alphanumeric characters, period (.), and hyphen

(-). The host name can be a maximum of 63 characters.

The host name must contain one or more tokens separated

by a period. Each token must be larger than one character.

The first character in each token must start with a letter.

The remaining characters in each token can be a letter,

number, or hyphen. For example,

CLIENT(SERVERNAME(RMMPLX1.MAINZ.IBM.COM)

PORT(1950)) tells DFSMSrmm to start as a client without

direct DASD access and to share the tape inventory in

access by the RMM server with the host name RMMPLX1

using network IP protocol port 1950.

PORT(PortNumber)

Use this operand to specify the port number to be used for

IP communication. The PORT operand is required. Specify

a value from 1024 to 65535. Port numbers 1 to 1023 are

reserved. Also, the client port number and server port

number must match for the systems to communicate.

Parmlib Member OPTION Command

180 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|

|
|
|
|
|
|

Default: None.

COMMANDAUTH(OWNER DSN)

Specifies the type of authorization that DFSMSrmm is to check. Specify

OWNER when you expect the owners of volume information and data set

information to be able to update their own data sets and volumes using

RMM TSO subcommands. Specify DSN when you expect changes to

volume and data set information to be authorized using the RACF

DATASET class and TAPEVOL class.

 You can set up authorization so that DFSMSrmm checks for authorization

by owner first, and then checks for authorization using the DATASET class

and TAPEVOL class. Set up this type of checking by specifying both the

OWNER operand and the DSN operand separated by a comma. When the

RACF name-hiding function is enabled in the system, this overrides the

DFSMSrmm COMMANDAUTH processing. DFSMSrmm processing, when

the name-hiding function is enabled, is the same as

COMMANDAUTH(DSN).

 Default: COMMANDAUTH(OWNER)

DATEFORM(AMERICAN | EUROPEAN | ISO | JULIAN)

Specifies the date format for messages and reports. See “EXEC

Parameters for EDGHSKP” on page 333 for information about setting

different date formats for reports.

 Value Language Format Example

A American mm/dd/yyyy 12/15/1994

E European dd/mm/yyyy 15/12/1994

I ISO yyyy/mm/dd 1994/12/15

J Julian yyyy/ddd 1994/349

Default: DATEFORM(JULIAN)

DISPDDNAME(DD_name)

Specifies the name of the DD card which identifies the data set that

contains disposition control statements that DFSMSrmm processes during

CLOSE or EOV processing. The data set must be a sequential file and

must be defined with LRECL 80. The data set can be a member of a

partitioned data set. When you specify the DISPDDNAME operand, you are

requesting that DFSMSrmm performs disposition processing during CLOSE

or EOV processing.

 If you code DISPDDNAME, you must provide the name of the DD card that

identifies the data set containing the disposition control statements

optionally included in your JCL.

 For information about DFSMSrmm disposition processing, see Chapter 21,

“Setting Up DFSMSrmm Disposition Processing,” on page 461.

 Default: None.

DISPMSGID(message_id)

Specifies the message number that DFSMSrmm uses for write–to–operator

messages specified in the disposition control file.

EDG4054I The message text provides the device number, volume

serial number, volume sequence, the location where the

volume is to move, and any message text you defined in

the disposition control file.

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 181

message_id You can define any alphanumeric value of up to eight

characters.

 For information about DFSMSrmm disposition processing, see Chapter 21,

“Setting Up DFSMSrmm Disposition Processing,” on page 461.

 Default: Message EDG4054I.

DSNAME(name)

Specifies the name of the DFSMSrmm control data set. Specify a name up

to 44 characters long.

 If you do not specify DSNAME, you must specify the data set name in the

MASTER DD statement in the DFSMSrmm started procedure. If you specify

a name both for DSNAME and MASTER DD, DFSMSrmm ignores the

MASTER DD statement.

 DFSMSrmm ignores DSNAME on the client system.

IPLDATE(NO | YES)

Specifies whether IPL date checking is required. Specify YES to request

IPL date checking, or NO to bypass it.

 If you specify YES, DFSMSrmm issues a write-to-operator message during

startup only if the date of the last run of expiration processing did not occur

within two days of the current date. The message prompts the operator to

enter the current date and day of the week. Initialization does not proceed

until DFSMSrmm receives a valid reply. If you specify NO for this operand

value, DFSMSrmm does not issue a message.

 The IPLDATE operand helps prevent you from running expiration

processing with an incorrect system date that can result in expiration of

unexpired volumes.

 Under normal conditions, the operator message requesting the current date

is only issued once per IPL of z/OS. If you restart DFSMSrmm, it does not

recheck the date.

 Additionally, if you run expiration processing daily, a message is not issued.

As a result, it is possible under normal conditions to run for a long time and

never have the operator prompted to confirm the system date.

 Default: IPLDATE(NO)

JOURNALFULL(nn)

Specify JOURNALFULL to define a percentage full threshold for the journal

data set. When DFSMSrmm detects that the journal has reached this

threshold, DFSMSrmm issues message EDG2107E. DFSMSrmm also

issues message EDG2107E at DFSMSrmm startup if the journal has

already reached the threshold specified. DFSMSrmm issues message

EDG2108E as a reminder until the backup completes and the journal is

reset. If you specify a backup procedure name on the BACKUPPROC

operand, the procedure is started automatically. If you specify a value of 0,

DFSMSrmm issues no warnings on that system. You can specify different

threshold values for sharing systems. See “Steps for Automating Control

Data Set Backup and Journal Clearing” on page 369 for additional

information.

 Specify a value in the range 0-99.

 Default: 75.

Parmlib Member OPTION Command

182 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm ignores JOURNALFULL on the client system.

JRNLNAME(name)

Specifies the name of the journal. Specify a name up to 44 characters long.

 If you do not specify JRNLNAME in EDGRMMxx, you can specify a name

in the JOURNAL DD statement in the DFSMSrmm started procedure. If you

do not specify a journal name in either EDGRMMxx or the started

procedure, DFSMSrmm does not provide journaling. If you specify a name

in both, DFSMSrmm uses the JRNLNAME value and ignores the JOURNAL

DD statement.

 DFSMSrmm ignores JRNLNAME on the client system.

LINECOUNT(nnn)

Specifies the default number of lines per page for reports, including heading

and trailer lines. Specify a value between 10 and 999.

 You can override this value when producing individual reports by specifying

a parameter to the report program or report utility as described in z/OS

DFSMSrmm Reporting.

 Default: LINECOUNT(54)

LOCALTASKS(number)

Use this operand to set the number of tasks available on each system for

processing locally initiated requests. You can optionally specify a value for

local tasks on each and every instance of the DFSMSrmm subsystem;

client system, server system, or standard system. On a client system,

LOCALTASKS is also the maximum number of tasks that can make a

socket connection to the server. Specify a value from 1 to 999.

 Recommendation: Specify or accept the default value of 10 local tasks on

all systems. Most of these tasks are rarely used by DFSMSrmm.

 The number of local and server tasks you can use and still successfully

start DFSMSrmm is limited by the size of the private region above and

below 16MB. To start with more tasks, you will require a larger REGION

size.

 Default: LOCALTASKS(10)

MASTEROVERWRITE(ADD | LAST | MATCH | USER)

Specify to control how DFSMSrmm allows the overwriting of a volume. You

can use one of these values:

ADD Specify this value so new data can be created and no

existing data can be destroyed. No existing file on a volume

can be re-created, but the last file can have new data

added to it. When adding data to the last file, DFSMSrmm

checks that the data set name used must match the

existing data set name. Select this option when you want

the last file on the volume to be extended or a new file

added to the volume.

Note: DFSMSrmm enforces the

MASTEROVERWRITE(ADD) option on a WORM

tape that is in master status. This is done to ensure

that you see a message from DFSMSrmm rather

than one of a number of symptoms as a result of the

tape drive preventing overwrites.

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 183

LAST Specify this value to ensure that when an existing file on a

master volume is being written to that only the last file on

the volume can be used. The data set name used must

match the existing data set name. Select this option when

you want the last file on the volume to be used for output.

MATCH Specify this value to ensure that when an existing file on a

master volume is being used for output that exactly the

same data set name must be used. Select this option when

you want any existing file on the volume to be re-created

regardless of whether it is the last file on the volume as

long as the same data set name is used.

 When you use an existing tape file for output all the files

which are higher in sequence are destroyed.

USER Specify this value to allow any existing file on a master

volume to be used for output regardless of the data set

names being used and its relative file position on the

volume. Select this option when you want validation of

master volumes to be just the same as for user status

volumes.

 When you use an existing tape file for output all the files

which are higher in sequence are destroyed.

 Default: MASTEROVERWRITE(LAST)

MAXHOLD(nnn)

Specifies the maximum number of activities DFSMSrmm performs before

the reserve is released and reacquired. For example, if you specify

MAXHOLD(100) and you issue the RMM ADDRACK command with

COUNT(1000), DFSMSrmm adds 100 racks before the reserve is released

and reacquired. Specify MAXHOLD to minimize the impact that long

operations, such as RMM TSO ADD subcommands with large COUNT

values, or large searches, have to other users.

 Even if the DASD where the control data set resides is not shared, consider

specifying MAXHOLD because it controls how often users on the same

system can gain access to the data set when a long task is running.

MAXHOLD also influences the amount of virtual storage that DFSMSrmm

uses. Increasing the value might improve the performance of individual

DFSMSrmm functions, but other users are locked out from the control data

set for a longer time. In a shared environment, the device is also reserved

for a longer time, possibly impacting users of other data on the volume.

 You do not normally need to alter this value. If your system is storage

constrained, you might lower the value from 100 to reduce the amount of

virtual storage that DFSMSrmm needs, and therefore its demand on real

storage.

 In a shared DASD environment in which you are using global resource

serialization to convert the DFSMSrmm control data set reserve, you could

increase the value to reduce the frequency of the release/reserve, which

reduces the traffic on the global resource serialization ring. However, this

action causes more virtual storage to be used and increases the time

between releases of the control data set. The result is that other users wait

longer before gaining access to the control data set.

Parmlib Member OPTION Command

184 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Specify a value between 10 and 500. Under normal conditions, use the

default value.

 Default: MAXHOLD(100)

MAXRETPD(NOLIMIT | nnnn)

Specifies the maximum retention period that a user can request for data

sets on volumes. Specify NOLIMIT or a value between 0 and 9999 days.

When a value between 0 and 9999 days is specified, the value is added to

the current date to determine the maximum allowed expiration date. Specify

NOLIMIT to use the dates 99365 or 99366 which mean to never expire. If

the calculated date is 31 December 1999, the expiration date 1 January

2000 is used.

 MAXRETPD is always used to determine the volume expiration date. The

volume expiration date can be ignored when EXPIRYDATEIGNORE is

specified on all vital record specifications. MAXRETPD is important if the

vital record specification specifies UNTILEXPIRED and the decision is

based on the volume expiration date. The preferred method is to put the

retention requirements all into the vital record specifications and make

MAXRETPD=RETPD. If users are allowed to specify expiration and

retention period to override vital record specifications, select a MAXRETPD

that covers the maximum retention period they would like to enforce. If this

forces 99365 to be reduced, define vital record specifications for any data

that should be permanently retained, like DFSMShsm tape data.

 Use MAXRETPD to set limits on the values that can be specified for

EXPDT and RETPD. If the retention period or expiration date specified in

the JCL exceeds the MAXRETPD value, DFSMSrmm overrides it and uses

the value in MAXRETPD to determine the expiration date. The volume label

has the JCL-specified value because DFSMSrmm does not change tape

labels or system control blocks. The control data set contains the

JCL-specified value as well as the expiration date calculated from

MAXRETPD. You can display the JCL-specified value for information only.

 If the DFSMSrmm ISPF dialog or RMM TSO subcommands are used to

specify a retention period or expiration date that exceeds the MAXRETPD

value, DFSMSrmm fails the subcommand or panel request.

 For more information about how to automatically handle expiration

date-protected tapes, see “Defining Pools: VLPOOL” on page 205 for

information on EXPDTCHECK.

 Default: MAXRETPD(NOLIMIT)

MEDIANAME(3480 | medianame)

Specify to set a default medianame value that DFSMSrmm uses when you

do not specify a media name for a volume. The media name is used when

you add volumes, define pools in your installation, define a default pool for

your installation, and when the EDGINERS utility selects volumes for

automatic processing.

 Specify a one to eight character name. Here are examples of MEDIANAME

that you might define: CART, ROUND, SQUARE, 3420, 3480, TAPE,

OPTICAL, and CASSETTE. You can use any name for a media name

because DFSMSrmm does not check that the media name you define is a

device type that has been defined to z/OS. Use MEDIANAME to identify

different types of physical shelf space for different media or to distinguish

different media characteristics such as Cartridge Tape and Enhanced

Capacity Cartridge System Tape.

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 185

Prior to setting or changing the default media name, check for any VLPOOL

commands that are using the media name that you plan to change. If you

change the default media name that is used for a VLPOOL command for an

existing pool of volumes, you must consider changing the media names for

those existing volumes. Refer to “Changing Pool Definitions” on page 102

which describes how to use RMM CHANGEVOLUME volser MEDIANAME

subcommand to change the volume media name to match the value in the

VLPOOL command. Also check your jobs that run EDGINERS to ensure

that MEDIANAME, if coded in the execution parameters, is still consistent

with the values you are using.

 Default: MEDIANAME(3480)

MEMBER(parmlib_suffix)

Use the MEMBER operand in the primary DFSMSrmm parmlib to identify a

second parmlib member that contains overriding or additional parmlib

options. Some information in the EDGRMMxx parmlib may need to be

specific to a subset of your systems. For example, the REJECT or VLPOOL

entries need to be different.

 Parmlib_suffix must be any 2 characters used as the suffix of the

EDGRMMxx parmlib member name. Starting with z/OS V1R9, you can use

system symbols (for example, &SYSCLONE) to enable easier sharing of

the EDGRMMxx parmlib member. The system symbol must resolve to 2

characters used as the suffix of the EDGRMMxx parmlib member name.

For example:

OPTION DSNAME(DFRMM.PROD.MASTER)

 JRNLNAME(DFRMM.PROD.JOURNAL)

 MEMBER(S5)

DFSMSrmm ignores the MEMBER operand specified in the second parmlib

member.

 Default: None.

MOVEBY(SET | VOLUME)

Specify the MOVEBY operand to move volumes that are retained by

DFSMSrmm vital record specifications as a set of volumes or as individual

volumes.

SET Specify this value when you want volumes moved as a set.

DFSMSrmm moves all volumes in the same multi-volume set that

are retained by vital record specifications. All the volumes are

retained in the same location selected by the vital record

specification priority or location priority for the volume.

VOLUME

Specify this value when you want volumes moved as individual

volumes. DFSMSrmm moves the volumes without considering the

location of the other volumes in the multi-volume set.

 Default: MOVEBY(VOLUME)

MSG(MIXED | UPPER)

Specify to control the case for message text. You can use:

MIXED Specify MIXED when you want messages to be displayed

exactly as they appear in EDGMTAB. This includes mixed

case message text.

UPPER Specify UPPER to ensure that all messages are displayed

Parmlib Member OPTION Command

186 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|

in upper case only. Any mixed case messages in

EDGMTAB are translated to upper case before they are

displayed.

 This is the value used when DFSMSrmm is inactive and

utilities need to issue messages.

 Default: MSG(MIXED)

NOTIFY(NO | YES)

Specifies whether DFSMSrmm should automatically notify volume owners

when the volumes they own become eligible for release or when software

product volumes are added. Specify YES for automatically notify owners, or

NO for notification. You must run DFSMSrmm under the JES2 or JES3

subsystem to use the DFSMSrmm NOTIFY function.

 Specify YES and DFSMSrmm notifies the owner using the TSO TRANSMIT

command to send an electronic message. The owner information in the

DFSMSrmm control data set must include either a valid user ID and node

name, or a valid Internet e-mail address, for the message to be sent, and

the volume record must specify Notify Owner as a release action.

DFSMSrmm uses the Internet e-mail address, if it exists, rather than the

user ID and node name.

 When you use e-mail addresses for owner notification, DFSMSrmm is

dependent on you having an existing SMTP server address space

configured to support the sending of e-mails. Refer to z/OS

Communications Server: IP Configuration Guide for additional information.

The SMTP server can be on the same system as the DFSMSrmm started

task, or on another system known through NJE.

 The Owner ’SMTP’ is now a reserved owner name value that you can use

to configure the Node name and SMTP server address space or machine

name. You use the NODE operand to identify the node that runs the SMTP

server, and the USER operand to identify the SMTP server. You must

specify both values. When you do not have the Owner SMTP defined,

DFSMSrmm uses the JES node name of the running system and SMTP as

the SMTP server address space name.

 If there is a chance that notify messages may not be delivered, you must

ensure that for:

v e-mail messages, the SMTP server is configured to handle undelivered

mail.

v NJE messages, you have a process to identify messages and clean up

the queues on the JES spool.

Specify NO for expired volumes with a release action of notify and the

librarian performs the notification. The librarian issues the RMM

CHANGEVOLUME subcommand with the CONFIRMRELEASE operand to

indicate that the notification has been performed.

 Default: NOTIFY(NO).

OPMODE(MANUAL | RECORD | WARNING | PROTECT)

Specifies the running mode of DFSMSrmm. The running mode affects how

DFSMSrmm enforces the tape mount validation rules described in “How

Does DFSMSrmm Validate Tape Mounts?” on page 18. Protect mode is the

only running mode that provides complete validation of volumes and

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 187

rejection of volumes that do not adhere to DFSMSrmm tape mount

validation rules. The running mode also affects other actions and defaults

used by DFSMSrmm.

 MANUAL — Manual mode. When DFSMSrmm is running in manual

mode:

– DFSMSrmm does not record volume usage or validate volumes.

– DFSMSrmm does not provide information to OAM during entry or

eject activities.

– You can use RMM TSO subcommands, the DFSMSrmm ISPF dialog,

and inventory management functions for all types of media. Updates

to the TCDB are controlled by the SMSTAPE parmlib option and

affect these functions:

- Volume status updates if you run inventory management

processing.

- Any TSO command change that affects the information in the

TCDB, such as EJECT, status change, and media information.
 RECORD — Record-only mode. When DFSMSrmm is running in record

mode, DFSMSrmm performs the actions described for manual mode

and also:

– DFSMSrmm records information about tape volumes used on the

system, including details about volume owners and data set names.

– DFSMSrmm does not validate or reject volumes during OPEN

processing.

– You can use RMM TSO subcommands, the DFSMSrmm ISPF dialog,

and inventory management functions for all types of media. Updates

to the TCDB are controlled by the SMSTAPE parmlib option and

affect these functions.

- Volume status updates if you run inventory management

processing. Any TSO command change that affects the information

in the TCDB, such as EJECT, status change, and media

information.

- Providing information to OAM during entry or eject activities.

- Updates to the DFSMSrmm control data set based on OAM

activity.

- Controlling the disposition of TCDB volume records at EJECT

time.

– DFSMSrmm provides no information to OAM during entry or eject

activities and does not update the volume status in the TCDB during

inventory management processing or command processing.

– DFSMSrmm tracks OAM changes in the DFSMSrmm control data

set.
 WARNING — Warning mode. When DFSMSrmm is running in warning

mode, DFSMSrmm performs the actions described for manual and

record-only mode. DFSMSrmm issues warning messages when an

action would have failed if DFSMSrmm was running in protect mode.

– DFSMSrmm records information about tape volumes used on the

system, including details about volume owners and data set names.

– DFSMSrmm does not validate or reject volumes during OPEN

processing.

Parmlib Member OPTION Command

188 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

– You can use RMM TSO subcommands, the DFSMSrmm ISPF dialog,

and inventory management functions for all types of media. Updates

to the TCDB are controlled by the SMSTAPE parmlib option and

affect these functions:

- Volume status updates if you run inventory management

processing.

- Any TSO command change that affects the information in the

TCDB, such as EJECT, status change, and media information.

- Providing information to OAM during entry or eject activities.

- Updates to the DFSMSrmm control data set based on OAM

activity.

- Controlling the disposition of TCDB volume records at EJECT

time.
 PROTECT — Protect mode. In protect mode, DFSMSrmm is fully

operational. In addition to performing the actions described for manual

and record-only mode, DFSMSrmm also performs these actions:

– Validates all magnetic tape requests and rejects magnetic tape

volume mounts under certain conditions, discussed in “How Does

DFSMSrmm Validate Tape Mounts?” on page 18.

– Sets the UNCATALOG operand default to YES. UNCATALOG(YES)

specifies that DFSMSrmm should uncatalog data sets under

conditions described in the UNCATALOG operand description. During

OAM exit processing, DFSMSrmm validates all changes to the TCDB

and fails those that are not allowed. During cartridge entry

processing, DFSMSrmm information overrides information provided

by OAM. DFSMSrmm always updates the TCDB. Use

SMSTAPE(PURGE) to control the purging or keeping of records in

the TCDB during eject processing.

Note: DFSMSrmm processes some parmlib options you have set even

when DFSMSrmm does not validate or reject volumes. For example,

if you set the TPRACF or UNCATALOG operands described in this

topic, DFSMSrmm honors these operands when running in any

mode. For example if you specify UNCATALOG(YES) and

OPMODE(RECORD), DFSMSrmm uncatalogs data sets even though

DFSMSrmm does not validate or reject volumes. When you specify

OPMODE(WARNING) or OPMODE(PROTECT), DFSMSrmm also

honors the setting of the VLPOOL EXPDTCHECK options. To obtain

the results you desire, you should review the values you select for

these additional options.

Table 21 and Table 22 on page 190 provide information about the options

which are affected by the OPMODE value.

 Table 21. How OPMODE Honors the Settings of Various Options

Option Manual Record Only Warning Protect

EXPDTCHECK N N Y Y

UNCATALOG Y Y Y Y

TPRACF Y Y Y Y

SMSTAPE(UPDATE) Y Y Y N

SMSTAPE(PURGE) N Y Y Y

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 189

Table 22. How OPMODE Value Affects System-Managed Tape Library Support

Main Area of Activity Manual Record Only Warning Protect

Command Processing N N N Y

Expiration Processing N N N Y

Support for CBRUXxxx Exits Y N N Y

Purging TCDB Records During Eject

Processing

Y N N Y

 Default: OPMODE(PROTECT).

PDA(ON | NONE | OFF)

Specify to enable or disable the PDA trace facility.

NONE Specify to prevent DFSMSrmm from enabling the PDA facility. If

NONE is specified at startup, DFSMSrmm does not obtain storage

for the trace buffer. If NONE is specified when DFSMSrmm is

refreshed, it is equivalent to specifying PDA(OFF) and

PDALOG(OFF).

OFF Specify to disable the trace facility after DFSMSrmm initialization.

When the trace facility is disabled, trace data is not accumulated.

ON Specify to enable the trace facility.

 Default: PDA(ON)

PDABLKCT(nnn)

Specifies the number of blocks or buffers that make up the in-storage trace

wrap table. Each block or buffer is the size specified by the PDABLKSZ

operand. nnn is a minimum of 3 and a maximum of 255.

 Default: PDABLKCT(255)

PDABLKSZ(blksz)

Specifies the DASD blocksize for the DFSMSrmm PDA trace facility data

sets, EDGPDOX and EDGPDOY. nn is the number of kilobytes in each

DASD block and is a minimum of 1 and a maximum of 31.

 Default: PDABLKSZ(27) for 3390 DASD devices, PDABLKSZ(22) for 3380

DASD devices, and PDABLKSZ(12) for all other DASD devices

PDALOG(ON | OFF)

Specify to enable or disable output to the PDA trace data sets.

OFF Specify to disable output to the PDA trace data sets.

ON Specify to enable output to the PDA trace data sets.

 Default: PDALOG(ON)

PREACS(NO | YES)

Specify this operand to control whether DFSMSrmm-supplied and

EDGUX100 installation exit-supplied values are input to SMS Pre-ACS

processing.

NO Specify NO to avoid DFSMSrmm Pre–ACS processing using the

DFSMSrmm EDGUX100 installation exit.

YES Specify YES to enable DFSMSrmm Pre–ACS processing using the

DFSMSrmm EDGUX100 installation exit.

Parmlib Member OPTION Command

190 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Default: PREACS(NO)

RETAINBY(SET | VOLUME)

Use the RETAINBY option to specify whether DFSMSrmm retains

multi-volume sets as a set or as individual volumes.

SET When you retain by set, if any volume in a set is retained by a vital

record specification, all volumes in the set are retained as vital

records. DFSMSrmm uses highest retention date of all volumes in

the set as the retention date for all volumes retained as vital

records in a set. If no volume in a set is retained by a vital record

specification, DFSMSrmm performs expiration processing by set.

DFSMSrmm does not expire volumes in a set if at least one volume

in a set is still not ready to expire because it has not reached its

expiration date and you have not specified that you want the

expiration date ignored.

VOLUME

When you retain by volume, DFSMSrmm retains a volume based

on vital record specifications and on the volume expiration date.

DFSMSrmm does not consider other volumes in the set.

 DFSMSrmm sets an indicator ’retained by set’ in the volume information

when a volume is vital record specification retained or not expired only

because it is a member of a set.

 The location where volumes are retained is determined by the MOVEBY

option.

 Default: RETAINBY(VOLUME).

RETPD(nnnn)

Specifies the default retention period for all new data sets on volumes.

Specify a value between 0 and 9999 days. The specified value is added to

the current date to determine the expiration date. Select a default retention

for parmlib RETPD that is a small value to ensure that all tape data created

outside the service levels is released as soon as possible. The MAXRETPD

value you specify in the parmlib limits the calculated expiration date.

 DFSMSrmm sets a default retention period as follows:

v If you specify RETPD or EXPDT, the value is used as the volume’s new

expiration date. If you do not specify RETPD or EXPDT, DFSMSrmm

uses the EXPDT or RETPD allocation attribute of a data class, if all

these are true:

– The Storage Management Subsystem is active

– The data set is associated with a data class, either explicitly by the

DATACLAS keyword on the JCL or implicitly by an automatic class

selection routine

– The data class has an EXPDT or RETPD allocation attribute

v If you do not specify RETPD or EXPDT, DFSMSrmm uses the default

retention period set in EDGRMMxx.

Whenever a new data set is written to tape, DFSMSrmm checks whether

the volume’s expiration date should be updated, based on whether the new

data set has a longer expiration date than the volume on which it is written.

DFSMSrmm gets the expiration date for a data set from the job file control

block (JFCB) at open time. If there is a date in the JFCB, DFSMSrmm

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 191

compares this date to the current expiration date for the volume. If the date

in the JFCB allows the volume to be retained longer, DFSMSrmm uses that

date to update the volume’s expiration date.

 If there is no expiration date in the JFCB, DFSMSrmm uses the

EDGRMMxx RETPD value to calculate the new expiration date. If the

RETPD value allows the volume to be retained longer, DFSMSrmm uses

that date to update the volume’s expiration date.

 You can set the date in the JFCB in several ways, including:

v RETPD and EXPDT keywords in the JCL

v Data class when the Storage Management Subsystem is active and the

volume is system-managed

v Management class when the Storage Management Subsystem is active

and the volume is system-managed

v A user program, using the RDJFCB macro and the OPEN TYPE=J after

modifying the JFCB

v Installation exits in use on your particular system

Use vital record specifications to define more specific default retention

periods for users by using a data set name prefix. For example, specify:

RMM ADDVRS DSNAME(’RICK.**’) DAYS COUNT(30)

to keep all data sets for ID RICK for 30 days. For more information about

using vital record specifications, see z/OS DFSMSrmm Guide and

Reference.

 Default: RETPD(5)

REUSEBIN(CONFIRMMOVE | STARTMOVE)

Use the REUSEBIN operand to control how DFSMSrmm reuses bins when

a volume is moving from a bin.

CONFIRMMOVE

When a volume moves out of a bin, DFSMSrmm does not reuse this

bin until the volume move has been confirmed.

STARTMOVE

A bin can be reused as soon as a volume starts moving out of a bin.

Extended bin support must be enabled before you can use this

operand. See “Enabling Extended Bin Support” on page 409 to enable

extended bin support.

 Default: REUSEBIN(CONFIRMMOVE).

SCRATCHPROC(proc_name)

Specifies the name of the procedure DFSMSrmm starts to replenish scratch

volumes in an automated tape library. Specify a procedure name one to

eight characters long.

 You must run DFSMSrmm with a scratch procedure. You can modify or

replace the DFSMSrmm-supplied sample, EDGXPROC, to support your

location procedures. You can use the scratch procedure to take any action

you would like. For example, you can code the procedure to trigger the

required inventory management expiration processing job, to run inventory

management, or to take no action.

Parmlib Member OPTION Command

192 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

When an automated tape library detects a low-on-scratch condition, OAM

issues a write-to-operator message (CBR3660A). DFSMSrmm intercepts

the message and starts the SCRATCHPROC procedure. This procedure

runs DFSMSrmm expiration processing to replenish the automated tape

library’s scratch volumes.

 Default: SCRATCHPROC(EDGXPROC)

 See “Replenishing Scratch Volumes in a System-Managed Library” on page

453 for information about EDGXPROC the DFSMSrmm default procedure.

SERVER(PORT(PortNumber) SERVERTASKS(number))

Specifies the type of system you want to set up. SERVER is mutually

exclusive with CLIENT. Neither SERVER nor CLIENT must be specified

when DFSMSrmm is used as a standard system.

PORT(PortNumber)

Use this operand to specify the port number to be used for

IP communication. The PORT operand is required. Specify

a value from 1024 to 65535. Port numbers 1 to 1023 are

reserved. The port number must be the same for the client

system and the server system to establish a network

connection.

 Default: None.

SERVERTASKS(number)

Use this operand to specify how many DFSMSrmm tasks

should be available on the server to handle socket

connections from client systems. DFSMSrmm uses this

number to determine how many tasks are to be started for

processing all client requests on this server. Specify a value

from 1 to 999.

 Recommendation: Specify or accept the default value of 10

server tasks on each server system. Depending on the

number of CLIENT systems, this value should be increased

to allow 3 tasks per CLIENT. Most of the local tasks are

rarely used by DFSMSrmm. You do not need more server

tasks than the sum of local tasks across your CLIENT

systems.

 The number of local and server tasks you can use and still

successfully start DFSMSrmm is limited by the size of the

private region above and below 16MB. To start with more

tasks, you will require a larger REGION size.

 Default: 10.

SMFAUD(nnn)

Specifies the SMF record number to be used for audit records. Specify a

number between 128 and 255 that is different from the value for SMFSEC.

The value must conform to standard SMF conventions.

 If you do not specify a number, DFSMSrmm does not produce audit

records.

 Default: No audit records

 DFSMSrmm ignores SMFAUD on the client system.

SMFSEC(nnn)

Specifies the SMF record number to be used for security records. Specify a

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 193

number between 128 and 255 that is different from the value for SMFAUD.

The value must conform to standard SMF conventions.

 If you do not specify a number, DFSMSrmm does not produce security

records.

 Default: No security records

SMSACS(NO | YES)

Specify this operand to control whether DFSMSrmm calls SMS ACS

processing to enable use of storage group and management class values

with DFSMSrmm.

NO Specify NO to prevent DFSMSrmm from calling the SMS ACS

processing to obtain management class and storage group names.

DFSMSrmm system-based scratch pooling, and scratch pooling and

VRS management values based on the EDGUX100 installation exit

are used.

YES Specify YES to enable DFSMSrmm calls to the SMS ACS

processing to obtain management class and storage group names.

If values are returned by the SMS ACS routines the values are

used instead of the DFSMSrmm and EDGUX100 decisions.

 Default: SMSACS(NO)

SMSTAPE(UPDATE PURGE)

Use SMSTAPE to specify how DFSMSrmm updates the TCDB and controls

system-managed tape processing.

UPDATE

Use UPDATE to select the system-managed tape functions DFSMSrmm

provides. The UPDATE operand has 3 subparameters: EXITS,

SCRATCH, and COMMAND. You can specify one or more of the

subparameters. When DFSMSrmm is running in PROTECT mode,

DFSMSrmm ignores the UPDATE operand and performs processing as

if you specified EXITS, SCRATCH, and COMMAND. When DFSMSrmm

is running in WARNING or RECORD mode, DFSMSrmm does not

update TCDB information unless you request the update. You can

specify one or more of the values. When you specify a value,

DFSMSrmm performs the updates to the TCDB.

 EXITS Specify EXITS when you want DFSMSrmm volume status

information to override the OAM volume status during entry

processing, and you want to use the DFSMSrmm VNL exit.

SCRATCH

Specify SCRATCH when you want DFSMSrmm to update the

volume status in the TCDB during expiration processing when

volumes are returned to scratch status.

COMMAND

Specify COMMAND when you want to use the RMM TSO

subcommands or the DFSMSrmm API to update the TCDB.

This controls change of status, TDSI and owner information,

eject processing and manual cartridge entry processing.

 Default: None if you are running in MANUAL, RECORD, or PROTECT

mode, but DFSMSrmm ignores the update options and forces them to

UPDATE(EXITS,SCRATCH,COMMAND) when DFSMSrmm is running

in PROTECT MODE.

Parmlib Member OPTION Command

194 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

PURGE

Use PURGE to control how DFSMSrmm affects the TCDB volume

records during EJECT processing. The default is PURGE(ASIS) in all

operating modes except MANUAL mode. In manual mode, DFSMSrmm

provides no support for eject processing.

 ASIS Specify ASIS when you do not want DFSMSrmm to determine

the TCDB volume record dispositions at eject time. Specifying

ASIS allows the eject requestor or Library defaults to control the

TCDB volume record disposition

NO Specify NO to request that DFSMSrmm prevent TCDB records

being deleted.

YES Specify YES when you want DFSMSrmm to force the TCDB

volume records to be purged at eject time.

 Default: ASIS.

SYSID(system_name)

Specifies the name of the system on which DFSMSrmm is running. Specify

a unique system name one-to-eight characters long for each system.

 If you are running multiple z/OS systems and sharing the control data set

and journal, specify a unique SYSID for each system.

 If you have unshared catalogs, you can specify a list of system IDs using

the CATSYSID operand. Select the SYSID values from the list of IDs which

include current IDs and previously used IDs.

 Default: DFSMSrmm uses the system’s SMF identification.

TPRACF(NONE | AUTOMATIC | CLEANUP | PREDEFINED)

Specifies the type of RACF tape support that DFSMSrmm provides. Use

this operand when you want DFSMSrmm to maintain the security profiles

that protect tape volumes. You can define RACF tape support for pools of

volumes within your installation by using the VLPOOL RACF command

described in “Defining Pools: VLPOOL” on page 205. RACF tape support

you define can be overridden by RACF tape support you define with

VLPOOL.

 The TPRACF(NONE) option is assumed for any volume serial number

containing special characters. To protect tape volumes that use special

characters in the volume serial number, use RACF generic TAPEVOL

profiles which are outside of DFSMSrmm control.

 DFSMSrmm honors all other TPRACF options for volume serial numbers

that are alphanumeric including national characters. You can also use

RACF generic DATASET profiles to protect data created on tape volume.

DFSMSrmm honors the TPRACF setting when running in all modes.

 If you set TPRACF(PREDEFINED) or TPRACF(AUTOMATIC), DFSMSrmm

ensures that all nonscratch tapes are protected by a discrete RACF

TAPEVOL profile by checking that a RACF profile exists whenever a data

set is written on a tape. If a profile does not exist, DFSMSrmm creates one.

Therefore you do not need to use RACF installation exits to set the JCL

PROTECT=YES option or specify PROTECT=YES in your JCL. You can

use generic data set profiles for all tape data sets without changes to JCL

or installation procedures, if you used the VLPOOL command with the

RACF(Y) operand, because DFSMSrmm creates a TVTOC when you use

the RACF TAPEDSN option.

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 195

For both TPRACF(PREDEFINED) and TPRACF(AUTOMATIC), DFSMSrmm

ensures TAPEVOL profiles are always deleted during recycling of scratch

volumes, if they exist. When you use a volume for output and there is no

RACF protection for the volume when you close the data set, DFSMSrmm

creates a profile to protect the volume. The owner of the volume is given

RACF access to the profile. If TAPEVOL and TAPEDSN are active,

DFSMSrmm creates a TVTOC and adds the first file data set entry.

 For TPRACF(CLEANUP), DFSMSrmm ensures that TAPEVOL profiles and

discrete tape DATASET profiles are deleted during recycling of scratch

volumes and existing TAPEVOL profiles are deleted when volumes are

deleted from the DFSMSrmm CDS. When you use this option, DFSMSrmm

never creates any RACF profiles for you. This processing is only provided

for VLPOOLs with RACF(Y).

 TPRACF(CLEANUP) is intended to be used when you are changing how

tape data sets are protected. For example, you no longer wish to use

TAPEVOL profiles and are enabling the use of DATASET profiles,

TPRACF(CLEANUP) can be used for this occasion.

 When you specify TPRACF(CLEANUP), DFSMSrmm deletes RACF tape

profiles for any volumes in your installation based on these VLPOOL

values:

v VLPOOL RACF(N), DFSMSrmm does no processing of tape profiles for

volumes in the pool at any time.

v VLPOOL RACF(Y), RACF tape profiles are deleted when RMM

CHANGEVOLUME, or DELETEVOLUME subcommands are issued.

DFSMSrmm deletes TAPEVOL and discrete tape data set profiles during

recycling of scratch tapes if the profiles exist.

For more information on RACF processing and security options, see

Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on

page 213.

v When you specify TPRACF(NONE), DFSMSrmm does not create RACF

tape profiles for any volumes in your installation.

If you also specify one of these VLPOOL values:

– VLPOOL RACF(N)

DFSMSrmm does not create tape profiles or TVTOCS for volumes in

the pool that you are defining with the VLPOOL command.

– VLPOOL RACF(Y)

DFSMSrmm does not create tape profiles or TVTOCS for volumes in

the pool that you are defining with the VLPOOL command.

v When you specify TPRACF(PREDEFINED) or TPRACF(P), DFSMSrmm

creates predefined RACF tape profiles for any volumes in your

installation.

If you also specify one of these VLPOOL values:

– VLPOOL RACF(N)

DFSMSrmm does not create tape profiles or TVTOCS for volumes in

the pool that you are defining with the VLPOOL command.

– VLPOOL RACF(Y)

DFSMSrmm creates RACF tape profiles for volumes in the pool that

you are defining with the VLPOOL command. The RACF tape profiles

are created using RACF options that you have specified and the

Parmlib Member OPTION Command

196 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

RACF tape profiles that DFSMSrmm creates when RMM

ADDVOLUME, CHANGEVOLUME, or DELETEVOLUME

subcommands are issued.

DFSMSrmm deletes TAPEVOL profiles during recycling of scratch

tapes if the profiles exist.

DFSMSrmm creates a profile when a volume that is used for output

does not have a RACF tape profile defined.

The owner of the volume is given RACF access to the profile.

If TAPEVOL and TAPEDSN are active, DFSMSrmm creates a TVTOC

and adds the first file data set entry.

v When you specify TPRACF(AUTOMATIC) or TPRACF(A), DFSMSrmm

creates tape profiles for any volume in your installation.

If you also specify one of these VLPOOL values:

– VLPOOL RACF(N)

DFSMSrmm does not create tape profiles or TVTOCS for volumes in

the pool that you are defining with the VLPOOL command.

– VLPOOL RACF(Y)

DFSMSrmm creates RACF tape profiles for volumes in the pool.

Table 33 on page 231 shows what DFSMSrmm processing takes

place when you specify RACF(Y) for a pool.

The processing is the same as TPRACF(PREDEFINED) with these

exceptions:

– Scratch tape volumes do not have TAPEVOL profiles created.

– IF TAPEVOL and TAPEDSN are active, RACF automatically creates

TAPEVOL and data set profiles for the ADSP and PROTECT=YES

users.

– TPRACF(AUTOMATIC) also supports the environment where an

installation uses RACF installation exits to create TAPEVOL profiles.

Default: TPRACF(NONE)

TVEXTPURGE(RELEASE | EXPIRE | NONE)

Specifies how DFSMSrmm processes volumes to be purged by callers of

EDGTVEXT or EDGDFHSM.

v NONE — DFSMSrmm take no action for volumes to be purged.

v RELEASE — DFSMSrmm releases volume to be purged according to

the release actions set for the volume. You must run expiration

processing to return a volume to scratch status.

v EXPIRE — Use the EXPIRE option to set the volume expiration date to

the current date for volumes to be purged. Use this operand in

combination with vital record specifications that use the UNTILEXPIRED

retention type. You can then optionally extend retention using the extra

days retention type.

Default: TVEXTPURGE(RELEASE)

UNCATALOG(YES | NO | SCRATCH)

Specifies the type of catalog support to provide:

 N — Do not use DFSMSrmm catalog processing. DFSMSrmm does not

uncatalog data sets under any circumstances.

 S — Only uncatalog data sets when the volume on which they reside is

returned to scratch status.

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 197

Y — always uncatalog data sets. Use DFSMSrmm catalog processing.

DFSMSrmm uncatalogs data sets when:

– A volume is returned to scratch status, DFSMSrmm uncatalogs all

the data sets on the volume.

– The RMM DELETEVOLUME FORCE subcommand is issued for a

volume, DFSMSrmm uncatalogs all the data sets on the volume.

– The RMM CHANGEVOLUME DSNAME subcommand is issued for a

volume, DFSMSrmm uncatalogs all the data sets on the volume. If

the data set name specified on the RMM CHANGEVOLUME

subcommand command matches the data set name on the volume,

then DFSMSrmm only uncatalogs subsequent data sets.

– The RMM DELETEDATASET subcommand is issued for a data set,

DFSMSrmm uncatalogs the data set. Also, DFSMSrmm uncatalogs

all data sets recorded on the same volume with higher data set

sequence numbers.

– A tape data set is overwritten, DFSMSrmm uncatalogs the data set.

Also, all data sets recorded on the same volume with higher data set

sequence numbers are uncataloged.

If you set UNCATALOG(S) or UNCATALOG(Y), DFSMSrmm uncatalogs

data sets even when DFSMSrmm is running in manual mode, record mode,

or warning mode.

 You should use the UNCATALOG(N) option during early implementation of

DFSMSrmm on your system, when DFSMSrmm is running at the same time

as your existing management software.

 If you use the DFSMSrmm EDGUX100 exit to request suppression of data

set recording for a volume, you should ensure that any data sets that are

cataloged, but not recorded by DFSMSrmm are uncataloged by some other

mechanism. To leave nonexistent data sets cataloged could lead to later

processing problems.

 If you use the UNCATALOG(N) option to prevent DFSMSrmm from

uncataloging tape data sets, you should ensure that data sets are

uncataloged by some other mechanism. To leave nonexistent data sets

cataloged could lead to later processing problems.

 Ensure Integrated catalog facility catalogs are shared if catalog control is

required or if you specify the UNCATALOG(Y) or (S) operand.

 Default: The default is UNCATALOG(N) unless DFSMSrmm is running in

protect mode. DFSMSrmm uses the UNCATALOG default of Y when

DFSMSrmm is running in protect mode.

VRSCHANGE(INFO | VERIFY)

Use VRSCHANGE to specify the action that DFSMSrmm should take

during inventory management if you have made any changes to vital record

specifications using RMM ADDVRS or RMM DELETEVRS subcommands.

 If You Specify Then

INFO No additional processing or actions are required when vital

record specification changes occur.

VERIFY Any changes made to vital record specifications must be

verified by running EDGHSKP vital record processing using

the VERIFY parameter. DFSMSrmm must issue return code

zero before EDGHSKP vital record processing can be

performed to update the control data set.

Parmlib Member OPTION Command

198 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Default: VRSCHANGE(VERIFY)

VRSEL(OLD|NEW)

 Use VRSEL to control how DFSMSrmm inventory management vital record

processing uses retention and movement information that are defined in

vital record specifications.

Note: The VRSEL(OLD) option will be removed in a future release of z/OS.

Please migrate to using VRSEL(NEW).

OLD Specify OLD if you want DFSMSrmm to:

v Ignore retention information that is defined in NAME vital record

specifications

v Ignore release options that are defined in vital record

specifications

v Treat the ANDVRS in the RMM ADDVRS command as if it is a

NEXTVRS

NEW Specify NEW if you want DFSMSrmm to process retention

information in NAME vital record specifications, release options

defined in vital record specifications, and vital record specifications

chained using the RMM ADDVRS ANDVRS operand.

 Also, when you specify NEW:

v You can specify that a vital record specification is not to retain a

data set by use of COUNT(0).

v Vital record specification release options enable them to be

applied to a volume regardless of whether any data set on the

volume is retained by a vital record specification.

v You can use either the special ABEND or OPEN data set name

mask with a JOBNAME to select special retention, or use the

special ABEND and OPEN job name with any data set name

mask.

v You can identify the vital record specification policy chains that

are not being used, and DFSMSrmm provides a last reference

date and time for each vital record specification you define.

 Default: VRSEL(OLD)

VRSJOBNAME(1 | 2)

Use VRSJOBNAME to select how DFSMSrmm uses a job name in a vital

record specification to match a data set to a movement and retention policy.

DFSMSrmm records the data set name and job name for new tape files you

create. You can define the name of the job that created a data set by using

the RMM ADDDATASET subcommand or the CHANGEDATASET

subcommand for existing data sets. You can specify a job name and data

set name in a vital record specification so that data sets that match the data

set name and job name are moved and retained by the policy defined in the

vital record specification.

Parmlib Member OPTION Command

Chapter 10. Using the Parmlib Member EDGRMMxx 199

If You Specify DFSMSrmm Uses

And if There Is No

Match

VRSJOBNAME(1) The data set and job name to match a data

set to a vital record specification. Job name

is the primary value used to match the data

set to a vital record specification.

A match by data set

name only is

acceptable.

VRSJOBNAME(2) The data set name to match a data set to a

vital record specification. If a data set

matches multiple vital record specifications

with the same data set name, then

DFSMSrmm uses a job name to further

qualify the data set name.

DFSMSrmm does not

apply a policy to the

data set.

Default: VRSJOBNAME(2).

VRSMIN(count,action)

Use VRSMIN to specify a minimum number of vital record specifications

required by inventory management vital record processing, and the action

to be taken by DFSMSrmm when the minimum number of vital record

specifications are not defined. DFSMSrmm counts the vital record

specifications used by vital record processing. DFSMSrmm does not count

vital record specifications that are deleted during vital record processing.

 count can be 0 to 2,147,483,647. Specify a count value of 0 to disable this

checking.

 The default count value is 1. Specify action to control the action

DFSMSrmm takes when the count is not reached. Action can be FAIL,

INFO, or WARN.

 If You Specify DFSMSrmm

FAIL Issues message EDG2229I to the MESSAGE file and stops

inventory management processing. Processing ends with return code

8.

INFO Issues message EDG2229I to the MESSAGE file and processing

continues.

WARN Issues message EDG2229I to the MESSAGE file and sets a

minimum return code of 4. Processing continues.

 Default: VRSMIN(1,FAIL)

Defining Tapes Not Available on Systems: REJECT

Use the REJECT command to prevent a range of tapes from being used on a

particular system. For example, you can reject production tapes on a development

system.

This command is useful under these conditions:

v Using a shared RACF data set and the security profiles for a volume allow the

volume to be used on all systems.

v To partition tape libraries as described in “Partitioning System-Managed Tape

Libraries” on page 145.

v Preventing a stacked volume from being used outside a VTS.

The REJECT command helps you limit tape usage at the system level. Figure 74

on page 201 shows an example of the REJECT command and the operands you

Parmlib Member OPTION Command

200 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

can code in the parmlib member EDGRMMxx.

REJECT Command Syntax

Figure 75 shows the syntax of the REJECT command:

 You can specify multiple REJECT commands to define different ranges of tapes.

However, use only one ANYUSE operand and one OUTPUT operand for each

REJECT command, as shown in Figure 74.

DFSMSrmm allows all volume mounts. DFSMSrmm checks volume validity only

when a data set on the volume is opened. When a data set on a volume is opened,

DFSMSrmm checks the volume’s shelf location against the prefixes specified in the

REJECT command. If a volume has no library shelf location, DFSMSrmm checks

the volume serial number against the prefixes specified in the REJECT command.

DFSMSrmm recognizes the most specific prefix match. If you specify both ANYUSE

and OUTPUT for the same prefix, ANYUSE overrides OUTPUT. Normally, REJECT

prefixes match those that are used on VLPOOL commands, but it is not mandatory.

At OPEN time, DFSMSrmm can reject a range of tapes if you define the range of

volumes to DFSMSrmm. DFSMSrmm cannot reject a range of tapes that are not

defined to it.

You can use the REJECT ANYUSE command with an automated tape library to

prevent volumes from being automatically defined in the TCDB when they are

entered in an automated tape library. If the volume matches the REJECT ANYUSE

command, the volume is not defined to the TCDB. Another system sharing the

automated tape library can take the volume to define it in its TCDB only. You can

also prevent a volume from being defined in the TCDB by specifying other than the

USE(MVS) attribute when defining the volume to DFSMSrmm.

If you use REJECT OUTPUT commands, the volume is defined in the TCDB and

can be entered into an automated tape library.

Use caution when using the REJECT command with an automated tape library as it

is possible to continue needless rejecting of volumes.

REJECT Command Operands

ANYUSE(prefix)

Specifies the shelf locations of volumes not available for read or write

processing. prefix is a generic shelf location that consists of one-to-five

alphanumeric, national, or special characters that are followed by an asterisk

REJECT OUTPUT(CC12*)

REJECT ANYUSE(VM1*),OUTPUT(VM*)

REJECT ANYUSE(DD0*)

REJECT ANYUSE(*)

Figure 74. Parmlib Member EDGRMMxx REJECT Command Examples

�� REJECT OUTPUT(prefix)

ANYUSE(prefix)

ANYUSE(prefix)

OUTPUT(prefix)

 ��

Figure 75. Parmlib Member EDGRMMxx REJECT Command Syntax

Parmlib Member REJECT Command

Chapter 10. Using the Parmlib Member EDGRMMxx 201

(*). Specify a single asterisk if, at OPEN time, you want to reject all volumes not

defined to DFSMSrmm. For example, ANYUSE(*) prevents the use of foreign

tapes, unless you use the DFSMSrmm installation exit EDGUX100 to request

that DFSMSrmm ignore such tapes. You can also use the REJECT ANYUSE

command to partition system-managed tape libraries. See “Partitioning

System-Managed Tape Libraries” on page 145 for more information.

 Default: None.

OUTPUT(prefix)

Specifies the shelf locations of volumes not available for write processing. prefix

is a generic shelf location that consists of one-to-five alphanumeric, national, or

special characters that are followed by an asterisk (*). Specify a single asterisk

if, at OPEN time, you want to prohibit writing to all volumes that are not defined

to DFSMSrmm.

 Default: None.

Defining Security Classes: SECCLS

Use the SECCLS command to define security classes for data sets and volumes.

These security classes appear in reports and in output for the RMM TSO

subcommands. DFSMSrmm records these security classes in the DFSMSrmm

control data set only; it does not make RACF aware of them. There is no

connection between these definitions and any similar definitions or function provided

in RACF, but you can use similar values for overall consistency.

DFSMSrmm determines the security classification of a tape volume with multiple

data sets by the highest classification found for a single data set.

Data sets that do not match any of the masks specified in SECCLS definitions are

assigned no security classification. DFSMSrmm uses a number 0 to indicate no

security classification. Whenever you create a tape data set, DFSMSrmm uses the

SECCLS masks to classify data sets and volumes. Figure 76 on page 203 shows

an example of the SECCLS command and the operands you can code in the

parmlib member EDGRMMxx.

If you remove a security class that is assigned to a volume, DFSMSrmm issues an

error message when a data set on the volume is opened. DFSMSrmm also treats

the volume as having the lowest defined security level. The default security class is

defined by a mask of ’**’.

Parmlib Member REJECT Command

202 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

SECCLS NUMBER(01) -

 NAME(UNCLASS) -

 DESCRIPTION(’UNCLASSIFIED’) -

 MASK(’**’) -

 SMF(N) -

 MESSAGE(N) -

 ERASE(N)

 SECCLS NUMBER(02) -

 NAME(U) -

 DESCRIPTION(’UNCLASS’) -

 MASK(’STSGAM.**’) -

 SMF(N) -

 MESSAGE(N) -

 ERASE(N)

 SECCLS NUMBER(10) -

 NAME(IUO) -

 DESCRIPTION(’INTERNAL USE ONLY’) -

 SMF(N) -

 MESSAGE(N) -

 ERASE(N) -

 MASK(’SYS1.IUO.**’)

 SECCLS NUMBER(30) -

 NAME(CC) -

 DESCRIPTION(’CONFIDENTIAL’) -

 MASK(’PAYROLL.**’) -

 SMF(Y) -

 MESSAGE(N) -

 ERASE(Y)

 SECCLS NUMBER(100) -

 NAME(IC) -

 DESCRIPTION(’CONFIDENTIAL’) -

 MASK(+

 ’**.IC.**’,+

 ’**.VERTR.**’,+

 ’**.CONFI.**’+

) -

 SMF(Y) -

 MESSAGE(N) -

 ERASE(Y)

Figure 76. Parmlib Member EDGRMMxx SECCLS Command Examples

Parmlib Member SECCLS Command

Chapter 10. Using the Parmlib Member EDGRMMxx 203

SECCLS Command Syntax

Figure 77 shows the syntax of the SECCLS command:

 To make the default security class the highest level, specify these operands with the

SECCLS command:

SECCLS NUMBER(255) MASK(’**’)

If you do not specify any SECCLS statements, DFSMSrmm defaults to a

classification of blanks.

SECCLS Command Operands

DESCRIPTION(’cc......cc’)

Describes the security class. DFSMSrmm uses the description you provide as

the security class name. Specify a description between 1 and 32 characters.

 Default: None. You must specify this operand.

ERASE(N|Y)

Specifies whether volumes must be erased on release. Y indicates volumes

must be erased on released, and N indicates that they do not have to be.

 You can use the DFSMSrmm utility EDGINERS to automatically erase and

reinitialize tapes, or you can use your own method to erase them.

 Default: ERASE(N)

Note: DFSMSrmm supports the use of the RACF ’erase on scratch’ setting in

DATASET profiles instead of using the SECCLS ERASE option. The

support is only provided when TAPEAUTHDSN=YES is set in

DEVSUPxx and the DATASET class is active.

MASK(,’dsname_mask’)

Specifies a data set name mask used for assigning a security classification. You

can specify multiple data set name masks separated by a comma. In addition to

standard data set naming conventions, you can use these masking characters

to create the data set name mask:

* A single * represents a single qualifier of any number of characters.

 a single * when used within a qualifier represents zero or more characters.

�� SECCLS NUMBER(nnn) DESCRIPTION(’cc......cc’) �

�

�

 ,

MASK(

dsname_mask

)

NAME(name)

N

ERASE(

Y

)

�

�
N

MESSAGE

(

Y

)

MSG

N

SMF(

Y

)

 ��

Figure 77. Parmlib Member EDGRMMxx SECCLS Command Syntax

Parmlib Member SECCLS Command

204 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

more than one single * can be used within a qualifier as long as a character

precedes or follows the *.

 .** represents zero or more qualifiers. At the end of the mask, it indicates to

ignore any remaining characters.

 ** indicates to select all data sets.

% (percent_sign)

A place holder for a single character.

 For example, you can specify MASK(’USERID.**.CONF.**’).

 Default: You are required to specify this operand.

MESSAGE|MSG(N|Y)

Specifies whether to issue operator confirmation messages when a data set on

a volume in this security class is opened. Specify Y to issue operator

confirmation messages for this class, or N to suppress the messages. The

message number is EDG4008A.

 You can use this opportunity to perform any local operation procedures, such as

adding a security sticker to a volume.

 Default: MSG(N)

NAME(name)

Specifies a name for the security class. The name is used for reports and

communication with users. Specify a value between 1 and 8 characters.

 Default: None. You are required to specify this operand.

NUMBER(nnn)

Specifies a security classification number between 1 and 255.

 The security classification numbers indicate relative levels of importance. Higher

numbers mean higher levels of security. Your installation can assign more

specific meanings to the numbers.

 Default: None. You are required to specify this operand.

SMF(N|Y)

Specifies whether to write an SMF security record each time a tape data set in

this class is opened. Y means to write an SMF record, and N means not to

write it. See z/OS DFSMSrmm Reporting for information on using EDGAUD to

produce a report for these SMF records.

 Default: SMF(N)

Defining Pools: VLPOOL

Use the VLPOOL command to define pools and to set release actions for all

volumes in the pool. See Chapter 6, “Organizing the Removable Media Library,” on

page 97 for information about pooling. When you add a new volume to the library,

DFSMSrmm assigns it a shelf location from the specified pool. Figure 78 on page

206 shows an example of the VLPOOL command and the operands you can code

in the parmlib member EDGRMMxx.

Parmlib Member SECCLS Command

Chapter 10. Using the Parmlib Member EDGRMMxx 205

VLPOOL Command Syntax

Figure 79 shows the syntax of the VLPOOL command:

 Each VLPOOL command defines a pool. Each generic shelf location defined by

PREFIX must be unique. If you do not specify any VLPOOL commands, or do not

VLPOOL PREFIX(Y2*) TYPE(R) DESCRIPTION(’CUSTOMER REEL TAPES’) -

 MEDIANAME(3420) RACF(Y) EXPDTCHECK(Y)

VLPOOL PREFIX(Y3*) TYPE(R) DESCRIPTION(’CUSTOMER 3480 CARTRIDGES’) -

 MEDIANAME(3480) RACF(Y) EXPDTCHECK(Y)

VLPOOL PREFIX(P0*) TYPE(R) DESCRIPTION(’SOFTWARE PRODUCT REELS’) -

 MEDIANAME(3420) RACF(Y) EXPDTCHECK(Y)

VLPOOL PREFIX(P2*) TYPE(R) DESCRIPTION(’SOFTWARE CARTRIDGES’) -

 MEDIANAME(3480) RACF(Y) EXPDTCHECK(Y)

VLPOOL PREFIX(C*) TYPE(R) DESCRIPTION(’MVS AND VM BACKUP TAPES’) -

 MEDIANAME(3480) RACF(Y) EXPDTCHECK(Y)

VLPOOL PREFIX(X8*) TYPE(R) DESCRIPTION(’IN TAPES’) -

 MEDIANAME(3480) RACF(Y) EXPDTCHECK(Y)

VLPOOL PREFIX(M*) TYPE(S) DESCRIPTION(’SCRATCH POOL’) -

 MEDIANAME(3480) RACF(Y) EXPDTCHECK(Y) SYSID(DG4)

VLPOOL PREFIX(*) TYPE(R) DESCRIPTION(’EVERYTHING ELSE’) -

 MEDIANAME(3480) RACF(Y) EXPDTCHECK(Y)

VLPOOL PREFIX(*) NAME(DEFAULT) TYPE(S) SYSID(SYS1) -

 DESCRIPTION(’Default pool’)

VLPOOL PREFIX(S*) NAME(SPECIAL) TYPE(R) -

 DESCRIPTION(’EDGUX100 set pool’)

Figure 78. Parmlib Member EDGRMMxx VLPOOL Command Examples

�� VLPOOL

YES

AUTOSCRATCH(

NO

)

 DESCRIPTION(’c.....c’) �

�
O

EXPDTCHECK(

N

)

Y

 �

�
option_masteroverwrite_value

MASTEROVERWRITE

(

MATCH

)

USER

ADD

LAST

 �

�
parmlib_default_medianame

MEDIANAME(

medianame

)

NAME(pool_name)
 �

�
*

PREFIX(

nnnnn

)

N

RACF(

Y

)

RELEASEACTION(NOTIFY)
 �

�
SYSID(system_name)

S

TYPE(

R

)

 ��

Figure 79. Parmlib Member EDGRMMxx VLPOOL Command Syntax

Parmlib Member VLPOOL Command

206 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

specify a VLPOOL command for POOL(*), DFSMSrmm automatically creates a

default pool definition that includes all the shelf locations and volumes in them. The

defaults for this pool are:

VLPOOL RACF(N) TYPE(S) EXPDTCHECK(O) MEDIANAME(parmlib_default_medianame) -

 DESCRIPTION(’DEFAULT POOL’) PREFIX(*)

VLPOOL Command Operands

AUTOSCRATCH(YES|NO)

Use this operand to override the scratch processing release action for volumes

in this pool. By default, AUTOSCRATCH(YES) return to scratch is performed

automatically when expiration processing is running on a system that has

access to the catalogs, TCDB, and library for the volume. If you need to take

any special actions not performed by DFSMSrmm, perhaps on another system,

specify AUTOSCRATCH(NO).

 When you specify AUTOSCRATCH(YES) and do not manually confirm the

scratch release action, DFSMSrmm performs return to scratch processing,

including:

v UNCATALOG parmlib option.

v TPRACF parmlib option.

v SMSTAPE(UPDATE(SCRATCH)).

When you specify AUTOSCRATCH(NO) or you manually confirm the scratch

release action for any volume, DFSMSrmm does not perform this part of the

return to scratch processing. DFSMSrmm assumes that you have manually

performed the cleanup already.

 When you specify AUTOSCRATCH(NO), DFSMSrmm does not return the

volume to scratch status until you have manually confirmed the volume release

action and run expiration processing.

 DFSMSrmm checks the AUTOSCRATCH setting and the scratch release action

for the volume when the volume is returning to scratch. If the scratch release

action is set and the volume is in a pool with AUTOSCRATCH(NO),

DFSMSrmm leaves the volume in pending release status. You must perform

whatever actions or cleanup activity you require and confirm that the scratch

release action has been performed using the subcommand: RMM CV volser

CRLSE(SCRATCH). Run expiration processing on any DFSMSrmm system to

return the volume to scratch.

 Default: AUTOSCRATCH(YES)

DESCRIPTION(’c.....c’)

Describes the pool. Specify a description between 1 and 32 characters. You

must enclose the value in quotes if you use blanks or special characters.

 Default: None. You are required to specify this operand.

EXPDTCHECK(Y|N|O)

Specifies to automate the processing of unexpired tape data sets at the pool

level.

 N indicates that DFSMSrmm is not to check or validate the expiration date of

data sets on a tape. It allows the tape to be overwritten after the system has

checked the validity of the tape. DFSMSrmm does not overwrite or replace the

Parmlib Member VLPOOL Command

Chapter 10. Using the Parmlib Member EDGRMMxx 207

|

|

|

|
|
|
|

|
|
|

expiration date on the tape. This situation happens when a volume is released

early, or when someone changes its expiration date or retention period by using

the RMM TSO subcommands.

 Recommendation: Specify N when running a DFSMSrmm-managed scratch

tape pool to ensure that tapes are reused only when the information on them is

no longer required. DFSMSrmm can easily automate reuse of tapes if they are

still expiration protected, for example, when they are reused as scratch tapes.

 Y indicates that DFSMSrmm ensures that all unexpired tape data sets are

never overwritten. It fails specific mount requests and requests a remount if the

tape request is nonspecific. If an expiration date or retention period was coded

in the JCL when the date was originally written to the volume, the tape label is

expiration date protected, and DFSMSrmm records this as the original

expiration date for the volume. Setting EXPDTCHECK(Y) ensures that the

original expiration dates specified in the JCL are honored, even if the tape has

been released early, or its expiration date or retention period has been changed

using the RMM TSO subcommands.

 When you specify Y and a tape is expiration protected, reinitialize it before

using it again. You can determine what volumes you need to reinitialize by

looking at the original expiration date recorded in the DFSMSrmm control data

set. To find the date, see the extract data set or use the RMM LISTVOLUME

subcommand.

 O indicates that DFSMSrmm takes no action but allows the operator or

automated software such as NetView to reply as necessary to any

write-to-operator messages (IEC507D).

 DFSMSrmm ignores the EXPDTCHECK operand and requires an operator reply

to the write-to-operator with reply messages when:

v DFSMSrmm is running in record-only mode. DFSMSrmm does not have

enough information to base a decision on. Your installation’s procedures help

the operator to decide how to reply to messages.

v DFSMSrmm is running in warning mode and the volume is rejected for any

reason. DFSMSrmm decides that the volume should not be used, but allows

its use because in warning mode it does not reject volumes. Your operator or

current operating procedures determine whether to reuse the volume and

override the expiration protection.

Note: When you use the EDGUX100 exit to tell DFSMSrmm to ignore a

volume, DFSMSrmm does not reply to the IEC507D message because

the volume is not DFSMSrmm-managed.

Default: EXPDTCHECK(O)

MASTEROVERWRITE(ADD|LAST|MATCH|USER))

Specify the VLPOOL MASTEROVERWRITE operand to control how

DFSMSrmm allows the overwriting of a volume. You can specify if you want to

allow data to be appended to the end of a volume or overwritten, or to allow

new files to be added to a volume. The MASTEROVERWRITE value applies to

all volumes that reside in a pool. If you do not specify a MASTEROVERWRITE

value, DFSMSrmm uses the MASTEROVERWRITE value that you set using the

EDGRMMxx parmlib member OPTION MASTEROVERWRITE operand, as

described in “Defining System Options: OPTION” on page 175.

ADD Specify this value so new data can be created and no existing

data can be destroyed. No existing file on a volume can be

recreated, but the last file can have new data added to it. When

Parmlib Member VLPOOL Command

208 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

adding data to the last file, DFSMSrmm checks that the data

set name used must match the existing data set name. Select

this option when you want the last file on the volume to be

extended or a new file added to the volume.

Note: DFSMSrmm enforces the MASTEROVERWRITE(ADD)

option on a WORM tape that is in master status. This is

done to ensure that you see a message from

DFSMSrmm rather than one of a number of symptoms

as a result of the tape drive preventing overwrites.

LAST Specify this value to ensure that when an existing file on a

master volume is being written to that only the last file on the

volume can be used. The data set name used must match the

existing data set name. Select this option when you want the

last file on the volume to be used for output.

MATCH Specify this value to ensure that when an existing file on a

master volume is being used for output that exactly the same

data set name must be used. Select this option when you want

any existing file on the volume to be recreated regardless of

whether it is the last file on the volume as long as the same

data set name is used.

 When you use an existing tape file for output all the files which

are higher in sequence are destroyed.

USER Specify this value to allow any existing file on a master volume

to be used for output regardless of the data set names being

used and its relative file position on the volume. Select this

option when you want validation of master volumes to be just

the same as for user status volumes.

 When you use an existing tape file for output all the files which

are higher in sequence are destroyed.

 Default: EDGRMMxx parmlib member OPTION MASTEROVERWRITE operand.

MEDIANAME(media_name)

Specifies a media name for all volumes in this pool. Specify a one-to-eight

character name. If you do not specify a MEDIANAME, DFSMSrmm uses the

medianame that you set using the EDGRMMxx parmlib member OPTION

MEDIANAME operand, as described in “Defining System Options: OPTION” on

page 175.

 You can specify any name because DFSMSrmm does not check whether the

device type has been defined to z/OS. Some examples of MEDIANAME that

you might define include: CART, ROUND, SQUARE, 3420, 3480, TAPE,

OPTICAL, CASSETTE. DFSMSrmm accepts media names that have not been

generated on the z/OS system that is running DFSMSrmm. Use of

MEDIANAMEs that describe size or shape can give you more flexibility in the

media that can reside in a pool. Use MEDIANAME to identify different types of

physical shelf space for different media, or to distinguish different media

characteristics such as Cartridge System Tape and Enhanced Capacity

Cartridge System Tape. See “Defining Storage Locations: LOCDEF” on page

168 for information about using media names when defining storage locations.

 If you change a media name for a VLPOOL command for an existing pool of

volumes, or add a new VLPOOL command that has a different media name

than existing volumes which are covered by that VLPOOL command, you must

Parmlib Member VLPOOL Command

Chapter 10. Using the Parmlib Member EDGRMMxx 209

consider changing the media names for those existing volumes. Refer to

“Changing Pool Definitions” on page 102 which describes how to use RMM

CHANGEVOLUME volser MEDIANAME to make the volume media name

match the value in the VLPOOL command.

 Default: MEDIANAME(parmlib_default_medianame)

NAME(pool_name)

Specifies a pool name that DFSMSrmm uses to update operator messages and

tape drive displays for nonspecific tape mount requests. pool_name can be a 1

to 8 character name. The first character must be an alphanumeric or national

character. Blank, comma, or semicolon cannot be used. Specify a BTLS

category name to use DFSMSrmm pooling support for volumes managed by

BTLS. pool_name can be a tape storage group name defined in your active

SMS configuration. NAME is optional and is used on tape drive displays. To use

the pool name in messages, you must specify RACK(999) on the MNTMSG

command so that the message is updated at the end of the message text.

 If you specify a NAME value that is a valid storage group name, DFSMSrmm

uses the NAME value as the default storage group name for all the volumes

added into this pool range. By naming a specific storage group with the RMM

ADDVOLUME subcommand, you can select a pool for a volume at the

individual volume level.

 You can use the same NAME value on multiple VLPOOL commands enabling

you to group multiple prefix ranges into a single logical pool without the need to

use the RMM ADDVOLUME subcommand to specify storage group names. You

can use RMM ADDVOLUME or RMM CHANGEVOLUME subcommand with the

STORAGEGROUP operand to add or remove individual volumes in a logical

pool.

 Default: None.

PREFIX(nnnnn*)

Specifies a generic shelf location that is used in operator messages, RMM TSO

subcommands, and the DFSMSrmm ISPF dialog. A pool prefix is one to five

alphanumeric, national, or special characters followed by an asterisk. Use a

single asterisk to specify the default volume pool that contains all volumes not

specifically included in another pool.

 If a volume’s shelf location falls into a number of possible pools, DFSMSrmm

chooses the most specific pool. For example, you defined AB* and ABC* as

pools. If volume ABC123 is from shelf location ABC123, it belongs in pool ABC*,

not AB*. DFSMSrmm prevents duplicate pool prefixes.

 DFSMSrmm uses the prefix value to assign a newly defined volume to a

scratch pool. For all volumes, DFSMSrmm uses the:

v Storage group value specified with the RMM ADDVOLUME subcommand

issued when the volume is defined to DFSMSrmm.

v PARMLIB VLPOOL NAME operand value to assign the storage group when

NAME specifies a valid tape storage group.

v Pool prefix to assign a pool when no NAME operand value or storage group

value is specified.

 Default: PREFIX(*)

RACF(Y|N)

Specifies the type of RACF tape support that DFSMSrmm should provide for

volumes in the pool you are defining. When you are defining RACF tape

support for volumes in a pool, you must look at the RACF tape support you

Parmlib Member VLPOOL Command

210 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

have defined for your installation with the OPTION TPRACF command

described in “Defining System Options: OPTION” on page 175. Specify Y if you

want DFSMSrmm to create RACF tape profiles for the volumes in the pool.

Ensure that OPTION TPRACF (AUTOMATIC or PREDEFINED or CLEANUP) is

specified. If OPTION TPRACF(NONE) is specified, DFSMSrmm will not create

the RACF tape profiles.

 Only specify Y for tape pools because TAPEVOL profiles are not required for

optical volumes.

 Specify N if you do not want DFSMSrmm to create RACF tape profiles for the

volumes in the pool. If you specify N, DFSMSrmm plays no part in creating or

deleting RACF tape profiles, regardless of the system-wide option TPRACF.

 Default: RACF(N)

RELEASEACTION(NOTIFY)

Use this operand with the NOTIFY value to automatically set the NOTIFY

release action for all volumes in this pool. If you have an e-mail address for the

owner of the volume, DFSMSrmm sends the owner notification that the volume

is pending release. By default, DFSMSrmm does not set the NOTIFY release

action. The VLPOOL NOTIFY value is checked at the time the volume is set

pending release. If NOTIFY is set for the volume, DFSMSrmm sets the NOTIFY

release action.

 Recommendation: You could use this option to build in a delay or a checkpoint

in scratch processing to ensure that volumes are ready to return to scratch. If

parmlib OPTION NOTIFY(NO) is set , or you do not have an e-mail address for

the owner of the volume, you must notify the user and later confirm the notify

action to DFSMSrmm.

 Default: None.

SYSID(system_name)

Associates the scratch pool you are defining with a particular system. Specify a

value one to eight characters long. DFSMSrmm matches the value with the

SYSID operand of the OPTION command.

 DFSMSrmm enforces a match on SYSID when validating nonspecific tape

mounts. Only scratch volumes from a pool associated with a specific system

can satisfy nonspecific mount requests for that system. DFSMSrmm rejects

volumes from other pools on that system.

 When you specify a SYSID, and you have also activated MNTMSG, all

nonspecific mount messages are updated to include the pool prefix to identify

the pool to be used to the operator.

 You can use the EDGUX100 installation exit to assign multiple scratch pools to

be used for nonspecific tape volume requests for each system.

 If there is no scratch pool defined for the current system, and the EDGUX100

exit does not select a specific scratch pool, DFSMSrmm does not update the

mount message. DFSMSrmm selects the first pool in the collating sequence

with the correct SYSID to update mount messages. However, the operator can

mount a volume from any eligible pool. DFSMSrmm ignores the SYSID value

when you use ACS routines to select a storage group pool for a nonspecific

tape request.

 Default: The pool is not associated with any particular system.

Parmlib Member VLPOOL Command

Chapter 10. Using the Parmlib Member EDGRMMxx 211

TYPE(S|R)

Specifies the type of pool. In DFSMSrmm, there are two categories of pools:

rack and scratch. Specify R for a rack pool, and S for a scratch pool.

 A rack pool is shelf space that can be assigned to hold any volumes that are

generally read-only and that enter and leave your installation on an ad hoc

basis. These volumes are typically software product volumes and customer

volumes and do not adhere to your installation’s naming conventions. Although

you can add scratch volumes to rack pools, you cannot normally use these

volumes to satisfy nonspecific mount requests unless EDGUX100 selects a pool

or a storage group scratch pool is selected.

 A scratch pool is shelf space assigned to hold volumes for use with

DFSMSrmm system based scratch pooling. The volumes assigned to this shelf

space can be used to satisfy scratch requests as long as the volumes are in

scratch status. Once the volume has been written to, it becomes a volume with

MASTER status until the data is no longer required by the installation. The

volume remains in the same DFSMSrmm scratch pool in that it occupies the

same shelf space regardless of status.

 Default: TYPE(S)

Parmlib Member VLPOOL Command

212 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 11. Authorizing DFSMSrmm Users and Ensuring

Security

To protect DFSMSrmm functions, you need to use an external security product,

such as RACF. Invocations to the product are made by DFSMSrmm through the

System Authorization Facility (SAF). If RACF is not installed, you must provide

equivalent function via the SAF interface described in “Using the SAF Interface” on

page 238.

This topic explains how you can define RACF profiles to protect DFSMSrmm

functions. Define RACF profiles and authorize DFSMSrmm users to various levels

of access, either CONTROL, READ, ALTER, or UPDATE. These access levels vary

depending on the security requirements of your installation. DFSMSrmm supports a

role-based authorization model where you can allow a storage administrator to

perform all tasks, or you can delegate regular tasks to others. See “Setting the

Level of Access for the DFSMSrmm Resources” on page 216 for additional details.

In addition, “Controlling RACF Tape Profile Processing” on page 229 describes how

to use the DFSMSrmm parmlib OPTION TPRACF command and VLPOOL

command and your installation’s RACF options to control the actions that

DFSMSrmm takes on RACF tape profiles.

This topic also explains how to ensure security:

v “Creating Audit Trails” on page 228

v “Using Security Classification Processing” on page 229

v “Preventing the Use of IEHINITT” on page 229

Protecting DFSMSrmm Resources with RACF Profiles

The DFSMSrmm resources you protect with RACF profiles in the FACILITY class

each have an entity name prefixed with STGADMIN.EDG. Table 23 lists the

DFSMSrmm resources.

For optimal security, define RACF profiles to control access to DFSMSrmm

functions that are protected by the DFSMSrmm resource. If there is a RACF profile,

specific or generic, that matches a DFSMSrmm resource, the resource is treated as

if it has been defined. DFSMSrmm provides control for some resources, as

described in “Setting the Level of Access for the DFSMSrmm Resources” on page

216, even when you do not protect DFSMSrmm resources with RACF or another

equivalent security product.

The TSO commands and utilities are authorized by DFSMSrmm on the system on

which you run them.

 Table 23. Resources You Protect with RACF Profiles

Define the Resource To Control the

STGADMIN.EDG.ACTIONS.action1 Setting of the release action.

STGADMIN.EDG.AV.status.volser2 Adding of volumes.

STGADMIN.EDG.CMOVE.location.destination Confirmation of moves and ejects.

STGADMIN.EDG.CRLSE.action1 Confirmation of the release action.

STGADMIN.EDG.DV.SCRATCH.volser Deleting of scratch volumes.

© Copyright IBM Corp. 1992, 2007 213

Table 23. Resources You Protect with RACF Profiles (continued)

Define the Resource To Control the

STGADMIN.EDG.FORCE Changing of information recorded by DFSMSrmm during

O/C/EOV processing.

Adding or deleting data sets on volumes or to use the

DELETEVOLUME command.

STGADMIN.EDG.HOUSEKEEP Use of DFSMSrmm inventory management functions.

STGADMIN.EDG.HOUSEKEEP.RPTEXT Use of DFSMSrmm inventory management extract

function

STGADMIN.EDG.IGNORE.TAPE.volser Use of duplicate volume serial numbers and to allow a

volume to be ignored. For z/OS V1.R8 and later releases,

DFSMSrmm uses this profile to authorize users to data on

the tape.

Recommendation: Do not assign an access level to the

STGADMIN.EDG.IGNORE.TAPE.volser resource to any

specific user group. When a tape volume that must be

ignored by DFSMSrmm is identified, grant the user or user

group the needed access level. Once the volume is no

longer needed, delete the resource.

STGADMIN.EDG.IGNORE.TAPE.RMM.volser Use of duplicate volume serial numbers and to allow a

volume to be ignored. For z/OS V1.R8 and later releases,

DFSMSrmm uses this profile to authorize users to data on

the tape.

Recommendation: Specify UACC(NONE) to the

STGADMIN.EDG.IGNORE.TAPE.RMM.volser resource.

Grant a user or user group the needed access level only

when access is needed. When the volume is no longer

needed, delete the resource.

STGADMIN.EDG.IGNORE.TAPE.NORMM.volser Use of volume serial numbers that are not defined to

DFSMSrmm to allow a volume to be ignored. For z/OS

V1.R8 and later releases, DFSMSrmm uses this profile to

authorize users to data on the tape.

STGADMIN.EDG.INIT Setting of the INIT action.

STGADMIN.EDG.LABEL.volser Creation of standard tape labels. The variable volser can

be specified as a specific volume serial number or a

generic volume serial number. For example, A12345 is a

specific volume serial number and AB* is a generic

volume serial number. If you use generic profiles you can

use these functions in a subset of your volumes. If the

volume serial numbers and rack numbers match, you can

control relabeling at the pool level. For example you could

have a pool using rack number prefix AB*.

If you want to create an AL tape and your installation has

an SL scratch pool, you need ALTER access to

STGADMIN.EDG.LABEL.volser. The volser can be

specified as the pool prefix of the scratch pool.

If you want to switch to an AL tape from either an SL or

NL tape that has already been assigned to you, UPDATE

access to STGADMIN.EDG.LABEL.volser is required.

STGADMIN.EDG.LIST List and search DFSMSrmm resources.

214 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 23. Resources You Protect with RACF Profiles (continued)

Define the Resource To Control the

STGADMIN.EDG.LISTCONTROL Use of the RMM LISTCONTROL subcommand to display

DFSMSrmm control data set control record information

and EDGRMMxx parmlib settings.

STGADMIN.EDG.MASTER Access to information in the DFSMSrmm control data set.

Assign the control data set a universal access of NONE

so that DFSMSrmm grants access to various functions

through STGADMIN.EDG.MASTER.

STGADMIN.EDG.MOVES.location.destination Initiation of moves and ejects.

STGADMIN.EDG.NOLABEL.volser Creation of tapes without labels.

STGADMIN.EDG.OPERATOR Use of the initialize and erase functions.

STGADMIN.EDG.OWNER.userid Access to owned resources. DFSMSrmm checks this

entity only if the command issuer is not the owner of the

resource and does not have CONTROL access to

STGADMIN.EDG.MASTER. Use of the RMM

CHANGEVOLUME subcommand to update information

based on the owner.

Using STGADMIN.EDG.OWNER.userid, individual owners

can permit other users to access owned volumes. An

owner can be a group or department as well as an

individual. Define owner resources only for those owners

who will allow their volumes to be managed by another

user.

STGADMIN.EDG.RELEASE Use of the RMM DELETEVOLUME RELEASE

subcommand to process any release actions specified for

a volume.

STGADMIN.EDG.RESET.SSI Use of the RESET facility for removing DFSMSrmm from

the system. You can use the facility without defining this

resource when you have no security product installed.

STGADMIN.EDG.VRS Use of the RMM LISTVRS and SEARCHVRS

subcommands to obtain information about vital record

specifications. Use of the RMM ADDVRS and

DELETEVRS subcommands to define or remove vital

record specifications.

STGADMIN.EDG.INERS.WRONGLABEL Processing for volumes mounted with the wrong label.

Notes:

1. Action can be either SCRATCH, RETURN, REPLACE, NOTIFY, ERASE, or INIT.

2. Status can be either SCRATCH, USER, MASTER, or VOLCAT.

Creating Profiles

To protect an DFSMSrmm resource, you can create a RACF profile as shown in

Figure 80.

 For the most complete records, create profiles with auditing options that are set to

record attempted activities. For example, to ensure that RACF logs all successful

and failed attempts to change vital record specifications, create profiles as shown in

 RDEFINE FACILITY STGADMIN.EDG.OWNER.HSMATH0 UAC(ALTER)

Figure 80. Creating a RACF Profile

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 215

Figure 81.

Setting the Level of Access for the DFSMSrmm Resources

When you define the DFSMSrmm resources, you need to authorize levels of access

to these resources. DFSMSrmm checks the resource and the level of access to

ensure that users are authorized to request certain tasks. For example, if you

attempt to change an owned volume, DFSMSrmm checks to ensure that you have

at least UPDATE access to resource STGADMIN.EDG.MASTER.

When checking authorization to use RMM subcommands and operands,

DFSMSrmm checks in this sequence:

1. CONTROL access to STGADMIN.EDG.MASTER. If the user is authorized, no

further checking is performed.

2. Next, DFSMSrmm checks for specific subcommand operands and for each

operand that requires specific authorization checks for the required access. If

the resource is not protected, authorization continues with the next step. If the

resource is protected, but the user is not authorized, the subcommand fails.

3. Finally, DFSMSrmm continues with ownership checks and RELEASE and

FORCE checking, if required.

Because of the way authorization is checked, it is not necessary to have CONTROL

access to STGADMIN.EDG.MASTER to perform many of the regular administrative

tasks.

Table 24 shows the access that is required to perform DFSMSrmm functions.

 Table 24. Authorized Functions

When You Define With Access Then

STGADMIN.EDG.ACTIONS.action

1,5 Entity not

defined

Based on STGADMIN.EDG.MASTER access.

UPDATE You are allowed to set the specific release action

via the TSO DFSMSrmm subcommand

CHANGEVOLUME with option

RELEASEACTION.

STGADMIN.EDG.AV.status.volser

6 Entity not

defined

Based on STGADMIN.EDG.MASTER access.

UPDATE You are allowed to add volumes to the

DFSMSrmm tape inventory via the TSO

DFSMSrmm subcommand ADDVOLUME with

option STATUS(status).

STGADMIN.EDG.CMOVE.location.destination Entity not

defined

Based on STGADMIN.EDG.MASTER access.

UPDATE You are allowed to confirm that the move or

eject has occurred for either a single volume or

globally3 via the TSO DFSMSrmm subcommand

CHANGEVOLUME with option CONFIRMMOVE,

as well as to reverse a previous move

confirmation with option NOCONFIRMMOVE.

 RDEFINE FACILITY STGADMIN.EDG.VRS UACC(NONE)

 RALT FACILITY STGADMIN.EDG.VRS GLOBALAUDIT(ALL(UPDATE))

Figure 81. Creating a RACF Profile with Audit Options

216 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 24. Authorized Functions (continued)

When You Define With Access Then

STGADMIN.EDG.CRLSE.action

1,5 Entity not

defined

Based on STGADMIN.EDG.MASTER access.

UPDATE You are allowed to confirm that the specific

release action has been performed either for a

single volume or globally via the TSO

DFSMSrmm subcommand CHANGEVOLUME

with option CONFIRMRELEASE, as well as to

reverse a previous release action confirmation

with option NOCONFIRMRELEASE. In addition,

it enables the DELETEVOLUME REPLACE

subcommand to be specified for a volume

waiting to be replaced.

STGADMIN.EDG.DV.SCRATCH.volser Entity not

defined

Based on STGADMIN.EDG.MASTER access.

UPDATE You are allowed to remove scratch volumes from

the DFSMSrmm tape inventory via the TSO

DFSMSrmm subcommand DELETEVOLUME

with option REMOVE.

STGADMIN.EDG.FORCE Entity not

defined

Information previously recorded by DFSMSrmm

cannot be changed.

UPDATE Information previously recorded by DFSMSrmm

can be changed based on access to

STGADMIN.EDG.MASTER.

STGADMIN.EDG.HOUSEKEEP Entity not

defined

Same as READ access

READ Any of the inventory management facilities can

be invoked.

STGADMIN.EDG.HOUSEKEEP.RPTEXT Entity not

defined

Same as READ access

READ RPTEXT inventory management function can be

invoked.

STGADMIN.EDG.IGNORE.TAPE.volser Entity not

defined

Volumes cannot be ignored using the

DFSMSrmm installation exit.

READ Volumes that are to be ignored by DFSMSrmm

for input requests are allowed to be opened.

UPDATE Volumes that are to be ignored by DFSMSrmm

for output requests are allowed to be opened.

STGADMIN.EDG.IGNORE.TAPE.RMM.volser Entity not

defined

Access is based on the

STGADMIN.EDG.IGNORE.TAPE.volser setting.

Use of the

STGADMIN.EDG.IGNORE.TAPE.RMM.volser

profile allows volumes that are defined to

DFSMSrmm to be ignored.

READ Volumes that are defined to DFSMSrmm can be

ignored by DFSMSrmm for input requests are

allowed to be opened.

UPDATE Volumes that are defined to DFSMSrmm can be

ignored by DFSMSrmm for output requests are

allowed to be opened.

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 217

Table 24. Authorized Functions (continued)

When You Define With Access Then

STGADMIN.EDG.IGNORE.TAPE.NORMM.volser Entity not

defined

Access is based on the

STGADMIN.EDG.IGNORE.TAPE.volser setting.

Use of the

STGADMIN.EDG.IGNORE.TAPE.NORMM.volser

profile allows volumes that are not defined to

DFSMSrmm to be ignored.

READ Volumes not defined to DFSMSrmm that are to

be ignored for input requests are allowed to be

opened.

UPDATE Volumes not defined to DFSMSrmm that are to

be ignored for output requests are allowed to be

opened.

STGADMIN.EDG.INIT Entity not

defined

Based on STGADMIN.EDG.MASTER access.

UPDATE You are allowed to specify whether a volume

should be initialized or not. You can specify

INITIALIZE(YES) to indicate that a volume

requires initialization, and INITIALIZE(NO) to

indicate that the volume does not need to be

initialized.

STGADMIN.EDG.LABEL.volser Entity not

defined

A volume must be in user status to switch from

NL or to change to label types at OPEN time.

UPDATE Standard labels can be created on a non-scratch

volume for an AL or SL output request.

ALTER Standard labels can be created on a scratch

volume during a nonspecific volume request for

AL or SL.

STGADMIN.EDG.LIST Entity not

defined

Based on STGADMIN.EDG.MASTER access.

CONTROL You are allowed to list and search resources

defined in the DFSMSrmm inventory. This option

can be used to replace CONTROL access to

STGADMIN.EDG.MASTER in a name-hiding

environment or when COMMANDAUTH(DSN) is

in use.

STGADMIN.EDG.LISTCONTROL Entity not

defined

Functions are based on

STGADMIN.EDG.MASTER access.

CONTROL You are allowed to use the RMM

LISTCONTROL subcommand.

218 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 24. Authorized Functions (continued)

When You Define With Access Then

STGADMIN.EDG.MASTER Entity not

defined

Same as CONTROL access.

READ These functions can be performed:

v List all control data set information except vital

record specifications and control information

v Search for all control data set information

except vital record specifications

v Update your own owner ID details

v Request a scratch volume for yourself

v Release an owned volume when the

STGADMIN.EDG.RELEASE resource is not

protected

UPDATE Same as READ access, plus: Some

non-restricted fields can be updated for owned

volumes and data sets based on user ID. See

z/OS DFSMSrmm Guide and Reference, RMM

CHANGEVOLUME subcommand information, for

a list of the non-restricted fields. See “Using

RACF Options for Authorizing RMM TSO

Subcommands” on page 237 for information

about changing information using DFSMSrmm

command authorization by data set name.

CONTROL Same as UPDATE access, plus: You can

v Define, change, and delete any control data

set entries except vital record specifications

v List control information when the

STGADMIN.EDG.LISTCONTROL resource is

not protected

STGADMIN.EDG.MOVES.location.destination Entity not

defined

Based on STGADMIN.EDG.MASTER access.

UPDATE You are allowed to initiate the move via the TSO

DFSMSrmm subcommand CHANGEVOLUME

with either option LOC(destination)4 or

LOANLOC(destination)2,4, as well as to initiate

the eject of a volume to a previously specified

destination with option EJECT4,7.

STGADMIN.EDG.NOLABEL.volser Entity not

defined

A volume must be in user status to switch to NL

at OPEN time.

UPDATE You are allowed to destroy labels on a

non-scratch volume for a no label output

request.

ALTER You are allowed to destroy labels on a scratch

volume during a nonspecific volume request for

no labels.

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 219

Table 24. Authorized Functions (continued)

When You Define With Access Then

STGADMIN.EDG.OPERATOR Entity not

defined

Same as UPDATE access.

NONE No authority is granted to use EDGINERS to

initialize and erase volumes.

READ No authority is granted to use EDGINERS to

initialize and erase volumes.

UPDATE EDGINERS can be used to initialize and erase

volumes.

STGADMIN.EDG.OWNER.userid Entity not

defined

No authority is granted to update volume

information except based on

STGADMIN.EDG.MASTER access.

NONE Based on STGADMIN.EDG.MASTER access.

UPDATE Some non-restricted fields for volumes and data

sets owned by userid can be updated. Also a

volume owned by userid can be released. See

z/OS DFSMSrmm Guide and Reference, RMM

CHANGEVOLUME subcommand information, for

a list of the non-restricted fields. See “Using

RACF Options for Authorizing RMM TSO

Subcommands” on page 237 for information

about changing information using DFSMSrmm

command authorization by data set name.

STGADMIN.EDG.RELEASE Entity not

defined

Based on STGADMIN.EDG.MASTER access.

READ You are allowed to use the RMM

DELETEVOLUME RELEASE subcommand to

release an owned volume.

STGADMIN.EDG.RESET.SSI Entity not

defined

You cannot use the EDGRESET utility to remove

DFSMSrmm from the system.

If you have no security product installed, you

can use EDGRESET to remove DFSMSrmm

from the system.

ALTER You are allowed to withdraw DFSMSrmm from

the system during error recovery or problem

during implementation.

STGADMIN.EDG.VRS Entity not

defined

Same as CONTROL access.

READ You are allowed to list and search for all vital

record specifications.

CONTROL Same as READ access, plus: You can define

and delete vital record specifications.

STGADMIN.EDG.INERS.WRONGLABEL Entity not

defined

Use of the EDGINERS EXEC statement PARM

IGNORE and RMMPROMPT parameters is

denied.

UPDATE You are allowed to use the EDGINERS EXEC

statement PARM RMMPROMPT parameter.

CONTROL You are allowed to use the EDGINERS EXEC

statement PARM IGNORE parameter.

220 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 24. Authorized Functions (continued)

When You Define With Access Then

Notes:

1. Action can be either SCRATCH, RETURN, REPLACE, NOTIFY, ERASE, or INIT.

2. To set a loan, the entity STGADMIN.EDG.MOVES.current location.loan location is used.

3. To confirm a global move via the TSO DFSMSrmm subcommand CV CMOVE (ALL,ALL), the RACF entity

STGADMIN.EDG.CMOVE.ALL.ALL is checked.

4. When the destination is not set or blank, for example, when you issue the CHANGEVOLUME command with

either the operand LOCATION or LOANLOC with a blank location, or when you eject a volume that has no

destination set, the entity STGADMIN.EDG.MOVES.locationA.locationA is used. locationA is the current location

of the volume.

5. To grant access to a list of actions, for example, when you issue the CHANGEVOLUME subcommand CV

CRLSE(INIT,NOTIFY,ERASE), every single action resource is checked, and access is granted only if all single

actions are granted.

6. Status can be either SCRATCH, USER, MASTER, or VOLCAT.

7. For an EJECT, the same entity is checked that is used to check if the user is allowed to start the move.

Authorizing Resources

Table 25 and Table 26 on page 222 provide suggestions for authorizing different

types of users. Implementing these suggestions depends on your organization’s

structure, administrative procedures, and security requirements. For storage

administrator and tape librarian roles, DFSMSrmm provides you the choice of

whether they are authorized to use almost any DFSMSrmm subcommand, or

whether you limit the scope of regular administrative tasks they can perform. For

example, you may want a particular librarian to only confirm moves and actions,

and another librarian to only be able to remove scratch volumes and volumes

waiting to be replaced. There are two tables. Table 25 shows how you can set up

the administrative roles to limit the scope of tasks that can be performed and shows

a storage administrator with authority to all tasks, and a librarian limited to certain

tasks. Table 26 on page 222 shows how different users might be authorized without

consideration to limiting administrative tasks.

 Table 25. Suggested Resource Access to Limit Scope of Tasks

Resource General User

Storage

Administrator

System

Programmer Librarian

Inventory

Management

Functions Operator

STGADMIN.EDG.FORCE

- U - U - -

STGADMIN.EDG.HOUSEKEEP

- - - - R -

STGADMIN.EDG.HOUSEKEEP.RPTEXT

- R R R R R

STGADMIN.EDG.IGNORE.TAPE.volser

- - - - - -

STGADMIN.EDG.IGNORE.TAPE.RMM.volser

- - - - - -

STGADMIN.EDG.IGNORE.TAPE.NORMM.volser

- - - - - -

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 221

Table 25. Suggested Resource Access to Limit Scope of Tasks (continued)

Resource General User

Storage

Administrator

System

Programmer Librarian

Inventory

Management

Functions Operator

STGADMIN.EDG.LABEL.volser

U A A A A A

STGADMIN.EDG.LISTCONTROL

C C C C - C

STGADMIN.EDG.MASTER

R C C C - C

STGADMIN.EDG.NOLABEL.volser

U A A A A A

STGADMIN.EDG.OPERATOR

- - U U - U

STGADMIN.EDG.OWNER.userid

- U - - - -

STGADMIN.EDG.RELEASE

R - - - - -

STGADMIN.EDG.RESET.SSI

- - - - - A

STGADMIN.EDG.VRS

R C C C - -

STGADMIN.EDG.INERS.WRONGLABEL

- - - U - -

Access: R—Read, U—Update, C—Control, A—Alter

 Table 26. Suggested Resource Access Without Limited Tasks

Resource General User

Storage

Administrator

System

Programmer Librarian

Inventory

Management

Functions Operator

STGADMIN.EDG.ACTIONS.action

- - U U - -

STGADMIN.EDG.AV.status.volser

- - - U - -

STGADMIN.EDG.CMOVE.location.destination

- - - U U U

STGADMIN.EDG.CRLSE.action

- - - U U U

STGADMIN.EDG.DV.SCRATCH.volser

- - - U - -

STGADMIN.EDG.INIT

- - U U - -

STGADMIN.EDG.LIST

222 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 26. Suggested Resource Access Without Limited Tasks (continued)

Resource General User

Storage

Administrator

System

Programmer Librarian

Inventory

Management

Functions Operator

- C1 - C1 - -

STGADMIN.EDG.MASTER

R C U U U R

STGADMIN.EDG.MOVES.location.destination

- - U U - -

Access: R—Read, U—Update, C—Control, A—Alter

Notes:

1. Access to STGADMIN.EDG.LIST should only be granted in a name-hiding environment and only if the user has no

CONTROL access to STGADMIN.EDG.MASTER.

These topics describe the functions available to DFSMSrmm users that are based

on the recommendations in Table 26 on page 222.

General User Functions

Table 27 describes general user functions.

 Table 27. General User Functions

With The General User Can

UPDATE access to STGADMIN.EDG.LABEL.volser Create standard labels on a non-scratch volume for an AL

or SL output request.

CONTROL access to STGADMIN.EDG.LISTCONTROL Display control information and installation options and

rules.

READ access to STGADMIN.EDG.MASTER

Display all control data set details except vital record

specifications and control information.

Search for data sets, software products, shelf locations,

and volumes.

Update their owner ID details.

Request a scratch volume.

UPDATE access to STGADMIN.EDG.NOLABEL.volser Erase labels on a non-scratch volume for a no label

output request.

READ access to STGADMIN.EDG.RELEASE Release volumes they own.

READ access to STGADMIN.EDG.VRS Search for any vital record specification and display the

details that DFSMSrmm records.

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 223

Storage Administrator Functions

Table 28 describes storage administrator functions.

 Table 28. Storage Administrator Functions

With The Storage Administrator Can

ALTER access to STGADMIN.EDG.LABEL.volser Create standard labels on a scratch volume during a

non-specific volume request for an AL or SL volume.

CONTROL access to STGADMIN.EDG.LISTCONTROL Display control information and installation options and

rules.

CONTROL access to STGADMIN.EDG.MASTER

Display all control data set details.

Request scratch volumes.

Release volumes.

Update volume, data set, owner, and software product

details.

Add and delete information about volumes, data sets,

shelf locations, owner IDs, and software products.

ALTER access to STGADMIN.EDG.NOLABEL.volser Erase labels on a scratch volume during a non-specific

volume request for a no label volume.

UPDATE access to STGADMIN.EDG.OWNER.userid. Update details that DFSMSrmm records for volumes that

userid owns and release volumes that userid owns. The

storage administrator might use this level of authorization

rather than CONTROL access to

STGADMIN.EDG.MASTER for administrators responsible

for specific production applications.

CONTROL access to STGADMIN.EDG.VRS Create and delete vital record specifications.

READ access to STGADMIN.EDG.HOUSEKEEP.RPTEXT Can obtain information from the control data set that can

be used as input for creating reports.

224 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

System Programmer Functions

Table 29 describes system programmer functions.

 Table 29. System Programmer Functions

With The System Programmer Can

ALTER access to STGADMIN.EDG.LABEL.volser Create standard labels on a scratch volume during a

non-specific volume request for an AL or SL volume.

CONTROL access to STGADMIN.EDG.LISTCONTROL Display control information and installation options and

rules

CONTROL access to STGADMIN.EDG.MASTER

Display all control data set details.

Request scratch volumes.

Release volumes.

Update volume, data set, owner, and software product

details.

Add and delete information about volumes, data sets,

shelf locations, owner IDs, and software products.

ALTER access to STGADMIN.EDG.NOLABEL.volser Erase labels on a scratch volume during a non-specific

volume request for a no label volume.

UPDATE access to STGADMIN.EDG.OPERATOR Can initialize and erase volumes.

CONTROL access to STGADMIN.EDG.VRS Create, display, and delete vital record specifications.

READ access to STGADMIN.EDG.HOUSEKEEP.RPTEXT Can obtain information from the control data set that can

be used as input for creating reports.

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 225

Librarian Functions

Table 30 describes librarian functions.

 Table 30. Librarian Functions

With The Librarian Can

ALTER access to STGADMIN.EDG.LABEL.volser Create standard labels on a scratch volume during a

non-specific volume request for an AL or SL volume.

CONTROL access to STGADMIN.EDG.LISTCONTROL Display control information and installation options and

rules.

CONTROL access to STGADMIN.EDG.MASTER

Display all control data set details.

Request scratch volumes.

Release volumes.

Update volume, data set, owner, and software product

details.

Add and delete information about volumes, data sets,

shelf locations, owner IDs, and software products.

ALTER access to STGADMIN.EDG.NOLABEL.volser Erase labels on a scratch volume during a non-specific

volume request for a no label volume.

UPDATE access to STGADMIN.EDG.OPERATOR Initialize and erase volumes.

CONTROL access to STGADMIN.EDG.VRS Search, display, add, and delete vital record specifications.

READ access to STGADMIN.EDG.HOUSEKEEP.RPTEXT Can obtain information from the control data set that can

be used as input for creating reports.

Inventory Management Functions

Table 31 describes inventory management functions.

 Table 31. Inventory Management Functions

With The Person Performing Inventory Management Can

ALTER access to STGADMIN.EDG.LABEL.volser Create standard labels on a scratch volume during a

non-specific volume request for an AL or SL volume.

READ access to STGADMIN.EDG.HOUSEKEEP Invoke the DFSMSrmm inventory management facilities to

perform these functions:

v Create an extract of the control data set.

v Select volumes to be retained and moved as vital

records or for disaster recovery.

v Perform expiration processing.

v Perform storage location management processing.

v Back up the control data set.

ALTER access to STGADMIN.EDG.NOLABEL.volser Erase labels on a scratch volume during a non-specific

volume request for a no label volume.

READ access to STGADMIN.EDG.HOUSEKEEP.RPTEXT Can obtain information from the control data set that can

be used as input for creating reports.

Operator Functions

Table 32 on page 227 describes operator functions.

226 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 32. Operator Functions

With The Operator Can

ALTER access to STGADMIN.EDG.LABEL.volser Create standard labels on a scratch volume during a

non-specific volume request for an AL or SL volume.

CONTROL access to STGADMIN.EDG.LISTCONTROL Display control information and installation options and

rules

CONTROL access to STGADMIN.EDG.MASTER

Display all control data set details.

Request scratch volumes.

Release volumes.

Update volume, data set, owner, and software product

details.

Add and delete information about volumes, data sets,

shelf locations, owner IDs, and software products.

ALTER access to STGADMIN.EDG.NOLABEL.volser Erase labels on a scratch volume during a non-specific

volume request for a no label volume.

UPDATE access to STGADMIN.EDG.OPERATOR Initialize and erase volumes.

ALTER access to STGADMIN.EDG.RESET.SSI Remove DFSMSrmm from the system.

READ access to STGADMIN.EDG.HOUSEKEEP.RPTEXT Can obtain information from the control data set that can

be used as input for creating reports.

Normally, the operator performs these functions by using prepared procedures or

batch jobs. In these cases, the user ID performing the procedure requires the

relevant access; not the operator’s user ID. For example, the EDGRESET function

is invoked by starting the DFSMSrmm procedure with OPT=RESET. The user ID

that the DFSMSrmm procedure uses needs the access to

STGADMIN.EDG.RESET.SSI.

DFSMSrmm supports the issuing of the RMM TSO subcommands from an operator

console. The operator must be authorized for each command issued and must be

logged onto the operator console using their user ID with the required subcommand

authority level.

Using the Tape Relabeling Resources

DFSMSrmm supports three basic label types: NL, SL, and AL. You can switch

between any of these basic types by specifying the new label type in your JCL

when creating the first file on a volume.

Using EDGINERS to relabel tape volumes requires a separate mount of the volume

and must be performed prior to the use of the volume.

Changing volume labels at OPEN time when creating the first file does not require

EDGINERS or the INIT release action. Tape volume labels can be created or

destroyed at any time regardless of volume status when the user has the required

access to a security resource. Scratch volumes can only be used for nonspecific

output requests.

To enable this processing, use the STGADMIN.EDG.LABEL.volser and

STGADMIN.EDG.NOLABEL.volser profiles in the FACILITY class. These profiles

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 227

are described in Chapter 11, “Authorizing DFSMSrmm Users and Ensuring

Security,” on page 213. If you do not create the appropriate security profiles in

FACILITY class, the volume must be in user status.

When DFSMSrmm allows the tape labels to be created or destroyed, it

automatically replies to the operator WTOR to provide the required information. In

addition, for any volume with the return to scratch release action, which has a NL

label type at release time, DFSMSrmm sets the INIT release action to ensure that

only standard label tapes are returned to the scratch pool.

Your installation can bypass this processing for any volume by using the

DFSMSrmm EDGUX100 installation exit to request that DFSMSrmm ignore the

volume. EDGUX100 is called before any tape label conflicts are resolved. See

“Using the DFSMSrmm EDGUX100 Installation Exit” on page 267.

Creating Audit Trails

There are several ways you can create audit information with DFSMSrmm. You can

use these sources:

v Control data set information

v SMF audit records

v RACF audit information

See z/OS DFSMSrmm Reporting for information about creating reports that use

DFSMSrmm control data set information and SMF audit records as input.

Control Data Set Information

Use control data set information as input to inventory reports and movement reports

to keep track of volumes in your removable media library.

You can also obtain control data set information by using RMM TSO subcommands

and the DFSMSrmm ISPF dialog. Here is some of the information available:

v User ID, system, date, and time stamp of the last update before the audit record

was created.

v Create date, time, user ID, and system.

v Storage location data and bin numbers.

v Original expiration date and the current expiration date. The original expiration

date is the expiration date coded in the JCL when the data was originally written

to the volume.

v Current location of a volume.

v Release actions for a volume.

See z/OS DFSMSrmm Guide and Reference for information on using the RMM

TSO subcommands.

SMF Audit Information

Using the DFSMSrmm audit facility, you can record in SMF records all the updates

your users make to the control data set. To specify that you want auditing, use the

SMFAUD installation parameter in the EDGRMMxx parmlib member. You can collect

records through your installation’s normal SMF processing and use them as input to

the DFSMSrmm program EDGAUD. An SMF audit record can capture any change

to the DFSMSrmm inventory.

228 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm provides several mapping macros for DFSMSrmm SMF audit and

security records. See z/OS DFSMSrmm Reporting for the layout of these macros.

See “Updating SMFPRMxx (Optional)” on page 30 for information on how identify

records to be collected. See “Defining Security Classes: SECCLS” on page 202 for

information on defining which SMF record numbers to use.

RACF Audit Information

Using standard RACF facilities, you can keep an audit trail of any command and

authorization violations that occur in RMM TSO subcommands or utilities. Use

RACF AUDIT and GLOBALAUDIT options to get RACF to create this information.

Using Security Classification Processing

Certain classifications of data might require special processing, or operator action,

or both. You can control these actions by using DFSMSrmm security classifications,

defined with the SECCLS command in the EDGRMMxx parmlib member. Use this

command to specify that DFSMSrmm:

v Issues messages when certain data sets are opened so the operator can take

any required installation action before confirming the use of the volume

v Creates a special SMF record for each access to secure volumes

v Automatically flags these volumes to be erased when they are released, before

they can be reused

Preventing the Use of IEHINITT

You no longer need to use IEHINITT because the DFSMSrmm utility EDGINERS

labels tapes and validates mounted volumes. Use EDGINERS to process new

volumes, volumes where old and new labels are known to DFSMSrmm, or old

volumes that have been degaussed. EDGINERS defines volumes to the

DFSMSrmm control data set that have not been defined previously. For existing

volumes, EDGINERS updates the volume record to show that volumes have been

initialized. See Chapter 18, “Initializing and Erasing Tape Volumes,” on page 417 for

information about using EDGINERS.

To protect IEHINITT from being used or to limit usage to specific individuals, add

RACF program resource profiles and create limited access lists as shown in

Figure 82:

 If program control is not active, use the RACF command SETROPTS

WHEN(PROGRAM) to activate it. If program control is already active, specify the

RACF command SETROPTS WHEN(PROGRAM) REFRESH to activate use of the

new profile.

Controlling RACF Tape Profile Processing

You can control the actions that DFSMSrmm takes on RACF tape profiles through

the DFSMSrmm OPTION TPRACF command and your installation’s RACF options.

For more information on OPTION TPRACF, see “Defining System Options:

OPTION” on page 175.

RDEFINE PROGRAM IEHINITT ADDMEM(’SYS1.LINKLIB’//NOPADCHK) UACC(NONE)

PE IEHINITT CLASS(PROGRAM) RESET(STANDARD)

Figure 82. Limiting the Use of IEHINITT

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 229

If you are running DFSMSrmm with DFSMShsm, see “Securing Tapes When

Running DFSMShsm and DFSMSrmm” on page 319. See z/OS Security Server

RACF System Programmer’s Guide for information about RACF tape security. See

z/OS MVS Initialization and Tuning Guide for information about DEVSUPxx tape

security.

RACF provides these tape protection options:

v No protection

v TAPEVOL class

v TAPEDSN option

v TAPEVOL and TAPEDSN

DFSMS, via DEVSUPxx options, provides additional ways for you to select how

tape data sets are protected. This includes:

v TAPEAUTHDSN

v TAPEAUTHF1

When you use TAPEAUTHDSN=YES, you override the RACF settings, and the

DFSMSrmm TPRACF AUTOMATIC and PREDEFINED are not likely to be

beneficial to you.

Independent of the TAPEAUTHDSN setting, DFSMSrmm TPRACF processing

considers just the RACF tape protection options. Using those RACF options to

protect volumes, you can specify one of these actions:

No protection

If neither TAPEVOL nor TAPEDSN is active then DFSMSrmm takes no action,

regardless of the setting of the TPRACF option.

TAPEVOL

TPRACF(N)—no action.

 TPRACF(P)—a TAPEVOL profile is created or deleted only as a result of

issuing a DFSMSrmm ADD, CHANGE, or DELETE subcommand for a private

volume from a RACF-protected pool. This includes scratch tapes that are

assigned by the user or librarian by using the RMM GETVOLUME

subcommand.

 If you require tape volume protection for volumes that are used for nonspecific

tape requests, you can either:

1. Specify the JCL PROTECT=YES option, and DFSMSdfp processing

protects the volume.

Or

2. Leave DFSMSrmm to protect the volume when a data set on the volume is

closed, by creating a TAPEVOL profile.

 DFSMSrmm automatically deletes any TAPEVOL profile for recycled scratch

tapes when they return to scratch. If you use nonspecific mounts and scratch

pools, no TAPEVOL profile exists while the volume is in scratch status.

 TPRACF(A)—The same as TPRACF(P).

 TPRACF(C)—DFSMSrmm processing is limited to cleaning up the existing

TAPEVOL profile when volumes are deleted from a RACF-protected pool and

when recycled scratch tapes return to scratch.

TAPEDSN

TPRACF(N)—no action.

230 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

TPRACF(P), TPRACF(C), and TPRACF(A)—The processing is the same for all

options. DFSMSrmm does not cause any RACF profiles to be created at any

time. During recycling or releasing of tapes, DFSMSrmm checks for discrete

RACF data set profiles for data sets known to be on the volume, and

automatically deletes them.

TAPEVOL and TAPEDSN

TPRACF(N)—no action.

 TPRACF(A)—TAPEVOL profiles are created for identified, RACF- controlled,

pools of non-scratch tapes when you use the RMM ADD, CHANGE and

DELETE subcommands. No TVTOC is created in these circumstances.

 DFSMSrmm assumes that correct DFSMSdfp and RACF processing, when a

data set on a volume is opened, result in both TAPEVOL and discrete

DATASET profiles being created. DFSMSrmm automatically deletes any such

profiles for recycled scratch tapes when they return to scratch.

 If a volume is unprotected when a data set on the volume is closed,

DFSMSrmm automatically protects the volume with a TAPEVOL profile. If it is

the first file of an IBM standard label tape being processed, DFSMSrmm

creates a TVTOC containing an entry for the first file. This enables the

installation to use RACF generic data set profiles to control access to the tape

data sets, even when the JCL does not include the PROTECT=YES option.

 TPRACF(P) processing is the same as TPRACF(A) except that all scratch

tapes, whether defined by RMM TSO subcommand or returned to scratch by

expiration processing, are protected by predefined RACF TAPEVOL profiles.

The TAPEVOL profile includes an empty TVTOC so that RACF considers the

volume to be scratch.

 TPRACF(C)—DFSMSrmm processing is limited to cleaning up the existing

TAPEVOL and discrete DATASET profile when volumes are deleted from a

RACF-protected pool and when recycled scratch tapes return to scratch.

Table 33 shows DFSMSrmm processing when RACF is active and OPTION

TPRACF is set for volume pools identified as DFSMSrmm and RACF-managed.

The processing is dependent on the combinations of RACF TAPEVOL class and

TAPEDSN option, and the TPRACF value. The DFSMSrmm EDGRMMxx parmlib

VLPOOL RACF(Y) is in effect.

 Table 33. RACF Processing Performed by DFSMSrmm

Command or Function TAPEVOL TAPEDSN TAPEVOL and TAPEDSN

ADDVOLUME MASTER For TPRACF(A/P):

v Create TAPEVOL profile

v Add access list built using

the owner, user, and

access information

No processing As for TAPEVOL

ADDVOLUME USER For TPRACF(A/P):

v Create TAPEVOL profile

v Add access list built using

the owner, user, and

access information

No processing As for TAPEVOL

ADDVOLUME MASTER

PREVVOL

For TPRACF(A/P):

v Add to tape volume set

No processing As for TAPEVOL

ADDVOLUME USER

PREVVOL

For TPRACF(A/P):

v Add to tape volume set

No processing As for TAPEVOL

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 231

Table 33. RACF Processing Performed by DFSMSrmm (continued)

Command or Function TAPEVOL TAPEDSN TAPEVOL and TAPEDSN

ADDVOLUME SCRATCH No processing No processing If TPRACF(P)

v Create TAPEVOL profile

v Add a TVTOC if SL or

AL.

DELETEVOLUME FORCE /

REMOVE

Delete TAPEVOL profile If data set records, delete

tape data set profiles

v Delete TAPEVOL profile

v If data set records, delete

tape data set profiles

DELETEVOLUME

RELEASE

No processing No processing No processing

CHANGEVOLUME RACK

Change of pool—RACF(Y)

to RACF(N)

Delete TAPEVOL profile If data set records, delete

tape data set profiles

v Delete TAPEVOL profile

v If data set records, delete

tape data set profiles

CHANGEVOLUME RACK

Change of pool—RACF(N)

to RACF(Y)

For TPRACF(A/P):

v Create TAPEVOL profile

v Add access list built using

the owner, user, and

access information

No processing As for TAPEVOL

CHANGEVOLUME OWNER

OWNERACC PROT USERS

For TPRACF(A/P):

v Replace access list

No processing As for TAPEVOL

CHANGEVOLUME USER /

MASTER

(not from SCRATCH)

No processing No processing No processing

CHANGEVOLUME USER /

MASTER

(from SCRATCH)

GETVOLUME

For TPRACF(A/P):

v Delete TAPEVOL profile

v Create TAPEVOL profile

v Add access list

If data set records, delete

tape data set profiles

As for TAPEVOL

CHANGEVOLUME

PREVVOL

For TPRACF(A/P):

v Delete TAPEVOL profile

v Add volume to tape

volume set

No processing As for TAPEVOL

SCRATCH mount

processing

For TPRACF(A/P):

v At close end-of-volume

create a TAPEVOL profile

if one does not exist and

add OWNER as accessor

No processing For TPRACF(A/P):

v At close/end-of-volume

create a TAPEVOL profile

if one does not exist and

create a TVTOC

containing first file data

set and add OWNER as

accessor

MASTER / USER mount

processing

No processing No processing No processing

Release processing

When volume returns to

scratch

Delete TAPEVOL profile If data set records, delete

tape data set profiles

v Delete TAPEVOL profile

v For TPRACF(P)

– Create TAPEVOL

profile

– Add a TVTOC if SL or

AL.

DELETEDATASET No processing Delete tape data set profile As for TAPEDSN

232 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 33. RACF Processing Performed by DFSMSrmm (continued)

Command or Function TAPEVOL TAPEDSN TAPEVOL and TAPEDSN

DELETEOWNER

NEWOWNER

As for CHANGEVOLUME

OWNER

As for CHANGEVOLUME

OWNER

As for CHANGEVOLUME

OWNER

Recommendations for Tape Security

For optimum tape security, exploiting the capabilities of DFSMSrmm, DFSMSdfp,

and RACF, it is recommended that you use of these:

v In DEVSUPxx:

– TAPEAUTHDSN=YES

– TAPEAUTHF1=YES

– TAPEAUTHRC4=FAIL

– TAPEAUTHRC8=FAIL

v In EDGRMMxx:

– OPTION TPRACF(N)

v In RACF:

– SETROPTS NOTAPEDSN NOCLASSACT(TAPEVOL)

The combination of DFSMSrmm, DFSMSdfp, and RACF ensures:

v Full 44 character data set name validation.

v Validation that the correct volume is mounted.

v Control the overwriting of existing tape data sets.

v Management of tape data set retention.

v Control over the creation and destruction of tape volume labels.

v No limitations caused by RACF TAPEVOL profile sizes and TVTOC limitations.

v All tape data sets on a volume have a common authorization.

v Use of generic DATASET profiles, enabling common authorization with DASD

data sets.

v Authorization for all tape data sets regardless of the tape label type.

v Authorization for the use of bypass label processing (BLP).

v Exploitation of RACF 'erase on scratch' support.

v Use of DFSMSrmm FACILITY class profiles for data sets unprotected by RACF.

Your authorization to use a volume outside of DFSMSrmm control via ’ignore’

processing also enables authorization to the data sets on that volume.

To aid migration to this recommended environment, DFSMSrmm provides the

TPRACF(CLEANUP) option, and DEVSUPxx provides TAPEAUTHRC8(WARN) and

TAPEAUTHRC4(ALLOW).

Recommendations for Using RACF Tape Profile Processing

When you do not use the DEVSUPxx TAPEAUTHxxx options to control tape data

set security, these steps are recommended. For optimal security, make TAPEVOL

and TAPEDSN active with either TPRACF(P) or TPRACF(A) to:

v Obtain full protection at the volume and the data set level

v Avoid the need to predefine volumes to individual users

v Avoid the need to use ADSP or PROTECT=YES which eliminates exit code that

is not standard

v Use generic tape data set profiles

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 233

Notes:

1. The maximum number of entries for data sets that a TVTOC can contain is 500.

 Attention:

Processing that creates large numbers of TVTOC entries and large access lists,

for example, could result in an attempt to exceed the maximum profile size.

2. The maximum number of volumes that any data set on the tape with an entry in

the TVTOC can span is 42.

3. The maximum number of volumes that any data set on tape without a TVTOC

can span is limited only by the maximum profile size.

When both TAPEDSN and TAPEVOL are active, RACF can create two different

types of TVTOC profiles:

v An automatic TVTOC tape volume profile.

v A nonautomatic TVTOC tape volume profile.

v The NOSET option on the DELDSD command can be used to remove a discrete

tape data set profile without deleting the tape volume profile. For more

information, see z/OS Security Server RACF Command Language Reference.

Although we discourage this, it is possible to have no tape protection, or to use only

TAPEVOL profiles. If you have no tape security, you cannot control the creation and

use of data on tape. If you use only TAPEVOL profiles to protect tape volumes, you

must maintain the access lists in the TAPEVOL profiles to allow access to data.

Consider the use of either DEVSUPxx TAPEAUTHDSN or TAPEDSN so that

access to tape data is covered by your normal, existing, generic data set profiles.

There is a potential security exposure with scratch volumes that have no RACF

profile, but with DFSMSrmm active in protect mode, you can prevent reading of

scratch tapes.

You can use either DEVSUPxx TAPEAUTHDSN or TAPEDSN on its own to provide

data set level security. RACF cannot, however, guarantee full data set name

integrity (only the last 17 characters of the data set name that are recorded in the

tape label). Run DFSMSrmm in protect mode to ensure that full 44-character data

set names are validated. With TAPEDSN only, you lack control of access to tape

volumes at the volume level. If you do not use protect mode, your system security

could be circumvented and tape data could be accessed.

Rejecting Volumes on Specific Systems in a System Complex

In a system complex where all systems share the RACF data set, the RACF profile

provides the same protection for all systems. If you want to prevent a volume from

being used on one system, you must prevent its use on all systems. However, you

can prevent volume usage on individual systems by using the DFSMSrmm REJECT

command in the EDGRMMxx parmlib member. You can reject volumes that are

defined to DFSMSrmm based on your chosen pool prefix using the REJECT

command in parmlib.

To protect several volumes across all systems in the complex, you can use generic

RACF profiles. Example: Create a profile that prevents any tape starting with a

volume serial number prefix AB from being used on all systems in a system

complex.

RDEFINE TAPEVOL AB* UACC(NONE)

To prevent a pool of volumes from being used on one system in a multisystem

complex, do not define generic RACF TAPEVOL profiles. Use the DFSMSrmm

234 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

|

REJECT parmlib option as shown in Figure 83.

 Protect volumes by using a combination of generic TAPEVOL profiles that you

create, the discrete TAPEVOL profiles that DFSMSrmm creates, and the

DFSMSrmm REJECT commands that you define.

Maintaining the User Access List

For DFSMSrmm to maintain the access list when TPRACF(A) or TPRACF(P) is in

use, use the RMM TSO subcommands to change access lists, rather than RACF.

You can use RACF commands to add users and owners if the times when

DFSMSrmm updates, deletes, or creates the TAPEVOL profiles are well defined,

and during the time a volume is not scratch. The RACF profile is updated only if the

DFSMSrmm volume access list is updated.

If you use TPRACF(A) or TPRACF(P), DFSMSrmm ensures that your tapes are

protected by RACF. DFSMSrmm ensures that all non-scratch tapes are protected

by a discrete RACF TAPEVOL profile. DFSMSrmm checks that a RACF profile

exists whenever a data set is written on a tape. If a profile does not exist,

DFSMSrmm creates one. Therefore you do not need to use RACF installation exits

to set the JCL PROTECT=YES option or specify PROTECT=YES in your JCL.

Additionally, because DFSMSrmm creates a TVTOC when the RACF TAPEDSN

option is used, you can use generic data set profiles for all tape data sets without

changes to JCL or installation procedures.

Be careful about using RACF profiles to maintain a list of users who own and can

access volumes. When you use the RMM ADDVOLUME and CHANGEVOLUME

subcommands, you can maintain up to 12 users and owners for each volume. If the

volume is in a RACF-controlled pool and RACF TAPEVOL class is active, the

TAPEVOL profile access list is maintained with the list of users who can access the

volume and the owner’s user ID. If you change the RACF TAPEVOL profile access

list using RACF commands, the DFSMSrmm control data set does not reflect the

changes. The next time that DFSMSrmm updates the RACF TAPEVOL profile, it

creates the access list from the volume information, but does not include any users

or owners you added using RACF commands.

Using RACF With DFSMSrmm

Despite the varied tape security support that RACF and DFSMS DEVSUPxx

TAPEAUTHDSN provides, many installations use RACF exits to control access to

tape volumes and to tape data sets. Although there are likely to be many different

implementations, these are some of the commonly implemented functions:

v Use of the RACHECK exit or the RACDEF exit to test or set the PROTECT=YES

option

v Use of the ability to model a TAPEVOL profile on another existing profile; either a

model or data set profile

v Use of RACHECK post-processing exit to prevent use of tapes that are not

protected by RACF (PROTECTALL for tape)

DFSMSrmm RACF Tape Security Support

The objective for DFSMSrmm RACF tape security support is to provide a complete

interface with RACF for tapes so you can use any combination of valid DEVSUPxx

REJECT ANYUSE(AB*)

Figure 83. Using the REJECT Parmlib Option

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 235

|
|

or RACF options, including use of any RACF installation exits you still have. You

can tell DFSMSrmm not to provide any RACF support by specifying the

DFSMSrmm EDGRMMxx parmlib OPTION TPRACF(N) command. You can set up

the type of processing wanted by requesting automatic TPRACF(A), predefined

TPRACF(P), or TPRACF(C) RACF profiles.You can also use the DFSMSrmm

EDGRMMxx parmlib VLPOOL RACF command to provide control of RACF at the

pool level.

DFSMSrmm provides support for using the system TAPEAUTHDSN and

TAPEAUTHF1 options and the RACF standard tape volume security protection with

any combination of RACF TAPEVOL and TAPEDSN options.

DFSMSrmm Automatic Tape Security Support Processing

DFSMSrmm automatic tape security processing assumes that when a tape is

mounted for output as a scratch tape it will not be RACF protected. During the open

processing for the tape data set either DFSMSdfp or your installation exits will

cause some RACF profiles to be created. DFSMSrmm predefined processing also

ensures that, when TAPEVOL and TAPEDSN are active, RACF predefined

TAPEVOL profiles with an empty TVTOC are created for scratch volumes. To

enforce a DFSMSrmm standard, that all tapes are RACF protected when the data

set is closed, DFSMSrmm checks that a RACF security profile exists for the

volume. If a RACF security profile does not exist, DFSMSrmm creates one and

places the owner of the tape in the access list for the TAPEVOL profile with ALTER

authority. The process ensures that your current tape security mechanism should

continue to work as long as it is based on TAPEVOL profiles. If you do not want

DFSMSrmm to create and maintain RACF TAPEVOL profiles (for example, you are

using RACF TAPEDSN or DEVSUPxx TAPEAUTHDSN), specify TPRACF(NONE).

Data Set Profile Processing Implications

If you only use RACF SETROPT TAPEDSN and RACF DATASET data set profiles

for tape data sets, you need to consider the implications which are described in this

topic. If you use TAPAUTHDSN=YES in DEVSUPxx to support tape data set

security, you do not need to consider this information.

The objective should be to get to standard RACF tape security without using

installation exits. However, the introduction of the TAPEDSN option or use of

TAPEDSN only can cause some complications. When TAPEDSN is in effect and a

TAPEVOL profile with no TVTOC exists, only the owner can access the data set.

This happens because RACF does not use the data set profiles unless the

TAPEVOL profile contains a TVTOC. When no security profile has been created by

DFSMSdfp or RACF installation exits, DFSMSrmm creates a TAPEVOL profile with

a TVTOC, a UACC(NONE) and the volume owner in the access list. The first file is

added to the TVTOC using RACFIND=NO so that any generic data set profiles your

installation has can be used with tape data sets. Once the first file entry is created

RACF will maintain the TVTOC for any future tape activity on the same volume.

RACF Installation Exit Conversion

Some installations use only data set profiles to protect tape data. They rely on the

tape management system to ensure that only valid scratch tapes are used for

output. If they use TAPEVOL class without TAPEDSN option in effect, they have

RACF exits that change the RACHECK for TAPEVOL class to a RACHECK for the

data set being processed. Consequently, they prevent RACDEF in the TAPEVOL

class. If your RACDEF exit is used to dummy out the DFSMSdfp RACDEFs that

would normally create TAPEVOL profiles, they will also prevent DFSMSrmm from

236 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|

defining TAPEVOL profiles. If this applies to your installation you will have to make

changes to your RACF exits before making use of the DFSMSrmm RACF support.

This topic contains examples for converting RACF installation exits.

TAPEVOL class active. PROTECT=YES JCL option used

Currently the installation uses RACF exits to model the creation of the RACF

TAPEVOL profile on an existing RACF data set profile. Access to tape data is

effectively based on data set profiles.

When the DFSMSrmm TPRACF option is activated, volumes that are not covered

by the PROTECT=YES option and the TAPEVOL profiles created using the data set

modeling are protected by a TAPEVOL profile created by DFSMSrmm. Access to

these data sets is based on the TAPEVOL profile which allows owner access only.

If the RACF exits modeling function is turned off, the volumes that were previously

protected by a modeled profile are now only protected for the DFSMSrmm created

profiles. Most probably, users lose access to tape data.

The suggested approach is to activate the TAPEDSN RACF option. For those

volumes where PROTECT=YES is specified, the TAPEVOL profiles have TVTOCs

created and data access is via data set profiles which currently exist. The creation

of the TAPEVOL profiles by DFSMSrmm is also affected, and DFSMSrmm ensures

that a TVTOC is created. The protection for tape volumes protected by DFSMSrmm

created profiles is also via data set profiles.

TAPEVOL class active. Exit requested PROTECT=YES option

used

If your RACF installation exits are used to ’turn on’ the PROTECT=YES option, and

those exits are removed, no DFSMSdfp requests are made to RACF to protect tape

data, even if TAPEDSN is activated. All volumes get protected at data set CLOSE

time when DFSMSrmm creates TAPEVOL profiles.

Whether or not you choose to use the RACF TAPEDSN option, the results in

creating a security environment for your installation are the same before and after

you remove your installation exits.

TAPEVOL active. RACF exits using DATASET not TAPEVOL

profiles

Conversion to standard options to remove the exits involves deactivating the

TAPEVOL class and activating the TAPEDSN option. Use the PROTECTALL option

to ensure complete security for tape data. When the TAPEVOL class is inactive,

DFSMSrmm does not create TAPEVOL profiles for volumes and cleans up any

discrete data set profiles that exist when a tape returns to scratch status. You can

rely on DFSMSrmm to validate volumes that are mounted and prevent overwrites,

validate 44 character data set names and manage data set and volume expiration.

Using RACF Options for Authorizing RMM TSO Subcommands

Related Reading: See z/OS DFSMSrmm Guide and Reference for the

authorization for specific RMM TSO subcommands.

DFSMSrmm allows you to set up authorization for the TSO subcommands that you

use with DFSMSrmm. In addition to using STGADMIN.EDG resources in the

FACILITY class, you can use ownership and RACF DATASET and TAPEVOL class

resources to protect resources. You can use the DFSMSrmm parmlib OPTION

COMMANDAUTH command to control how ownership and DATASET and

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 237

TAPEVOL resources are used. You can also use the RACF name-hiding function

that is provided by RACF. Use the RACF SETROPTS MLNAMES command to

activate the name-hiding function. See “Defining System Options: OPTION” on page

175 for information about the DFSMSrmm parmlib OPTION COMMANDAUTH

operand.

Set up the DFSMSrmm authorization and security to control access to the

information in the DFSMSrmm control data set. You do not have to perform

additional setup tasks for librarians and storage administrators because they

typically have CONTROL access to STGADMIN.EDG.MASTER, which allows them

to access all resources. To allow general users to access data sets and volumes

that they do not own, set up authorization for the general user.

In general, when you use DATASET and TAPEVOL authorization instead of or as

well as ownership you do not need to define additional resource profiles because

the existing DATASET and TAPEVOL profiles are used. Using command

authorization by data set name provides an additional check to determine who is

authorized to access information about data sets and volumes in DFSMSrmm.

DFSMSrmm checks OWNER profiles or DATASET or TAPEVOL profiles to

determine ownership of the data and authorization to access the information.

Using the SAF Interface

DFSMSrmm does not provide any security functions itself but relies on installed

security products to process requests. For example, DFSMSrmm relies on the

installed security product to confirm that a user is authorized to perform a particular

function using an RMM TSO subcommand.

DFSMSrmm uses the z/OS SAF interface to perform authorization checks and other

security processing, as described in “SAF Calls for Authorization Checking.”

DFSMSrmm issues RACROUTE requests that RACF, or a functionally equivalent

security product, can process.

“Protecting DFSMSrmm Resources with RACF Profiles” on page 213 describes

security profile names and class name. If you have not installed a security product,

you could write a SAF router exit to handle the calls that DFSMSrmm makes to the

interface.

DFSMSrmm also uses the SAF interface to create, update, and delete tape-related

security profiles and access lists as described in “SAF and RACF Calls for Creating,

Updating and Deleting Security Profiles” on page 241. When you update the volume

access list in the control data set, DFSMSrmm uses the RACF ICHEINTY macro to

delete the entire access list and allows you to use the SAF interface to add the

required access list. If your system does not support this function, do not use or

update the DFSMSrmm volume access lists contained in the control data set.

SAF Calls for Authorization Checking

DFSMSrmm issues RACROUTE calls to determine if a user is authorized to

perform a DFSMSrmm function. The calls are issued in the address space and

under the task of the command or utility user. Most SAF calls in the FACILITY class

are issued regardless of the state of RACF, the SAF interface, or the FACILITY

class.

DFSMSrmm prevents RACF users with the OPERATIONS and PRIVILEGED

attributes from gaining authorization to the DFSMSrmm resources in the FACILITY

238 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

class. Any user attempting to use DFSMSrmm functions must be authorized through

the resource access list or through universal access. For all authorization checks,

except for EDGRESET, DFSMSrmm issues the RACROUTE request with an ACEE

address that identifies an ACEE that has had these attributes removed.

Figure 84 shows the RACROUTE call that DFSMSrmm issues to create an ACEE

for a user that is defined to RACF. DFSMSrmm issues this call in the address

space of the command issuer or batch utility.

Figure 85 shows the RACROUTE call that DFSMSrmm issues to create an ACEE

for a user that is not defined to RACF. DFSMSrmm issues the call using a blank

USERID value. DFSMSrmm issues this call in the address space of the command

issuer or batch utility.

Examples: Checking Authorization for Issuers of RMM TSO

Subcommands

Example 1: This example shows authorization checking for issuers of RMM TSO

subcommands and users of the utilities when a single RACROUTE is issued. The

request is issued in the address space of the command issuer or batch utility.

RACROUTE REQUEST=AUTH,CLASS=class,ATTR=level,ENTITY=resource,

 LOG=ASIS

Example 2: This example shows authorization checking for issuers of RMM TSO

subcommands and users of the utilities when multiple RACROUTEs are issued.

The request is issued in the address space of the command issuer or batch utility.

RACROUTE REQUEST=AUTH,CLASS=class,ATTR=level,ENTITY=resource,

 LOG=NOFAIL

The variables in the examples have these meanings:

class - FACILITY

This field names a 9 character variable. The first byte contains the length of the

class name, which follows in the next 8 bytes.

level - READ, UPDATE, CONTROL

Access level as described in Table 24 on page 216.

resource

This field is 39 characters and contains the name of the resource to which

access is being checked.

Examples: Checking for Authorization when Additional Security

is in Use

Before you begin: See z/OS Security Server RACF Security Administrator’s Guide

for information about how to use the SETROPTS command.

Example 1: This example shows how authorization checking for RMM TSO

subcommands is set. The RACROUTE command is issued in the DATASET class.

The request can be issued in the address space where the command is issued or

RACROUTE REQUEST=VERIFY,ENVIR=CREATE,RELEASE=1.9,

 USERID=ACEEUSER,GROUP=ACEEGRP,PASSCHK=NO,SUBPOOL=(3)

Figure 84. Creating an ACEE for a User Defined to RACF

RACROUTE REQUEST=VERIFY,ENVIR=CREATE,RELEASE=1.9,

 USERID=ACEEUSER,PASSCHK=NO,SUBPOOL=(3)

Figure 85. Creating an ACEE for a User Not Defined to RACF

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 239

in the DFSMSrmm subsystem address space. When you issue the command in the

DFSMSrmm subsystem address space, a third-party RACROUTE is issued.

 RACROUTE REQUEST=AUTH,CLASS=DATASET,ATTR=level,ENTITY=resource,

 LOG=ASIS,DSNTYPE=T,FILESEQ=n

When a subcommand is issued against a data set name or a volume containing

data sets, the RACROUTE is issued in the DATASET class with DSNTYPE=T.

When there is no data set information for a MASTER or USER volume, the

RACROUTE is issued in the TAPEVOL class. When DSNTYPE=T is coded, the

authorization checking that is performed depends on the security product settings

such as SETROPTS TAPEDSN, and whether the TAPEVOL class is active.

The variables in the examples have these meanings:

level

Is READ or UPDATE depending on the subcommand issued.

resource

Is the data set name to be processed. When the subcommand is issued against

a volume, the data set name is the name of the first file on the volume.

n Is the file sequence number of the data set on the volume.

 Example 2: This example shows how authorization checking for RMM TSO

subcommands is set. The RACROUTE command is issued in the TAPEVOL class.

The request can be issued in the address space where the command is issued or

in the DFSMSrmm subsystem address space. When issued in the DFSMSrmm

subsystem address space, a third-party RACROUTE is issued.

 RACROUTE REQUEST=AUTH,CLASS=TAPEVOL,ATTR=level,ENTITY=resource,

 LOG=ASIS

The variables in the examples have these meanings:

level

is READ or UPDATE depending on the subcommand issued.

resource

Is the volume to be processed.

Example: Checking Authorization to Ignore Volumes

This example shows the command that you can use to check whether the current

user is authorized in order to have DFSMSrmm ignore a volume.

RACROUTE REQUEST=AUTH,ENTITY=resource, ACCESS=value,LOG=ASIS

The variables in the examples have these meanings:

resource

resource can be: STGADMIN.EDG.IGNORE.TAPE.volser,

STGADMIN.EDG.IGNORE.TAPE.RMM.volser, or

STGADMIN.EDG.IGNORE.TAPE.NORMM.volser as described in Table 24 on

page 216.

value - READ,UPDATE

One of these values is used, as described in Table 24 on page 216.

volser

This field is the volume serial number of the current mounted volume or the

requested volume. The default value is the mounted volume volser. The

DFSMSrmm installation exit EDGUX100 can select whether the mounted or the

requested volume serial number is used.

240 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Example: Checking for Authorization to Create Label and No

Label Volumes

This example is the RACROUTE call for the STGADMIN.EDG.LABEL.volser and

STGADMIN.EDG.NOLABEL.volser profiles.

RACROUTE REQUEST=AUTH,ENTITY=STGADMIN.EDG..volslabeler,

 ACCESS=value,LOG=ASIS

The variables in the examples have these meanings:

label

The label is either LABEL or NOLABEL.

value - UPDATE,ALTER

One of these values is used, as described in Table 24 on page 216.

volser

This field is the volume serial number of the current mounted volume.

Example: Checking Authorization to Remove DFSMSrmm from

the System

When you do not have a security product installed, you can use the EDGRESET

utility to remove DFSMSrmm from the system. To use the EDGRESET utility, you

must use the SAF router exit.

This example is used to check that EDGRESET utility can be used. This request is

issued in the address space of the EDGRESET utility.

RACROUTE REQUEST=AUTH,CLASS=class,ATTR=ATTR,ENTITY=resource,

 RELEASE=1.8

The variables in the examples have these meanings:

class - FACILITY

This field names a 9 character variable. The first byte contains the length of the

class name, which follows in the next 8 bytes.

resource - STGADMIN.EDG.RESET.SSI

This field is 39 characters and contains the name of the resource to which

access is being checked.

SAF and RACF Calls for Creating, Updating and Deleting Security

Profiles

These are the SAF calls that DFSMSrmm issues to maintain the security protection

of tape resources in your installation. They are not used to perform authorization

checking. Authorization checking for access to tape data and tape volumes is still

the responsibility of the OPEN macro and RACF. All these requests are issued from

the DFSMSrmm started procedure address space.

When the requests are issued, the RACF ACEE control block for the DFSMSrmm

started procedure has the privileged bit on (ACEEPRIV), so that DFSMSrmm

requests are honored without authorization checking being performed.

Calls for TAPEVOL class are only issued if RACF is active and the TAPEVOL class

is active. Calls for DATASET class are only issued if RACF is active and the

TAPEDSN option is active.

For additional information on SAF calls, refer to Table 33 on page 231.

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 241

Example: Checking for DATASET Class Resource

RACROUTE REQUEST=AUTH,CLASS=class,ENTITY=(resource,PRIVATE),LOG=NONE,

 RELEASE=1.8,DSTYPE=T,FILESEQ=seq,VOLSER=vol

The variables in the examples have these meanings:

class - DATASET

This field names a 9 character variable. The first byte contains the length of the

class name, which follows in the next 8 bytes.

resource

This field is 44 characters and contains the name of the data set for which the

protecting resource is requested to be returned.

seq

The file sequence number for this data set.

vol

The volume on which the data set resides.

Example: Checking for TAPEVOL Class Resource

RACROUTE REQUEST=AUTH,CLASS=class,ENTITY=(resource,PRIVATE),

 LOG=NONE,RELEASE=1.8

The variables in the examples have these meanings:

class - TAPEVOL

This field names a 9 character variable. The first byte contains the length of the

class name, which follows in the next 8 bytes.

resource

This field is 6 characters and contains the name of the volume for which the

protecting resource is requested to be returned.

Example: Defining a TAPEVOL Class

RACROUTE REQUEST=DEFINE,CLASS=class,ENTITY=resource,TYPE=DEFINE,

 RELEASE=1.8,UACC=NONE

The variables in the examples have these meanings:

class - TAPEVOL

This field names a 9 character variable. The first byte contains the length of the

class name, which follows in the next 8 bytes.

resource

This field is 6 characters and contains the name of the volume for which the

resource is being defined.

Example: Defining a TAPEVOL Class Resource When TAPEDSN

Is Active

This example shows how to add the first entry to the TVTOC of the discrete

TAPEVOL profile just created if TAPEDSN option is active.

RACROUTE REQUEST=DEFINE,CLASS=class,ENTITY=resource,TYPE=DEFINE,

 RELEASE=1.8,UACC=NONE,RACFIND=NO,VOLSER=vol,

 DSTYPE=T,FILESEQ=1,TAPELBL=STD

The variables in the examples have these meanings:

class - DATASET

This field names a 9 character variable. The first byte contains the length of the

class name, which follows in the next 8 bytes.

242 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

resource

This field is 44 characters and contains the name of the data set for which the

resource is being defined.

vol

The volume on which the data set resides.

Example: Adding a Tape Volume

This example is used to add a tape volume to an existing tape volume set.

RACROUTE REQUEST=DEFINE,CLASS=class,ENTITY=resource,TYPE=ADDVOL,

 RELEASE=1.8,VOLSER=vol

The variables in the examples have these meanings:

class - TAPEVOL

This field names a 9 character variable. The first byte contains the length of the

class name, which follows in the next 8 bytes.

resource

This field is 6 characters and contains the name of the volume for which the

resource is being defined.

vol

The previous volume in the tape volume set.

Example: Deleting a TAPEVOL Profile

This example is used to delete a discrete TAPEVOL profile.

RACROUTE REQUEST=DEFINE,CLASS=class,ENTITY=resource,TYPE=DELETE,

 RELEASE=1.8

The variables in the examples have these meanings:

class - TAPEVOL

This field names a 9 character variable The first byte contains the length of the

class name, which follows in the next 8 bytes.

resource

This field is 6 characters and contains the name of the volume for which the

resource is being deleted.

Example: Deleting a DATASET Profile

This example is used to delete a discrete DATASET profile.

RACROUTE REQUEST=DEFINE,CLASS=class,ENTITY=resource,TYPE=DELETE,

 RELEASE=1.8,VOLSER=vol

The variables in the examples have these meanings:

class - DATASET

This field names a 9 character variable. The first byte contains the length of the

class name, which follows in the next 8 bytes.

resource

This field is 44 characters and contains the name of the data set for which the

resource is being deleted.

vol

The volume on which the data set resided.

Example: Checking for Authorization

Use the commands in Figure 86 on page 244 to perform these tasks:

v Create or update the volume access list

Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security 243

v Give the volume a TVTOC

v Rebuild a tape volume set when a volume is removed from within, rather than

from the end of the set, when a TVTOC is used

 The variables in the examples have these meanings:

class - TAPEVOL

This field is 8 characters and contains the class name.

resource

This field is 6 characters and contains the name of the volume whose profile is

being processed.

fields

Defines which fields are being extracted and updated. The field names used

include: TVTOCCNT,VOLCNT,ACLCNT,VOLSER,OWNER,UACC,ACL.

data

data defines the fields that are being replaced. The field names used include:

OWNER,UACC,ACL.

RACROUTE REQUEST=EXTRACT,CLASS=class,ENTITY=resource,TYPE=EXTRACT,

 RELEASE=1.8,SUBPOOL=0,SEGMENT=BASE,FIELDS=fields

ICHEINTY ALTER,TYPE=’GEN’,CLASS=class,ACTIONS=D,ENTRY=resource,

 RELEASE=1.8,OPTIONS=FLDEF

ICHEACTN FIELD=ACLCNT,FLDATA=’DEL’,GROUP=YES,

 RELEASE=1.8

RACROUTE REQUEST=EXTRACT,CLASS=class,ENTITY=resource,TYPE=REPLACE,

 RELEASE=1.8,SEGDATA=data,SEGMENT=BASE,FIELDS=fields

Figure 86. Checking Authorization

244 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 12. Using DFSMSrmm Programming Interfaces

DFSMSrmm provides programming interfaces EDGLCSUX, EDGMSGEX, and

EDG3X71 to use Object Access Method (OAM), DFSMSdfp, and JES3 installation

exits. DFSMSrmm uses the installation exits in Table 34. Before implementing

DFSMSrmm, ensure that there are no conflicts between how DFSMSrmm uses

these exits and how your installation currently uses them.

DFSMSrmm provides programming interface EDGTVEXT for use from DFSMShsm

or Tivoli Storage Manager. DFSMSrmm provides programming interfaces

EDGTVEXT and EDGDFHSM for use by applications that want to release tape

volumes.

 Table 34. Installation Exits Used by DFSMSrmm

Exit

DFSMSrmm

Programming

interface DFSMSrmm’s Use of the Exit

CBRUXCUA EDGLCSUX DFSMSrmm uses OAM’s change use attribute exit to manage the

volumes in system-managed tape libraries.

CBRUXEJC EDGLCSUX DFSMSrmm uses OAM’s cartridge eject exit to manage the volumes

in system-managed tape libraries.

CBRUXENT EDGLCSUX DFSMSrmm uses OAM’s cartridge entry exit to manage the volumes

in system-managed tape libraries.

CBRUXVNL EDGLCSUX DFSMSrmm uses OAM’s volume-not-in-library installation exit to

process tape volumes that are not resident in system-managed tape

libraries but that are needed for processing to continue.

IGXMSGEX EDGMSGEX DFSMSrmm uses the DFSMSdfp MSGDISP exit to update tape drive

displays and control the use of cartridge loaders.

IATUX71 EDG3X71 DFSMSrmm uses the JES3 exit to determine the processing needed

for JES3 messages and tape drive display processing.

When you are converting from another tape management product to DFSMSrmm,

you might run DFSMSrmm in parallel with the other tape management system for

some time before you complete your conversion. Some installation exits must be

used by both systems. DFSMSrmm supplies exits that help you run the

CBRUXCUA exit, the CBRUXEJC exit, and the IGXMSGEX exit from an existing

tape management product and DFSMSrmm in parallel. When exits are used by

both systems, the tape management system that is in control makes the tape

management decisions and the second system records the activities. See “Setting

Up Parallel Processing” on page 263 for additional information.

Releasing Tapes: EDGTVEXT

DFSMSrmm provides the programming interface EDGTVEXT that is used from

DFSMShsm, OAM, or any other APF-authorized program that needs to obtain the

same services as the DFSMShsm ARCTVEXT exit.

If you have a product with similar requirements for releasing tapes as DFSMShsm,

you can use the EDGTVEXT program interface. You can also use the EDGDFHSM

interface. The difference between EDGTVEXT and EDGDFHSM is that EDGTVEXT

accepts the ARCTVEXT parameter list and the EDGDFHSM interface accepts only

a single volume at a time in the parameter list.

© Copyright IBM Corp. 1992, 2007 245

Any caller of EDGTVEXT must be defined to RACF. If the caller is a started task,

define the user ID with the STARTED class. Your application must also be

authorized to release its own tape volumes.

Related Reading: Refer to Chapter 14, “Running DFSMSrmm with DFSMShsm,”

on page 303 for information about setting up DFSMShsm with DFSMSrmm. You

can use this information as an example for setting up other applications, including

OAM, that manage tape. Refer to Chapter 11, “Authorizing DFSMSrmm Users and

Ensuring Security,” on page 213 for information about the authorization support

available with DFSMSrmm.

You must also consider how volumes are retained until the application calls the

EDGTVEXT exit to release the volumes. You could retain tapes by defining vital

record specifications like the ones shows in these examples. The examples define

policies to retain all the data until a volume is released by the application.

RMM ADDVRS DSN(’**’) JOBNAME(jobname) LOCATION(CURRENT) DAYS COUNT(99999)

RMM ADDVRS DSN(’ABEND’) JOBNAME(jobname) LOCATION(CURRENT) DAYS COUNT(99999)

RMM ADDVRS DSN(’OPEN’) JOBNAME(jobname) LOCATION(CURRENT) DAYS COUNT(99999)

You can use DFSMSrmm parmlib option TVEXTPURGE to control the processing

that EDGTVEXT performs. You can release volumes or set the volume expiration

date to the current date. Refer to TVEXTPURGE in “Defining System Options:

OPTION” on page 175.

Invocation

Invoke EDGTVEXT from: LOAD and CALL macros or the LINK macro.

Input

The input is a parameter list that describes the volumes DFSMShsm is releasing

and the actions required. The parameter list is identical to the one DFSMShsm

passes to ARCTVEXT.

On entry, register 1 contains a pointer to the ARCTVEXT parameter list. See z/OS

DFSMS Installation Exits for information on ARCTVEXT.

Output

EDGTVEXT issues messages when errors are encountered. EDGTVEXT sets the

parameter list return code value to zero. EDGTVEXT does not always pass a zero

return code in register 15 back to the caller. EDGTVEXT issues a non-zero return

code in the register 15 return code from subsystem requests attempted by

EDGTVEXT. You can obtain information about the return codes in z/OS MVS Using

the Subsystem Interface.

Processing

EDGTVEXT ensures that DFSMSrmm is in use on your system before continuing

with DFSMSrmm processing. If DFSMSrmm is not in use, EDGTVEXT sets return

code zero and returns to the caller. If DFSMSrmm is in use or should be in use,

EDGTVEXT calls EDGDFHSM to process the volumes passed to it in the

ARCTVEXT parameter list.

Environment

EDGTVEXT must be link edited in an APF-authorized library. EDGTVEXT runs in

AMODE(31) RMODE(ANY).

246 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Managing DFSMShsm Tapes: EDGDFHSM

DFSMSrmm uses the EDGDFHSM programming interface to release DFSMShsm

tape volumes. The interface between DFSMShsm and DFSMSrmm is automatically

in place when you install DFSMS so you do not need to take any action to activate

it or to call it.

Any caller of EDGDFHSM must be defined to RACF. If the caller is a started task,

define the user ID with the STARTED class. Authorize your application to release its

own tape volumes.

You must also consider how volumes are retained until the application calls the

EDGDFHSM exit to release the volumes. You can use this program interface from

programs other than DFSMShsm to release tape volumes. Refer to Chapter 14,

“Running DFSMSrmm with DFSMShsm,” on page 303 for information about setting

up DFSMShsm with DFSMSrmm. You can use this information as an example for

setting other applications that manage tape. You could retain tapes by defining vital

record specifications like the ones shows in these examples.

Example: Define policies to retain all the data until a volume is released by the

application.

RMM ADDVRS DSN(’**’) JOBNAME(jobname) LOCATION(CURRENT) DAYS COUNT(99999)

RMM ADDVRS DSN(’ABEND’) JOBNAME(jobname) LOCATION(CURRENT) DAYS COUNT(99999)

RMM ADDVRS DSN(’OPEN’) JOBNAME(jobname) LOCATION(CURRENT) DAYS COUNT(99999)

You can use DFSMSrmm parmlib OPTION TVEXTPURGE operand to control the

processing that EDGDFHSM performs. You can release volumes or set the volume

expiration date to the current date. Refer to TVEXTPURGE described in “Defining

System Options: OPTION” on page 175.

Callers of EDGDFHSM can only request the processing of volumes when their

RACF user ID is authorized as defined by the RACF FACILITY class profiles for

DFSMSrmm.

Invocation

Invoke EDGDFHSM from: LOAD and CALL macros or the LINK macro.

Input

The input is a parameter list that describes the volume DFSMShsm is releasing and

the actions required. The parameter list is similar to the one DFSMShsm passes to

ARCTVEXT, except that DFSMSrmm’s parameter list handles only a single volume

at a time.

On entry, register 1 contains a pointer to an 8-byte field. The first 6 bytes are the

volume serial number to be processed and the last 2 bytes are flag bytes. The

contents of the flag bytes are the flag bytes DFSMShsm passes to the ARCTVEXT

exit. See z/OS DFSMS Installation Exits for information on ARCTVEXT.

On entry, register 13 contains the address of a standard 18 word save area and

register 14 contains the return address.

Output

A non-zero return code is the register 15 return code from the subsystem request

attempted by EDGDFHSM. You can obtain information about the return codes in

z/OS MVS Using the Subsystem Interface.

Chapter 12. Using DFSMSrmm Programming Interfaces 247

Processing

EDGDFHSM issues messages when it encounters errors, but it does not always

pass a non-zero return code back to the caller.

Environment

EDGDFHSM must be link edited in an APF-authorized library. It runs in AMODE(31)

RMODE(ANY).

Managing System-Managed Tape Library Volumes: EDGLCSUX

DFSMSrmm uses the OAM installation exits CBRUXCUA, CBRUXEJC,

CBRUXENT, and CBRUXVNL as described in Table 35 to manage the tape

volumes defined in system-managed tape libraries. DFSMSrmm supplies Assembler

source code for these installation exits, which is installed on your system as

modules CBRUXCUA, CBRUXEJC, CBRUXENT, and CBRUXVNL. You can modify

the source code to include your own function or merge with another product’s

supplied code.

DFSMSrmm uses EDGLCSUX to support these functions:

v Tracking TCDB changes by updating the DFSMSrmm control data set.

v Updating the CBRUXxxx parameter list based on DFSMSrmm information.

v Partitioning a library.

v Handling volume-not-in-library conditions.

v Controlling the purging of TCDB volume entries at eject time.

You can use the DFSMSrmm EDGRMMxx OPTION SMSTAPE operand to control

the support that DFSMSrmm provides. Refer to “Defining System Options: OPTION”

on page 175 for information about the SMSTAPE operand. See Appendix B,

“DFSMSrmm Mapping Macros,” on page 481 for mapping macros you can use with

the installation exits.

 Table 35. OAM Installation Exits

Exit Description

CBRUXCUA The CBRUXCUA exit controls the return to scratch status and

updates the DFSMSrmm control data set with information from the

TCDB.

CBRUXEJC The CBRUXEJC exit controls the ejection of a cartridge from a

library and updates information in the DFSMSrmm control data set.

You can run this exit in parallel with another copy of the exit. See

“Setting Up Parallel Processing” on page 263 for more information.

CBRUXENT The CBRUXENT exit controls the entry of a cartridge into a library,

updates information in the DFSMSrmm control data set, and updates

DFSMSrmm information in the TCDB. You can run this exit in

parallel with another copy of the exit. See “Setting Up Parallel

Processing” on page 263 for more information.

CBRUXVNL The CBRUXVNL exit retrieves information from the DFSMSrmm

control data set when a volume that is not in a tape library is needed

for processing to continue.

The OAM exits that DFSMSrmm supplies call EDGLCSUX, the DFSMSrmm

program that supports the OAM interface. EDGLCSUX is a callable program

interface to DFSMSrmm that you can use only from the OAM installation exits.

248 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

If you do not have a license for DFSMSrmm, the DFSMSrmm OAM exits set a

return code of 16, telling OAM to never call the exit again. For information on

licensing, see “Enabling DFSMSrmm” on page 33. If you are licensed for

DFSMSrmm, and you have performed some of the installation steps, but have not

added EDGSSSI to the IEFSSNxx member of parmlib, or have not started the

DFSMSrmm procedure, DFSMSrmm sets return code zero, allowing all OAM

requests to be accepted. Once you have performed the installation steps, but do

not start the DFSMSrmm subsystem, the OAM exits set a return code 8 and fail all

requests.

Input

The input is a parameter list mapped by the macro EDGLCSUP, shown in “OAM

Interface: EDGLCSUP” on page 481. The parameter list describes the OAM

installation exit calling EDGLCSUX and provides the address of the information

passed to the exit.

In the EDGLCSUP macro, the field LCSUP_LCSPL must contain the pointer to the

OAM installation exit parameter list, which is the value in register 1 on entry to the

OAM exit. The OAM installation exit parameter list macros are used to map this

data. See z/OS DFSMS OAM Planning, Installation, and Storage Administration

Guide for Tape Libraries for more information about CBRUXCPL, CBRUXEPL,

CBRUXJPL, and CBRUXNPL.

Complete the LCSUP_FUNCTION field each time EDGLCSUX is called to indicate

which OAM exit is calling it. Select from LCSUP_CUA, LCSUP_EJC, LCSUP_ENT,

LCSUP_VNL, and LCSUP_ACTVNL.

The parameter list EDGLCSUP includes output fields for the OAM return code

LCSUP_LCSRC and the DFSMSrmm reason code LCSUP_LCSRS. The fields

LCSUP_LCSRC and LCSUP_LCSRS contain a reason code from DFSMSrmm and

a return code to pass back to OAM. The LCSUP_LCSRC field contains the value

that is recommended by DFSMSrmm to be returned for this OAM request. The

supplied DFSMSrmm OAM installation exits pass back these values. For example,

if the LCSUP_LCSRC value is 4, DFSMSrmm has updated the OAM parameter list

during processing. You can also use the return and reason codes set in register 15

and register 0 after the call to EDGLCSUX to determine the processing you might

want to perform.

On entry, register 13 contains the address of a standard 18 word save area and

register 14 contains the return address.

Output

The DFSMSrmm control data set and OAM parameter list are updated depending

on the type of processing performed.

Register 15 contains the return code which indicates what processing should be

performed next. Register 0 contains the reason code. Use the return code and the

reason code to determine the processing that DFSMSrmm has been able to

perform. Table 36 on page 250 shows the return and reason codes that

EDGLCSUX sets in register 15 and register 0.

Chapter 12. Using DFSMSrmm Programming Interfaces 249

Table 36. EDGLCSUX Return and Reason Codes Returned in Register 15 and Register 0

Return Code Reason Code Description

0 0 Processing successful. LCSUP_LCSRC contains the return

code for OAM. LCSUP_LCSRS contains a reason code that

provides information about DFSMSrmm processing. The

reason codes are described by variables LCSUP_RS_xxxx

listed in the EDGLCSUP macro.

0 1 Processing successful. LCSUP_LCSRC contains the return

code for OAM.

0 2 Processing successful. DFSMSrmm is not licensed for use

on this processor. LCSUP_LCSRC contains the return code

16 for OAM.

4 0 Processing not performed because the DFSMSrmm

subsystem was not available. LCSUP_LCSRC contains the

return code for OAM.

8 0 Processing not performed because there was a logic error

during processing. LCSUP_LCSRC contains the return code

for OAM.

12 Various reason

codes set

Processing is unsuccessful. The reason codes are

described by variables LCSUP_RS_xxxx listed in the

EDGLCSUP macro. The supplied exits set RC 8 for OAM to

fail requests.

Table 37 defines the return codes generated for each OAM function based on the

reason codes set by DFSMSrmm in field LCSUP_LCSRS. The return code

variables used in the table are defined in the OAM macros, CBRUXCPL,

CBRUXEPL, CBRUXJPL, and CBRUXVNL. If the DFSMSrmm parmlib OPTION

SMSTAPE(UPDATE(EXITS)) operand is not set or if DFSMSrmm is running in

warning or record-only mode, the OAM return codes UXxFAIL are changed to

UXxNOCHG.

 Table 37. EDGLCSUX Return and Reason Codes Based on DFSMSrmm Reason Code Setting

Reason Code Description Related

Message

Number

Change Use

Return Code

Volume

Entry Return

Code

Volume

Eject Return

Code

Volume- Not

in- Library

0 DFSMSrmm

accepted

request

n/a UXCNOCHG

or UXCCHG1

UXENOCHG

or UXECHG1

UXJNOCHG

or UXJCHG1

UXNNORML

or UXNCHG1

LCSUP_RS_DEB Specified

destination is

not current

library

EDG8192I n/a UXEFAIL n/a n/a

LCSUP_RS_DUPLV Volume

duplicates an

existing

logical

volume

EDG8183I n/a UXEFAIL n/a n/a

LCSUP_RS_DUPPV Volume

duplicates an

existing

physical

volume

EDG8182I n/a UXEFAIL n/a n/a

250 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 37. EDGLCSUX Return and Reason Codes Based on DFSMSrmm Reason Code Setting (continued)

Reason Code Description Related

Message

Number

Change Use

Return Code

Volume

Entry Return

Code

Volume

Eject Return

Code

Volume- Not

in- Library

LCSUP_RS_DUPSV The volume

duplicates an

existing

stacked

volume.

EDG8181I UXCFAIL UXEFAIL UXJFAIL n/a

LCSUP_RS_IRK Volume rack

number

inconsistent

EDG8189I UXCFAIL UXEFAIL UXJNOCHG n/a

LCSUP_RS_IVU User ID not

valid for

DFSMSrmm

EDG8195I UXCFAIL UXEFAIL UXJNOCHG n/a

LCSUP_RS_NMV Volume not

to be used

with z/OS

EDG8191I UXCFAIL UXEIGNOR UXJFAIL n/a

LCSUP_RS_NOTEXP Imported

volume is not

exported

EDG8183I n/a UXEFAIL n/a n/a

LCSUP_RS_NRM Volume not

defined in a

manual tape

library

n/a UXCNOCHG UXENOCHG UXJNOCHG UXNNORML

LCSUP_RS_PBD Inconsistent

parameter list

EDG8190I UXCFAIL UXEFAIL UXJFAIL UXNFAIL

LCSUP_RS_RIU Rack to

match volser

not available

EDG8198I UXCFAIL UXEFAIL UXJNOCHG n/a

LCSUP_RS_RJP Undefined

volume

rejected by

reject prefix

EDG8193I

2 UXCFAIL UXEIGNOR UXJNOCHG n/a

LCSUP_RS_RPX Retention

period

exceeds

installation

maximum

EDG8196I UXCFAIL UXEFAIL UXJNOCHG n/a

LCSUP_RS_SCR Private to

scratch

status not

permitted

EDG8194I UXCFAIL UXEFAIL UXJFAIL n/a

LCSUP_RS_SMM Entry status

and

DFSMSrmm

status of

volume

mismatch

EDG8180I n/a UXENOCHG n/a n/a

Chapter 12. Using DFSMSrmm Programming Interfaces 251

Table 37. EDGLCSUX Return and Reason Codes Based on DFSMSrmm Reason Code Setting (continued)

Reason Code Description Related

Message

Number

Change Use

Return Code

Volume

Entry Return

Code

Volume

Eject Return

Code

Volume- Not

in- Library

Notes:

1. When these conditions are true:

v Status is private and no expiration date is supplied

v Status is private and last read or write dates are lower than the DFSMSrmm equivalent dates

v Status is scratch and owner information exists; the first 8 bytes are set to blanks

v Volume entered into a system-managed tape library and DFSMSrmm has values for either storage group name,

owner, or tape device selection information

2. Not issued during entry processing.

Processing

For information about how DFSMSrmm works with system-managed tape libraries,

see Chapter 7, “Running DFSMSrmm with System-Managed Tape Libraries,” on

page 119. For information about how DFSMSrmm running mode affects

system-managed tape library support, see “Defining System Options: OPTION” on

page 175.

DFSMSrmm Processing for OAM Support

DFSMSrmm processing is dependent on these conditions:

v The OPMODE processing mode specified in the DFSMSrmm EDGRMMxx

parmlib member. When DFSMSrmm is running in manual mode, no DFSMSrmm

processing is performed. When DFSMSrmm is running in warning mode,

DFSMSrmm issues messages but does not fail any requests.

v The TCDB purge option specified in the DFSMSrmm EDGRMMxx parmlib

member. Use the SMSTAPE(PURGE) option to control the processing that

DFSMSrmm performs when a volume is ejected. DFSMSrmm can always keep

the record, always purge the record, or accept the requestor’s decision. If the

requestor did not make a decision, DFSMSrmm uses the ISMF default value.

The ISMF default can be set at the library level. If the TCDB record is kept,

DFSMSrmm adds the destination location and bin information to the OAM shelf

location information. This avoids the WTOR to the operator prompting for shelf

information. If the shelf location is still set to ’DEST=’ during entry processing,

DFSMSrmm clears the field. Library partitioning driven by REJECT

ANYUSE(prefix) and volume not for use on z/OS, is performed by DFSMSrmm in

all modes except manual mode.

v DFSMSrmm performing library partitioning driven by REJECT ANYUSE(prefix)

and volume not for use on z/OS when DFSMSrmm is running in all modes

except manual mode.

v The DFSMSrmm EDGRMMxx parmlib OPTION SMSTAPE(UPDATE(EXITS))

operand. Information provided by OAM to the exits is used to enhance the

information recorded by DFSMSrmm. You can decide whether the OAM

information overrides the information already defined to DFSMSrmm. Use the

SMSTAPE(UPDATE(EXITS)) option to use DFSMSrmm information to override

other information and to activate the volume-not-library processing. When

DFSMSrmm is running in protect mode, the DFSMSrmm information overrides

the information from OAM and performs volume-not-library processing

See “Defining System Options: OPTION” on page 175 for information about the

options.

252 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 38 describes DFSMSrmm processing for OAM support.

 Table 38. Processing for the Change Use Attribute, Cartridge Entry and Cartridge Eject Parameter List

Variable Field Name Input Output

Checkpoint volume indicator UXCCHKPT

UXECHKPT

UXJCHKPT

Not used Not used

Installation exit information UXCEXITI

UXEEXITI

UXJEXITI

DFSMSrmm uses this for

communication between

different parts of DFSMSrmm.

Input only

Last entry or ejection date UXCENTEJ

UXEENTEJ

UXJENTEJ

DFSMSrmm updates the control

data set with this value if no

date is recorded or if the input

date is later than the existing

date. DFSMSrmm uses this to

set the movement tracking date.

Input only

Last mounted date UXCMOUNT

UXEMOUNT

UXJMOUNT

DFSMSrmm records this date if

no date exists or if this date is

more current than the existing

date.

DFSMSrmm returns a date in

the parameter list if the date is

less than the date already

recorded by DFSMSrmm.

DFSMSrmm sets return code

UXyCHG to indicate that the

parameter list has been

changed.

Last written date UXCWRITE

UXEWRITE

UXJWRITE

DFSMSrmm records this date if

no date exists or if this date is

later than the existing date.

If the date is less than the

existing date, DFSMSrmm

returns the last written date and

sets return code UXyCHG to

show that the parameter list has

been changed.

Library console name UXCLCON

UXELCON

UXJLCON

All error messages issued by

DFSMSrmm to support the

OAM functions are issued to the

named console and to consoles

using the correct routing codes.

Input only

Library description UXCLDESC

UXELDESC

UXJLDESC

Not used Input only

Library device type UXCLDEV

UXELDEV

UXJLDEV

Not used Input only

Chapter 12. Using DFSMSrmm Programming Interfaces 253

Table 38. Processing for the Change Use Attribute, Cartridge Entry and Cartridge Eject Parameter List (continued)

Variable Field Name Input Output

Library logical type UXCLTYP

UXELTYP

UXJLTYP

If the volume is being defined to

DFSMSrmm resides in a

system-managed tape library,

the location type identifies if the

volume resides in an automated

tape library or manual tape

library. For a volume that is

already defined to DFSMSrmm,

DFSMSrmm updates the

location type with this value.

When a volume residing in a

system-managed tape library is

not defined to DFSMSrmm,

DFSMSrmm creates a volume

record. The latest information is

recorded by DFSMSrmm when

volumes are ejected from the

system-managed tape library.

This ensures information will be

available if the volume is ever

entered into any other library

controlled by the same control

data set.

Input only

Library name UXCLIB

UXELIB

UXJLIB

Location name

v If the volume is being defined

for the first time, DFSMSrmm

records this value as the

home location and location

name for the volume.

v If the volume is already

defined to DFSMSrmm,

DFSMSrmm will update the

volume location name to this

value if the existing location

name is different.

If the rack number for the

volume is not the same as

the volume serial number,

then DFSMSrmm sets a

return code and reason code

and issues message

EDG8189I. If the rack

number is not available,

DFSMSrmm sets a return

code and reason code and

issues message EDG8198I.

Input only

254 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 38. Processing for the Change Use Attribute, Cartridge Entry and Cartridge Eject Parameter List (continued)

Variable Field Name Input Output

New use attribute UXCUSEA

UXEUSEA

UXJUSEA

The value can be:

S for scratch

For change use attribute

processing, volumes that

are scratch candidates are

returned to scratch by any

OAM CBRUXCUA request,

such as those generated by

the EDGSPLCS utility or

the ISMF mountable tape

volume list processing.

Attempts to use OAM

CBRUXCUA requests to

change the status of a

non-scratch-candidate

volume to a scratch volume

fail with message

EDG8194I.

 For cartridge eject

processing, if the volume

currently is defined to

DFSMSrmm as a master or

user volume, then this

request is rejected and

DFSMSrmm does not

change the use attribute.

DFSMSrmm sets a reason

code and return code and

issues message EDG8194I.

 For cartridge entry

processing, if the volume is

currently defined as a

master or user volume,

then DFSMSrmm returns

the volume status recorded

in the control data set to

the caller.

P for private

The volume information is

changed or added to

DFSMSrmm regardless of

its current status.

This value is input only for

change use attribute and

cartridge eject processing.

DFSMSrmm updates this

information during cartridge

entry processing if the volume

is defined to DFSMSrmm and

the status recorded in control

data set is different.

Notification call UXJNCALL DFSMSrmm uses this field to

avoid rejecting or failing an

export of a logical volume.

Input only

Shelf location UXCSHLOC

UXESHLOC

UXJSHLOC

Not used Not used

Cleared if the location name

starts with DEST=

Set to DEST=destination name,

bin number, and medianame if

TCDB record is kept.

Chapter 12. Using DFSMSrmm Programming Interfaces 255

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 38. Processing for the Change Use Attribute, Cartridge Entry and Cartridge Eject Parameter List (continued)

Variable Field Name Input Output

Stacked volume UXJSTKVS DFSMSrmm uses this field as

the ’in container’ value.

Input only

Storage group name UXCGROUP

UXEGROUP

UXJGROUP

DFSMSrmm updates the

DFSMSrmm control data set

with the storage group name,

except during cartridge entry

processing when the storage

group name is already set.

DFSMSrmm updates this value

during cartridge entry

processing if the storage group

name is already set.

Tape drive selection information UXCTDSI

UXETDSI

UXJTDSI

DFSMSrmm uses this value to

replace tape drive selection

information during change use

attribute and cartridge eject

processing.

Tape drive selection information

corresponds to the DFSMSrmm

recording format, media type,

compaction, and special

attributes.

DFSMSrmm uses this value to

update tape drive selection

information during cartridge

entry processing.

DFSMSrmm merges the known

information from OAM with the

information in the control data

set to produce tape drive

selection information.

Volume attribute UXEVATTR Volume type.

DFSMSrmm uses the physical

volume to process the volume

as a real volume. DFSMSrmm

uses the logical volume and

imported logical volume

attributes to identify the volume

type as a logical volume.

DFSMSrmm checks to see if

logical volumes have been

correctly imported or entered to

control entry and import

processing.

For imported volumes, the

volumes must not already be

defined to DFSMSrmm or must

be defined as an exported

logical volumes. If the volumes

are not correctly defined,

DFSMSrmm issues message

EDG8182I or EDG8184I and

appropriate reason codes.

Input only

256 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 38. Processing for the Change Use Attribute, Cartridge Entry and Cartridge Eject Parameter List (continued)

Variable Field Name Input Output

Volume expiration date UXCEXPIR

UXEEXPIR

UXJEXPIR

DFSMSrmm records this value

when a new private volume is

added or when a volume is

changed from scratch to master

status. If the volume is already

defined as a master volume,

DFSMSrmm ignores this value.

If the date exceeds the

maximum retention period then

DFSMSrmm fails the request

and issues message EDG8196I

and sets return code UXCFAIL.

If the input date is less than the

existing date, DFSMSrmm

returns the most recent date in

the parameter list and sets

return code UXyCHG to show

that the parameter list has been

changed.

Note that this is an output field

when changing the status to

PRIVATE.

Volume location code UXCLOC

UXELOC

UXJLOC

Values can be:

S for SHELF

The volume was ejected

from the system-managed

tape library and is in transit.

L for LIBRARY

The volume is resident in

the system-managed tape

library.

Input only

Chapter 12. Using DFSMSrmm Programming Interfaces 257

Table 38. Processing for the Change Use Attribute, Cartridge Entry and Cartridge Eject Parameter List (continued)

Variable Field Name Input Output

Volume owner information UXCOWNER

UXEOWNER

UXJOWNER

The first 8 characters are used

to identify the DFSMSrmm

owner.

If the volume is changing from

scratch to master status or is

being added as master then

DFSMSrmm checks the owner

information. If this is a valid

DFSMSrmm owner then

DFSMSrmm adds or updates

the volume owner information in

the control data set. If the

owner is not a valid owner

name, DFSMSrmm sets a

default which is the DFSMSrmm

user ID or its step name if the

DFSMSrmm ACEE cannot be

located. If DFSMSrmm is

running in protect mode during

change use attribute

processing, DFSMSrmm rejects

the request and issues

message EDG8195I and sets

the CBRUXCUA return code

UXCFAIL.

If the volume is a master

volume, DFSMSrmm examines

the first 8 characters of the

owner information. If the owner

information is valid but is

different from the current

DFSMSrmm owner then

DFSMSrmm uses the

information to update the owner

information for the volume. If

the owner information is not

valid, DFSMSrmm sets a return

code and issues message

EDG8195I.

During cartridge entry

processing, or when owner

information does not exist,

DFSMSrmm returns owner

information in the parameter list.

For volumes to be added as

scratch volumes, there should

be no owner information.

If the first 8 characters of owner

information are not null or

blank, DFSMSrmm set a null

owner name and sets

CBRUXCUA return code to

UXCCHG.

During cartridge entry

processing, or if the input owner

information was not provided,

DFSMSrmm returns the first 8

bytes of owner information.

Volume record creation date UXCCREAT

UXECREAT

UXJCREAT

Not used Input only

Volume serial UXCVOLSR

UXEVOLSR

UXJVOLSR

This value is used to identify

the volume to be processed.

Input only

258 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 38. Processing for the Change Use Attribute, Cartridge Entry and Cartridge Eject Parameter List (continued)

Variable Field Name Input Output

Write protection status UXCWPROT

UXEWPROT

UXJWPROT

Not used Not used

Change Use Attribute Specific Processing

Table 39 describes change use attribute processing.

 Table 39. Processing for the Change Use Attribute Parameter List

Variable Field Name Input Output

Current use attribute UXCCUSEA Not used Input only

Cartridge Entry Specific Processing

Table 40 describes cartridge entry processing.

 Table 40. Processing for the Cartridge Entry Parameter List

Variable Field Name Input Output

There are no cartridge entry

specific parameter list fields for

which DFSMSrmm does

processing.

Cartridge Eject Specific Processing

Table 41 describes cartridge eject processing.

 Table 41. Processing for the Cartridge Eject Parameter List

Variable Field Name Input Output

Volume serial UXJVDISP This is a volume record

disposition which can be:

K for KEEP

Specifies that the volume

record should be kept

P for PURGE

Specifies that the volume

record should be purged

DFSMSrmm processing

depends on the DFSMSrmm

EDGRMMxx parmlib OPTION

SMSTAPE(PURGE) operand

value specified. If ASIS is

specified, DFSMSrmm does not

change the output field. If YES,

we set to P, if NO we set to K.

Chapter 12. Using DFSMSrmm Programming Interfaces 259

Volume-Not-In-Library Specific Processing

The DFSMSrmm EDGLCSUX programming interface returns information for a

volume, indicating whether the volume is a logical exported volume and the stacked

volume on which it is exported. The sample CBRUXVNL exit is updated to call

EDGLCSUX to issue a WTOR for all logical volumes. EDGLCSUX issues message

EDG8123D to provide information about the stacked volume.

Table 42 describes volume-not-in-library processing.

 Table 42. Processing for the Volume-Not-In-Library Parameter List

Variable Field Name Input Output

Library name UXNLIB Contains library name into

which the volume should be

entered, or blanks. DFSMSrmm

adds this library name to

message EDG8121D so that

the operator can enter the

volume into the correct library. A

value of blanks is displayed as

the value *ANY*.

Input only

With volume-not-in-library processing, you can set flags to enable DFSMSrmm to

retrieve volume information and to request that DFSMSrmm uses WTOR

processing to communicate with the operator. When EDGLCSUX is called from

CBRUXVNL, you can set either LCSUP_VNL flag or LCSUP_ACTVNL flag. You

must first specify LCSUP_VNL to enable DFSMSrmm to retrieve volume

information. Your second request, which is optional, must specify LCSUP_ACTVNL

to request that DFSMSrmm uses WTOR processing to communicate with the

operator. Between calls to EDGLCSUX from CBRUXVNL, do not modify any of the

data returned by DFSMSrmm because the information is used in the messages

sent to the operator.

When DFSMSrmm is first called from CBRUXVNL, DFSMSrmm retrieves

information about the subject volume from the DFSMSrmm control data set if the

volume is defined to DFSMSrmm. DFSMSrmm passes back volume location,

movement, and status information in output fields in the EDGLCSUP parameter list.

When DFSMSrmm is called a second time, and you have set the LCSUP_ACTVNL

flag, DFSMSrmm issues message EDG8124I - VOLUME req_volser RACK

rack_number LOCATION loc_name BIN bin_number HOME LOCATION home -

NOT IN LIBRARY lib_name, followed by either message EDG8121D, EDG8122D,

or EDG8123D which prompt the operator to enter the volume into the identified

library. If the LCSUP_ACTVNL flag is not set, DFSMSrmm does not issue these

WTORs for the operator to move the volume into the system-managed library.

v EDG8121D ENTER VOLUME req_volser INTO LIBRARY lib_name AND REPLY

″RETRY″, OTHERWISE REPLY ″CANCEL″ OR CONTINUE

v EDG8122D ENTER VOLUME req_volser INTO LIBRARY lib_name AND REPLY

″RETRY″, OTHERWISE REPLY ″CANCEL″

For volumes residing in a IBM TotalStorage Peer-to-Peer Virtual Tape Server (PtP

VTS), DFSMSrmm issues the message EDG8123D.

v EDG8123D IMPORT VOLUME req_volserTO LIBRARY lib_name AND REPLY

″RETRY″, OTHERWISE REPLY ″CANCEL″

260 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|

|
|

|
|

|
|

Based on the reply, the return code for OAM, is set in field LCSUP_LCSRC ready

to be passed back direct to OAM by the CBRUXVNL exit. The LCSUP_LCSRC field

returns these values.

Reply Return Code

CONTINUE 0 - UXNNORML

RETRY 4 - UXNRETRY

CANCEL 8 - UXNFAIL in PROTECT mode, UXNNORML in

other modes.

Table 43 defines the OAM return codes generated when the EDGLCSUX return

code is not zero. The return code is the value in register 15 on return from

EDGLCSUX.

 Table 43. DFSMSrmm OAM Return Codes from EDGLCSUX Register 15

Return Code Description Related

Message

Number

OAM Return Code

LCSUP_RC_OK

R0 is LCSUP_RS_OK

Processing successful none See reason code in

LCSUP_LCSRS field

LCSUP_RC_OK

R0 is LCSUP_RS _NOACTION

Subsystem not required by

installation

none UXxNOCHG1,2

UXNNORMAL3

LCSUP_RC_OK

R0 is LCSUP_RS_DONT

DFSMSrmm not licensed by

installation

none UXxDONT

1

LCSUP_RC_SSNA Subsystem not available EDG8102D

EDG8108D

EDG8110D

UXxFAIL

1

LCSUP_RC _LERR Logic error in DFSMSrmm

processing

EDG8105I

EDG8106I

EDG8107I

UXxFAIL

1

LCSUP_RC_ENV Environment error detected EDG8101I

EDG8111I

EDG8112I

UXxFAIL

1

Notes:

1. x can be:

v C for change use return codes

v E for volume entry

v J for volume eject return codes

v N for not in volume return codes

2. UXxNOCHG is issued for change use, volume entry and volume eject

3. UXNNORML is issued for not in library only

Chapter 12. Using DFSMSrmm Programming Interfaces 261

Environment

EDGLCSUX executes in the same environment as the OAM exits, but in

AMODE(31) RMODE(ANY).

Processing Fetch and Mount Messages: EDGMSGEX

The system uses DFSMSdfp MSGDISP to update the display screens on tape

drives. DFSMSrmm supplies Assembler source code for IGXMSGEX, the MSGDISP

installation exit, that you can modify to include your own functions or you can

enable to run with another product’s supplied exit code.

IGXMSGEX calls EDGMSGEX, the program that supports the MSGDISP interface.

EDGMSGEX is a callable program interface to DFSMSrmm that you can use from

the MSGDISP exit. You can run this exit in parallel with another copy of the exit.

See “Setting Up Parallel Processing” on page 263 for more information. This

information describes how to use the interface.

Input

The invocation environment must be identical to that provided at entry to the

MSGDISP exit IGXMSGEX.

Output

The output is MSGDISP parameters that are updated as appropriate. Register 15 is

always zero.

Processing

For nonspecific mount requests, where a specific scratch pool is required,

DFSMSrmm updates the message text with the pool details. If you use the

EDGUX100 installation exit to select a specific pool, DFSMSrmm updates the

message text and checks the cartridge loader status. If you requested the loader be

disabled for a specific pool, DFSMSrmm sets bit 7 of the format control byte to

zero.

For specific mount requests, DFSMSrmm checks the volume and uses the volume

serial number to determine the rack number and updates the message text with the

rack number. If you use the installation exit EDGUX100 to specify a rack number or

an external volume serial number for a volume that DFSMSrmm should ignore,

DFSMSrmm uses the value you specify to update the message with the rack

number.

Environment

EDGMSGEX runs only from the MSGDISP exit IGXMSGEX. It runs in AMODE(31)

RMODE(31).

Processing JES3 Messages: EDG3X71

The DFSMSrmm-supplied IATUX71 USERMOD calls EDG3X71 which is the

program that supports JES3 message processing. EDG3X71 is a callable program

interface to DFSMSrmm that you can use from the IATUX71 exit. This information

describes how to use the interface.

262 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Input

The invocation environment must be identical to that provided at entry to the exit

IATUX71.

Output

R15 on exit is determined by DFSMSrmm processing. The possible values for the

return code are the same codes described for IATUX71 return code. The intention is

that you pass the EDG3X71 return code to JES3 as the IATUX71 return code.

 0 DFSMSrmm sets this return code when the volume is not managed by DFSMSrmm

or when DFSMSrmm is not currently in use.

4 DFSMSrmm sets this return code when the volume serial number is to be replaced

by the rack number or pool prefix. MSGDISP text is also provided. DFSMSrmm

sets this return code when you have coded the MNTMSG definitions to specify that

the rack number is to be placed within the JES3 message text.

8 DFSMSrmm sets this return code when the rack number or pool prefix is to be

added to the end of the JES3 message. MSGDISP text is also provided.

DFSMSrmm sets this return code when you have:

v Coded MNTMSG definitions so that DFSMSrmm appends the rack number after

the JES3 message text.

v Have not coded a MNTMSG definition for this message.

16 DFSMSrmm never sets this return code.

Processing

EDG3X71 can only be called from the JES3 exit IATUX71. If EDG3X71 is called

when DFSMSrmm is not started or in use, EDG3X71 sets return code 0 for

IATUX71. EDG3X71 determines whether information should be inserted or

appended for JES3 messages and determines the value to be used for MSGDISP

tape drive display processing.

To check that the IATUX71 exit modification is installed correctly, you can run some

batch jobs that use both specific and nonspecific tape requests. You should check

that messages displayed on the consoles, in SYSLOG, in DLOG and MLOG, and in

JESMSG contains the expected DFSMSrmm updates.

Environment

EDG3X71 runs under a JES3 subtask in the JES3 address space on the JES3

global. EDG3X71 must be link edited in an APF-authorized library. It runs in

AMODE(31) RMODE(31).

Setting Up Parallel Processing

When you are converting to DFSMSrmm, you might want to run two versions of

your installation exits at the same time. The CBRUXENT exit, the CBRUXEJC exit,

and the IGXMSGEX exit provide support that enables your existing exits to control

processing before DFSMSrmm gains control. You can set up parallel processing

using an SMP/E USERMOD or outside of SMP/E.

The CBRUXENT exit and the CBRUXEJC exit samples shipped with DFSMSrmm

can ensure that the DFSMSrmm processing is run after your existing exits are run

and that DFSMSrmm records any information modified by your existing exits. The

Chapter 12. Using DFSMSrmm Programming Interfaces 263

tape management decisions made by your existing exits are used instead of any

tape management decisions that DFSMSrmm might make.

The IGXMSGEX exit includes support that enables your existing exit to perform

processing before DFSMSrmm gains control. You use the IGXMSGEX exit to

update tape drive displays. You only need either one system or the other to be

updating the drive display. As long as you use the same scratch pool names on

both systems, either your existing exit or DFSMSrmm can be used to update the

drive display.

Setting Up Parallel Processing Using SMP/E

Create and install an SMP/E USERMOD as shown in Figure 87 to set up parallel

running capability.

To set up parallel processing using SMP/E:

1. Copy the DFSMSrmm-supplied IGXMSGEX exit to a source library and modify

the exit if necessary

2. Copy the source of the IGXMSGEX exit from your existing tape management

system after the end of the DFSMSrmm-supplied source and change the name

of the CSECT to ANOMSGEX or any other meaningful name.

3. Install the SMP/E USERMOD. You install both the DFSMSrmm-supplied exit

and your exit from your existing tape management system.

4. To implement changes to the CBRUXENT exit and the CBRUXEJC exit, you do

not need to IPL. You can copy the updated load modules into LINKLIB and

refresh LLA.

//RMMSTUFF JOB ,’SLIP IT IN’,MSGCLASS=H,MSGLEVEL=(1,1)

//STEP1 EXEC SMPEMVS,REGION=6120K

//SMPCNTL DD *

 SET BDY(GLOBAL) .

 RECEIVE .

/*

//SMPPTFIN DD DATA,DLM=##

++USERMOD (VMRMM03) REWORK(2000287) .

++VER (Z038) FMID(HDZ11D0) PRE(UWxxxxx) /*

 Change FMID as needed.

 Edit PRE as needed or use the BYPASS(PRE)

 operand on the APPLY command */ .

++SRC(CBRUXENT) TXLIB(AEDGSRC1) DISTLIB(AEDGSRC1) /*

 AEDGSRC1 points to latest source level

 assumption is that PTFs are already accepted

 if not, use SMPSTS as the TXLIB */ .

++SRC(CBRUXEJC) TXLIB(AEDGSRC1) DISTLIB(AEDGSRC1) .

++SRC(IGXMSGEX) TXLIB(AEDGSRC1) DISTLIB(AEDGSRC1) .

//STEP2 EXEC SMPEMVS,REGION=6120K

//SMPCNTL DD *

 SET BDY(GLOBAL) .

 UCLIN .

 ADD UTILITY(ASMSYSP) NAME(ASMA90)

 PARM(XREF(FULL),NOOBJECT,DECK,RENT,SYSPARM(YES)) .

 ADD OPTIONS(ASMSYSP)

 ASM(ASMSYSP) .

 ENDUCL .

/*

//STEP3 EXEC SMPEMVS,REGION=6120K

//SMPCNTL DD *

 SET BDY(TGT1) OPTIONS(ASMSYSP) .

 APPLY SELECT(VMRMM03) .

/*

Figure 87. Sample USERMOD for Setting Up Running Exits in Parallel

264 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

5. To implement changes to the IGXMSGEX exit, you must copy IGX00030 into

LPALIB and re-IPL with CLPA.

Recommendation: Because you might not want to IPL at the time you switch

DFSMSrmm to production, careful planning of the change to IGX00030 is

required. Replace the parallel running IGXMSGEX exit while you continue

running in parallel when you are sure that DFSMSrmm is providing the expected

scratch pooling support. DFSMSrmm should be running in warning mode and

should not issue any error messages about volumes from incorrect scratch

pools.

6. When you no longer need to run both exits, remove the USERMOD and install

the standard load modules again.

To edit the source code to set your own selected alternate exit load module names,

copy the latest DFSMSrmm source code from either SMPSTS or AEDGSRC1, and

alter the TXTLIB to point to your source library that contains your modified source

code.

Setting Up Parallel Processing Outside of SMP/E

To set up parallel processing for the OAM tape exits CBRUXENT and CBRUXEJC,

perform these steps:

1. Rename the existing exit load module names as follows:

v CBRUXENT to ANOUXENT

v CBRUXEJC to ANOUXEJC

2. Assemble the DFSMSrmm-supplied exits with PARM=’SYSPARM(YES)’.

3. Link the DFSMSrmm-supplied exits.

To set up the parallel processing for the message display exit IGXMSGEX, follow

these steps:

1. Assemble the DFSMSrmm-supplied exits with PARM=’SYSPARM(YES)’.

2. Link the DFSMSrmm-supplied exit together with the renamed IGXMSGEX exit

that is provided by the existing tape management system as shown in Figure 88

on page 266. The first step of the link-edit is to extract the IGXMSGEX exit that

is provided by the existing tape management system from IGX00030 and

rename it to ANOMSGEX. The second step of the link-edit is to update the

existing load module with the DFSMSrmm-supplied IGXMSGEX exit and to add

in the ANOMSGEX section.

Chapter 12. Using DFSMSrmm Programming Interfaces 265

You can also edit the DFSMSrmm-supplied exits as shown in Figure 89. The

example shows the CBRUXENT exit to set the &ANOEXIT variable with the new

name of the existing exit and the &PARALLEL variable to YES. Then you can

assemble and link-edit the updated DFSMSrmm-supplied exits.

//LINK1 EXEC PGM=IEWL,REGION=2M,

 // PARM=’LET,LIST,XREF,NCAL,RENT,NCAL’

 //LPALIB DD DISP=SHR,DSN=SYS1.LPALIB

 //*

 //SYSLMOD DD DISP=SHR,DSN=DFRMM1.NEW.LOAD

 //AEDGMOD1 DD DISP=SHR,DSN=SYS1.AEDGMOD1

 //*

 //SYSPRINT DD SYSOUT=*

 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSLIN DD *

 REPLACE EDGMSGEX

 REPLACE IGXMSG01

 REPLACE IGX00030

 RENAME IGXMSGEX,ANOMSGEX

 CHANGE IGXMSGEX(ANOMSGEX)

 INCLUDE LPALIB(IGX00030)

 NAME ANOMSGEX(R) RC=4

 INCLUDE AEDGMOD1(IGXMSGEX)

 INCLUDE LPALIB(IGX00030)

 INCLUDE SYSLMOD(ANOMSGEX)

 ORDER IGX00030,IGXMSG01

 ORDER IGXMSGEX,EDGMSGEX

 MODE RMODE(ANY)

 ENTRY IGX00030

 NAME IGX00030(R) RC=4

Figure 88. Sample JCL for Setting Up Running Exits in Parallel

CBRUXENT TITLE ’DFSMSRMM CBRUXENT SAMPLE USER EXIT’

&ANOEXIT SETC ’ANOUXENT’ Replace ANOUXENT with required name

&PARALLEL SETC ’&SYSPARM’ Replace &SYSPARM with YES if req’d

 AIF (’&PARALLEL ’ EQ ’’).SETNO

 AIF (’&PARALLEL ’ EQ ’YES’).SETYES

 .SETNO ANOP

 &PARALLEL SETC ’NO’

 .SETYES ANOP

Figure 89. Sample JCL for Setting Up Running Exits in Parallel

266 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 13. Using DFSMSrmm Installation Exits

DFSMSrmm provides installation exits EDGUX100 and EDGUX200. For usage

information, see “Using the DFSMSrmm EDGUX100 Installation Exit” and “Using

the DFSMSrmm EDGUX200 Installation Exit” on page 297.

Using the DFSMSrmm EDGUX100 Installation Exit

Use the DFSMSrmm EDGUX100 installation exit to perform these tasks:

v Plan for scratch pools as described in “Planning to Manage Scratch Pools with

EDGUX100”

v Perform pooling management as described in “Managing Scratch Pools” on page

269 to:

– Manage scratch pools based on job name and data set name.

– Select a pool to use for a nonspecific tape volume request.

– Select a specific pool to use for a nonspecific tape volume request and

request that the tape drive cartridge loader is disabled.

v Ignore foreign or duplicate volumes as described in “Using EDGUX100 to Ignore

Duplicate or Undefined Volume Serial Numbers” on page 271 and optionally

provide an external volume serial number for use in messages intercepted and

updated by DFSMSrmm.

v Use JCL special expiration dates to manage volumes by setting vital record

specification management values to retain data sets as described in “Using Vital

Record Specification Management Values to Retain Tape Volumes” on page 274.

v Pass pooling decisions to pre-ACS processing so that they can be used in ACS

routines to assign storage group and management class as described in “Using

the EDGUX100 Installation Exit from Pre-ACS Processing” on page 277.

v Set any expiration date, including a zero value, for a data set as described in

“Assigning Expiration Dates” on page 287.

v Obtain information that is described in “Creating Sticky Labels” on page 277 to

modify input from DFSMSrmm disposition processing.

v Request the recording of only the first file on a multifile volume as described in

“Controlling Tape Volume Data Set Recording” on page 282.

v Change the location for a volume as described in “Changing Location Information

with EDGUX100” on page 284.

v Support the use of the storage group name for pooling for volumes that reside in

manual tape libraries as described in “Using Storage Group for Manual Tape

Library Pooling” on page 290.

Planning to Manage Scratch Pools with EDGUX100

You define pools to DFSMSrmm in parmlib that the EDGUX100 installation exit

selects for new tape data sets that are to be created on nonspecific volumes.

During OPEN processing DFSMSrmm uses the pool that you specify to validate

that a scratch volume has been mounted from the selected pool. You can define

each pool with different attributes and each pool can either be a scratch pool or a

rack pool. You can use DFSMSrmm ACS storage group support instead of the

EDGUX100 exit selected pooling. Refer to “Using SMS Tape Storage Groups for

DFSMSrmm Scratch Pooling” on page 105 for information about using the

DFSMSrmm storage group support.

© Copyright IBM Corp. 1992, 2007 267

If you plan to use EDGUX100 to select volumes from specific scratch pools with

DFSMSrmm, you need to consider:

Selecting Pool Types

The pools that you select using the EDGUX100 installation exit must match to a

VLPOOL rack number prefix defined in the DFSMSrmm parmlib member as

described in “Defining Pools: VLPOOL” on page 205.

You can use EDGUX100 to set up a specific pool for a particular user of your

systems. You can define a scratch or rack pool and can define any type of volume

in that pool. You do not need to have two pools for a user; one for scratch volumes

and one for private volumes. For example, define some volumes that will cycle

between scratch and master status throughout their life, and you could also define

specific, private volumes that are never to be used as scratch.

You use scratch pools with DFSMSrmm system based scratch pooling. You can

define scratch volumes in rack pools and use the RMM GETVOLUME subcommand

to claim them or assign them to a user. You can also use EDGUX100 to use rack

pools or scratch pools for nonspecific tape output requests.

When you define pools for use with EDGUX100, you also might need to prevent the

pools from being used at the wrong times. For example, if your EDGUX100 exit

does not make a pool selection you might want to ensure that DFSMSrmm accepts

only scratch volumes which are not in your specific pools.

Here are three ways you can prevent pools from being used at the wrong time:

1. Ensure that your EDGUX100 exit always provides a specific pool. Specify a

default pool prefix of ’*’ in the exit to use the DFSMSrmm default pool for all

requests that have no specific pool identified.

2. Use only rack pools for your EDGUX100 scratch pools. You can also have

DFSMSrmm scratch pools or a default scratch pool for use with those requests

where your exit does not provide a specific pool.

3. Define all the specific scratch pools that use a SYSID value that does not match

any of your systems. This ensures that, if the exit does not supply a specific

scratch pool and DFSMSrmm uses its own pooling, all the specific pools would

be ignored.

Controlling Pool Selection

The sample EDGUX100 installation exit provides a working solution for application

type scratch pools based on job names and data set names.

Tip: The exit does not validate the field contents; follow the job naming conventions

or your entry will never match real job names.

The exit does not validate the field contents, so be sure to follow the job naming

conventions or your entry will never match real job names.

Managing Tape Drive Availability

You can use the EDGUX100 exit to request DFSMSrmm to disable the tape drive

cartridge loader to prevent specific scratch pool requests from emptying the loaders

through volume rejection. Alternatively, you can direct requests to the correct drives

or run the loaders in a mode that prevents them being automatically indexed when

a mount is received.

268 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Defining Operator Messages for Tape Drive Display

To use ACS routines or exit selected scratch pooling, you must define messages

IEC501A, IEF233A, IAT5110, and IAT5210 using the DFSMSrmm MNTMSG

commands in parmlib as described in “Defining Mount and Fetch Messages:

MNTMSG” on page 172. These messages provide the pool identifiers to the

operator, and the job name and data set name information to the EDGUX100 exit.

The sample EDGUX100 exit obtains the job name and data set name for a

nonspecific volume request from the text of the message. The EDGUX100 exit

includes the data set name only if the z/OS MONITOR DSNAME option is in effect.

If you plan to use the sample EDGUX100, you must activate the z/OS MONITOR

DSNAME option through an operator command. See z/OS MVS System

Commands for more information about the z/OS MONITOR command.

Managing Scratch Pools

You define pools to DFSMSrmm in parmlib that the EDGUX100 installation exit can

select for new tape data sets. The new tape data sets are to be created on

nonspecific volumes. During OPEN processing DFSMSrmm uses the pool that you

specify to validate that a scratch volume has been mounted from the selected pool.

Each pool can be defined with different attributes, and can either be a scratch pool

or a rack pool.

You can specify whether you want DFSMSrmm to disable the autoloader when the

EDGUX100 installation exit selects a scratch pool. By using the exit to disable the

loader, you can prevent the loader from being emptied when it contains volumes

from another pool. If you are using multiple scratch pools and a tape drive is

allocated for a request that requires a pool that has not been pre-loaded,

DFSMSrmm rejects pre-loaded volumes from other pools.

You can pass the EDGUX100 exit selected scratch pool prefix to your ACS routines

for making allocation decisions and for assigning storage group names for

system-managed tape data sets. You can do this using the pre-ACS call to the

EDGUX100 installation exit. See “Using the EDGUX100 Installation Exit from

Pre-ACS Processing” on page 277 for information about using the EDGUX100

installation exit from pre-ACS processing. You can replace the EDGUX100

processing by using the DFSMSrmm calls to SMS ACS routines requesting a

storage group name. Refer to “Using SMS Tape Storage Groups for DFSMSrmm

Scratch Pooling” on page 105 for information about DFSMSrmm ACS support for

storage group.

Step 1: Define the Pools

For each pool, you need to decide whether this pool is to be used only for

specifically identified purposes or whether it can be also selected based on system

scratch pools. The easiest way to prevent a pool from being used as a

system–based scratch pool is to use only rack pools for your exit driven scratch

pooling. If you do not do this, or you do not use one of the other methods described

in “Planning to Manage Scratch Pools with EDGUX100” on page 267, you must use

the EDGUX100 installation exit to always set a scratch pool to prevent an incorrect

scratch pool from being accepted by DFSMSrmm.

DFSMSrmm identifies pools by using a pool prefix which is a one-to-five character

name followed by an asterisk. See “Defining Pools: VLPOOL” on page 205 for more

information.

Chapter 13. Using DFSMSrmm Installation Exits 269

For example, if you want to define a pool with a prefix of ABC* for use by a specific

application, define the pool to DFSMSrmm in parmlib using one of the statements

shown in Figure 90.

 The parameter SYSID(NONE) coded in the second statement in the example,

prevents the pool from being used by the DFSMSrmm system scratch pooling as

long as no DFSMSrmm system is defined with SYSID(NONE).

For each pool, decide if you will run with scratch volumes from this pool loaded in a

cartridge loader. For those pools that are not loaded, consider using the EDGUX100

installation exit to disable the cartridge loader whenever those pools are requested.

Step 2: Tailor the Sample EDGUX100 Installation Exit

Update the sample EDGUX100 installation exit based on the pools you define using

the VLPOOL command in parmlib. The supplied sample EDGUX100 installation exit

supports pooling based on job name and data set name. Modify the supplied exit if

you set up pools that are based on other criteria.

To use the exit you must follow these steps:

1. Copy the sample EDGUX100 installation exit. If you are already using the

EDGUX100 installation exit to support another function, start using your latest

copy of the exit source, or merge in any changes that you have previously

made to the exit.

2. Update the exit, bearing in mind this information:

v Only perform your processing when the PL100_CAN_POOL bit is set to B'1'.

v Your decisions on pooling must be possible whether the exit is called for

MNTMSG processing, pre-ACS processing, or for OPEN processing. Your

pooling decisions must work when a WTO address is provided during

MNTMSG processing, an ACERO is provided during pre-ACS processing, or

a JFCB address is provided during OPEN processing.

v Based on your pooling decisions, optionally select a pool for the current

request and set the PL100_POOL field. You must also set the

PL100_SET_POOL flag to B'1' for DFSMSrmm to use the PL100_POOL field.

You can also optionally set the PL100_SET_ACLOFF flag to B'1' to request

that the tape drive cartridge loader is not indexed for the request. See

“Supplying a Scratch Pool Name” on page 288 and “Using the System Name

to Select a Scratch Pool” on page 289 for additional information.

Step 3: Activate the EDGUX100 Installation Exit

See “Installing the EDGUX100 Routine” on page 291 for information about building

an SMP/E USERMOD to apply the updated source code for EDGUX100 so that it

supersedes any old EDGUX100 USERMODs. Include the necessary JCLIN

statements as shown in Figure 104 on page 291.

Step 4: Define MNTMSG Parmlib Options

The sample MNTMSG parmlib options includes all the messages that are required

to successfully run the scratch pooling function provided by the sample exit.

VLPOOL PREFIX(ABC*) TYPE(R) RACF(Y) EXPDTCHECK(N) -

 DESCRIPTION(’Application XyZ’)

VLPOOL PREFIX(ABC*) TYPE(S) RACF(Y) EXPDTCHECK(N) -

 SYSID(NONE) DESCRIPTION(’Application XyZ’)

Figure 90. Defining Pools for a Specific Application

270 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

However, refer to “Operator Messages and Tape Drive Displays” on page 100 for

information about the MNTMSG requirements so that you can ensure your system

has the required options already in use.

Step 5: Set Up Cartridge Loaders

Set cartridge loaders that are used with DFSMSrmm to system mode or manual

mode.

Step 6: Updating JES3 Code (Optional)

This step is only required if you have JES3 managed tape devices and do not use

deferred tape mounting. With deferred tape mounting, either allocation processing

issues or OPEN processing issues the mount requests and the tape drive displays

are correct.

JES3 updates the drive display before it issues the IAT5210 mount message, so the

drive display might not contain the pool that you select in your exit.

DFSMSrmm provides three methods for updating the IAT5210 message and the

tape drive display. Using the DFSMSrmm supplied USERMOD EDGUX71 to

IATUX71 is the preferred method for updating the IAT5210 message with the

correct exit selected pool. The exit selected pool is used to update the tape drive

displays when selection is based on the IAT5210 message. See Chapter 15,

“Running DFSMSrmm with JES3,” on page 321 for information about installing and

using DFSMSrmm-supplied JES3 USERMODs.

Step 7: Activate MONITOR DSNAME

The EDGUX100 installation exit depends on the system mount messages

containing data set name information. If you plan to use data set name based

pooling, issue the z/OS MONITOR DSNAME command.

For testing purposes, issue this command at an operator terminal. However, for

production implementation, ensure that the command is always issued by including

it as a command in the COMMNDxx member of the parmlib. Any other method that

results in the monitor option being active before any tape requests are issued is

also acceptable.

When a non-specific volume request is received, use the exit to determine the

correct pool to be used.

Using EDGUX100 to Ignore Duplicate or Undefined Volume Serial

Numbers

When DFSMSrmm ignores a volume, DFSMSrmm does not perform these

management functions for the volume:

v Record information about the volume in the DFSMSrmm control data set.

v Validate that the correct volume has been mounted.

For volumes that are defined to DFSMSrmm and that are ignored, DFSMSrmm

performs inventory management based on previously recorded information.

DFSMSrmm ignores volumes that are not defined to DFSMSrmm for specific mount

requests. For nonspecific requests, DFSMSrmm ensures that a

DFSMSrmm-managed scratch volume is mounted in response to the request.

To request that DFSMSrmm ignore a volume, perform these steps:

1. Tailor the EDGUX100 DFSMSrmm installation exit to use undefined volumes or

duplicate volumes. When you use the EDGUX100 installation exit, DFSMSrmm

Chapter 13. Using DFSMSrmm Installation Exits 271

calls the exit each time a volume is opened. The sample installation exit checks

the JCL–specified EXPDT value for the special date 98000 or for the ACCODE

value xCANORES. If the 98000 special date or the ACCODE value xCANORES

is found, the EDGUX100 exit uses the installation exit parameter list to request

that DFSMSrmm ignore the volume.

2. Activate the exit.

3. Define a RACF FACILITY class entity, STGADMIN.EDG.IGNORE.TAPE.volser.

If you want to distinguish between volumes managed by DFSMSrmm and

volumes not managed by DFSMSrmm, use

STGADMIN.EDG.IGNORE.TAPE.RMM.volser and

STGADMIN.EDG.IGNORE.TAPE.NORMM.volser to check user authorization.

4. Authorize users to the STGADMIN.EDG.IGNORE.TAPE.volser,

STGADMIN.EDG.IGNORE.TAPE.RMM.volser, and

STGADMIN.EDG.IGNORE.TAPE.NORMM.volser resources.

Use the DFSMSrmm EDGUX100 installation exit to have DFSMSrmm ignore a

volume when any of these conditions exist:

v You specify the parmlib REJECT ANYUSE(*) command to reject an undefined

volume.

v You use a volume in an automated tape library and it is automatically defined to

DFSMSrmm.

v You want to ignore a volume used for a non-specific output request.

If these conditions are not present, DFSMSrmm automatically ignores all volumes

that are not defined to it without using the DFSMSrmm sample installation exit.

Before DFSMSrmm ignores the volume, it ensures that the user who opened the

volume is authorized to request this function. DFSMSrmm uses a security resource

in RACF FACILITY class, and issues a SAF RACROUTE TYPE=AUTH request with

one of these entity names.

v STGADMIN.EDG.IGNORE.TAPE.volser

v STGADMIN.EDG.IGNORE.TAPE.RMM.volser

v STGADMIN.EDG.IGNORE.TAPE.NORMM.volser

where volser is the volume serial number of the mounted volume or requested tape

volume.

STGADMIN.EDG.IGNORE.TAPE.RMM.volser volumes are volumes that meet one

of these criteria.

v The volume serial number is defined in the control data set and there is no

HDR1 tape label for the volume.

v The volume serial number is defined in the control data set and no labels are

used (NL, NSL, or BLP with an NL tape).

v The 17 characters read from the HDR1 label of the mounted volume match the

last 17 characters of the data set name in the control data set.

STGADMIN.EDG.IGNORE.TAPE.NORMM.volser volumes are volume that meet

one of these criteria.

v The volume serial number is not defined in the control data set.

v The 17 characters read from the HDR1 label of the mounted volume do not

match the last 17 characters of the data set name in the control data set.

272 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Example: If you want DFSMSrmm to ignore volume A00001 that is defined to

DFSMSrmm, define the STGADMIN.EDG.IGNORE.TAPE.*.* UAC(NONE).

DFSMSrmm then checks the second profile:

STGADMIN.EDG.IGNORE.TAPE.A00001

STGADMIN.EDG.IGNORE.TAPE.RMM.A00001

When DFSMSrmm ignores a volume as requested by the EDGUX100 installation

exit and the user is authorized to ignore processing, this overrides any decision

taken by RACF via authorization in the DATASET class (TAPAUTHDSN=YES, or

SETROPTS TAPEDSN).

Step 1: Tailor the DFSMSrmm EDGUX100 Installation Exit

Based on the decisions you have made about how to manage duplicate or

undefined volume serial numbers, tailor the supplied sample EDGUX100 installation

exit as follows:

1. Make a copy of the sample installation exit to use as a base for your exit.

2. Update the exit. Only perform your processing when the PL100_CAN_IGNORE

bit is set to B'1'. Decide whether to support the pre-ACS call to obtain a VRS

management value or scratch pool prefix for use as the MSPOLICY and

MSPOOL variables in ACS processing. You must ignore the call if the volume is

to be ignored. During the pre-ACS call, an ACERO is passed instead of a JFCB.

See z/OS DFSMS Installation Exits for information about the ACERO. See

“Assigning Expiration Dates” on page 287 for additional processing information.

v Use the value in the JFCB expiration date field, JFCBXPDT, to determine if a

special date has been specified.You could also use the PL100_ACCODE field

to check if the special ACCODE value has been supplied.

v Set one of these flags to B'1' so that the volume is ignored if the special date

98000 or the special ACCODE=xCANORES value has been specified. The

flags are

– PL100_SET_IGNORE

– PL100_SET_IGNORE_MOUNTED

– PL100_SET_IGNORE_REQUESTED

v Update the WTO messages with a rack number. Place the rack number value

in the PL100_RACKNO field

v Clear the expiration date in the JFCB copy that DFSMSrmm uses to prevent

DFSMSrmm from using the 98000 date as a volume expiration date. You do

not need to update the JFCB. The information is not passed on to

DFSMSrmm. Because it is a copy of the JFCB used solely by DFSMSrmm,

no other component can make use of your changes. However, because the

EDGUX100 installation exit is called for system-managed volumes, but

nonspecific system-managed volumes cannot be ignored, the DFSMSrmm

sample exit clears the expiration date.

Step 2: Activate the EDGUX100 Installation Exit

See “Installing the EDGUX100 Routine” on page 291 for information about building

an SMP/E USERMOD to apply the updated source code for EDGUX100 so that it

supersedes any old EDGUX100 USERMODs. Include the necessary JCLIN

statements as shown in Figure 104 on page 291.

Step 3: Define a RACF FACILITY Class Entity to Check

Authorization

Define a RACF FACILITY class entity to protect volumes. DFSMSrmm checks that

the user trying to use a duplicate or undefined volume is authorized to request that

DFSMSrmm ignore the volume. The RACF FACILITY class entities are:

Chapter 13. Using DFSMSrmm Installation Exits 273

v STGADMIN.EDG.IGNORE.TAPE.volser

v STGADMIN.EDG.IGNORE.TAPE.RMM.volser

v STGADMIN.EDG.IGNORE.TAPE.NORMM.volser

Only users with the correct authorization to the entities can request that

DFSMSrmm ignore volumes.

Define multiple resources, as required, for individual volumes or groups of volumes

by using RACF generic resource names. GLOBALAUDIT(SUCCESS) ensures that

RACF maintains an audit trail of all successful uses of this facility.

Example:

RDEFINE FACILITY STGADMIN.EDG.IGNORE.TAPE.X* UACC(NONE)

RALTER FACILITY STGADMIN.EDG.IGNORE.TAPE.X* GLOBALAUDIT(SUCCESS)

RDEFINE FACILITY STGADMIN.EDG.IGNORE.TAPE.810* UACC(NONE)

RALTER FACILITY STGADMIN.EDG.IGNORE.TAPE.810* GLOBALAUDIT(SUCCESS)

RDEFINE FACILITY STGADMIN.EDG.IGNORE.TAPE.RMM.Y* UACC(NONE)

RALTER FACILITY STGADMIN.EDG.IGNORE.TAPE.RMM.Y* GLOBALAUDIT(SUCCESS)

RDEFINE FACILITY STGADMIN.EDG.IGNORE.TAPE.RMM.710* UACC(NONE)

RALTER FACILITY STGADMIN.EDG.IGNORE.TAPE.RMM.710* GLOBALAUDIT(SUCCESS)

RDEFINE FACILITY STGADMIN.EDG.IGNORE.TAPE.NORMM.Z* UACC(NONE)

RALTER FACILITY STGADMIN.EDG.IGNORE.TAPE.NORMM.Z* GLOBALAUDIT(SUCCESS)

RDEFINE FACILITY STGADMIN.EDG.IGNORE.TAPE.NORMM.910* UACC(NONE)

RALTER FACILITY STGADMIN.EDG.IGNORE.TAPE.NORMM.910* GLOBALAUDIT(SUCCESS)

Step 4: Authorize Users

Permit those users authorized in your installation to the appropriate FACILITY

CLASS resources.

Example:

PE STGADMIN.EDG.IGNORE.TAPE.X* CLASS(FACILITY) ID(user1) ACCESS(level)

PE STGADMIN.EDG.IGNORE.TAPE.810* CLASS(FACILITY) ID(user2) ACCESS(level)

PE STGADMIN.EDG.IGNORE.TAPE.RMM.Y* CLASS(FACILITY) ID(user1) ACCESS(level)

PE STGADMIN.EDG.IGNORE.TAPE.RMM.710* CLASS(FACILITY) ID(user2) ACCESS(level)

PE STGADMIN.EDG.IGNORE.TAPE.NORMM.Z* CLASS(FACILITY) ID(user1) ACCESS(level)

PE STGADMIN.EDG.IGNORE.TAPE.NORMM.910* CLASS(FACILITY) ID(user2) ACCESS(level)

In the example, the values that are specified have these meanings:

user1, user2

The user ID of the user given access.

level The granted access level; one of READ or UPDATE.

 READ access is required for a volume to be opened for input requests.

UPDATE access is required for a volume to be opened for output requests.

Using Vital Record Specification Management Values to Retain Tape

Volumes

You can use the EDGUX100 installation exit to assign vital record specification

management values to new tape data sets. When a volume is opened, DFSMSrmm

records the vital record specification management value you assign to new tape

data sets. You then define vital record specifications using data set name masks

that match the vital record specification management values you define for special

dates. These vital record specifications define the management policies for volumes

with special dates.

You can use vital record specification management values to be the basis for

assigning management class for system-managed tape. DFSMSrmm calls

274 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

EDGUX100 to obtain a vital record specification management value. During

pre-ACS processing, the vital record specification management value is passed to

your ACS routine to so that allocation decisions can be made. During OPEN

processing for new tape data sets, this call is optional call and is not made for a

non-system-managed tape data sets if you have assigned a management class

during the RMMVRS ACS call.

Step 1: Define Vital Record Specification Management Values

A vital record specification management value is a single qualifier name that you

define in a vital record specification to tell DFSMSrmm how to manage and retain

your tape data sets. The vital record specification management value can be up to

eight alphanumeric characters, and must begin with an alphabetic character.

DFSMSrmm matches a data set to a vital record specification management value

during vital records processing when the data set does not match a vital record

specification with a data set name mask and optionally a job name.

Use the RMM ADDVRS subcommand with the DSNAME operand or the

DFSMSrmm Add Data Set VRS panel in the DFSMSrmm ISPF dialog to define data

set vital record specifications. Use the data set name masks that match the vital

record specification management values you have defined. See z/OS DFSMSrmm

Guide and Reference for more information on defining vital record specifications.

For example, you can use the vital record specification management value D99000,

for the special date 99000 and define a vital record specification using the data set

name, D99000. Figure 91 defines a vital record specification for managing the

special date 99000. You could also set the ACCODE=xCACATLG value in the DD

statement to manage the special date 99000.

 You could define a vital record specification data set name mask that matches

multiple vital record specification management values. For example you could

define a data set name mask of D9900% as shown in Figure 92 to cover several

vital record specification management values. With this data set name mask you

could manage special dates in the range 99001 through 99009.

Step 2: Tailor the Sample EDGUX100 Installation Exit

Update the sample EDGUX100 installation exit based on vital record specification

management values you define and perform these tasks:

1. Copy the sample EDGUX100 installation exit and use the copy as a base for

your exit.

2. Update the exit. Only perform your processing when the PL100_CAN_VRS bit is

set to B'1'.

v If an ACERO is passed to the exit, use the ACEROEXP and ACERORTP

fields to decided if a special date is specified. If a JFCB is passed to the exit,

use the value in the JFCB expiration date field, JFCBXPDT to determine if a

special date has been specified. Test the JFCBEXP flag to determine if the

user specified an expiration date or a retention period. You can also test to

RMM ADDVRS DSNAME(’D99000’) WHILECATALOG

Figure 91. Managing Special Date 99000 with Vital Record Management Value

RMM ADDVRS DSNAME(’D9900%’)

Figure 92. Specifying Data Set Masks for Vital Record Management Values

Chapter 13. Using DFSMSrmm Installation Exits 275

see if the user wants the date used as real expiration date by checking for

the existence of the dummy file NOTKEYD8.

The sample EDGUX100 installation exit includes code for using this method

specifying the DD name NOTKEYD8. You can also use the PL100_ACCODE

field to check if the special ACCODE value has been supplied. Specifying

ACCODE=xCACATLG is the same as using EXPDT=99000.

v Based on the special date like 99000 or the ACCODE value, select the

chosen vital record specification management value and use it to set the field

PL100_VRS.

v If you want DFSMSrmm to use a true expiration date, rather than the special

date from the JCL, update the JFCBXPDT field with the date or with zero. If

you update the field with a zero, DFSMSrmm uses the default retention

period to calculate an expiration date. See “Assigning Expiration Dates” on

page 287 for additional information. If you use in JCL only the ACCODE

value, you do not need to alter the JCL expiration date.

The DFSMSrmm EDGUX100 sample provides support for catalog control

special dates during pre-ACS and OPEN time and provides the checking

necessary for true expiration dates. Modify the sample exit if you wish to

support other special dates.

Tip: DFSMSrmm provides a second sample for EDGUX100. This sample is

called EDGCVRSX. It is different from the EDGUX100 sample because the

special date and pooling function is table driven and you can change the table

dynamically. Refer to EDGCMM01 and the IBM Red book Converting to

Removable Media Manager: A Practical Guide for documentation on using

EDGCVRSX for EDGUX100.

3. Make any changes required for using vital record management values before

building the USERMOD.

Step 3: Activate the EDGUX100 Installation Exit

See “Installing the EDGUX100 Routine” on page 291 for information about building

an SMP/E USERMOD to apply the updated source code for EDGUX100 so that it

supersedes any old EDGUX100 USERMODs. Include the necessary JCLIN

statements as shown in Figure 104 on page 291.

To apply vital record specification management values to a new tape data set, you

can either specify the special date 99000 in the EXPDT keyword or use

corresponding special values in the ACCODE keyword of the DD statement. The

EDGUX100 sample installation exit checks the ACCODE value for xCACATLG. If

there is a matching value, DFSMSrmm performs the same actions that it performs

when it processes 99000. If both ACCODE and EXPDT are used to specify special

values, then DFSMSrmm uses the ACCODE value.

Using the ACCODE keyword, you can use the xCAUSER and xCAPERM special

values. EDGUX100 treats these two values the same as the never expire date

99365 specified in the EXPDT parameter. A vital record specification management

value D99365 is assigned to the data set which ensures that the data set is

retained indefinitely.

Step 4: Run DFSMSrmm Inventory Management Vital Record

Processing

Run DFSMSrmm inventory management vital record processing to identify which

volumes should be retained based on the vital record specification management

values you define. DFSMSrmm uses the vital record specification management

value assigned to the data set to select the appropriate vital record specification, if

276 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

inventory management vital record processing does not find a match on the data

set mask. See “How Vital Record Processing Works” on page 348 for information

about vital record processing.

Using the EDGUX100 Installation Exit from Pre-ACS Processing

You can use ACS routines to automatically determine the target storage group and

assign data classes, storage classes, and management classes to SMS-managed

data sets. You can use the pre-ACS interface to provide additional information like

vault destination or pool information to the ACS routines. You can use the

EDGUX100 installation exit for pre-ACS processing. See “Defining System Options:

OPTION” on page 175 for information about the DFSMSrmm EDGRMMxx

PARMLIB OPTION PREACS operand and the OPTION SMSACS operand that you

can use to control how storage group and management class values are assigned.

When called during pre-ACS processing, the values selected by the exit are used

as input to the ACS routine. Then, when the EDGUX100 installation exit is called at

OPEN or when a volume is mounted, the exit can provide the same values it

passed during the pre-ACS processing or provide different vital record specification

management values and pool values.

The pre-ACS routine passes the address of the ACERO to the EDGUX100

installation exit. The ACERO is mapped by the IGDACERO macro and is the input

to the pre-ACS installation exit IGDACSXT. You can use any of the values in the

ACERO as input to the EDGUX100 installation exit. The sample EDGUX100 exit

uses these values:

v ACEROJOB, which is the job name.

v ACERODSN, which is the data set name.

v ACEROEXP, which is the expiration date. The expiration date is used only if the

retention period is not set.

v ACERORTP, which is the retention period.

The values are used to perform PL100_CAN_IGNORE, PL100_CAN_VRS, and

PL100_CAN_POOL processing. All other functions are performed only when the

EDGUX100 is not called by the pre_ACS routine.

If your installation’s version of the EDGUX100 installation exit provides values for

scratch pooling (PL100_POOL) or vital record specification management value

(PL100_VRS), DFSMSrmm updates the ACS input values for MSPOOL and

MSPOLICY when they have not already been set by the IGDACSXT pre-ACS

installation exit.

To perform pre-ACS processing, check the PL100_ACEROPTR field for the address

of the ACERO.

Creating Sticky Labels

You can create sticky labels using DFSMSrmm disposition processing. You can

choose to either drive the sticky labels using one or more disposition control files, or

you can choose to drive the sticky label using the EDGUX100 installation exit. You

can combine these methods as required to meet your requirements.

If you use DFSMSrmm disposition processing, you do not need to use EDGUX100

to implement sticky label support because DFSMSrmm provides some default sticky

label support as part of disposition control file processing. However, you can

optionally use EDGUX100 to modify the default DFSMSrmm processing. Refer to

Chapter 21, “Setting Up DFSMSrmm Disposition Processing,” on page 461 for more

Chapter 13. Using DFSMSrmm Installation Exits 277

information. If you do not use disposition control file processing, you can still make

use of the EDGUX100 installation exit to implement sticky label support. You can

exploit EDGUX100 in these ways:

v By using the default label created by DFSMSrmm disposition processing,

determine that you would like the sticky label created in any case, and set off

PL100_SET_NOLABEL.

v By using information provided to the installation exit as input to a sticky label

routine you have written. Just ignore any sticky label passed to EDGUX100,

ensure that PL100_SET_NOLABEL flag is set, and perform your own processing.

The steps for tailoring the installation exit are described in “Step 1: Tailor the

DFSMSrmm EDGUX100 Installation Exit.”

v For modifying the default labels produced by DFSMSrmm disposition processing

described in “Modifying DFSMSrmm Label Output” on page 281.

v For suppressing the default labels produced by DFSMSrmm disposition

processing described in “Modifying DFSMSrmm Label Output” on page 281.

v For tailoring how location names are processed, you can decide whether a

location is treated as a loan location, or storage location, and how the movement

is to be confirmed.

Step 1: Tailor the DFSMSrmm EDGUX100 Installation Exit

You can create sticky labels using the DFSMSrmm EDGUX100 installation exit and

can use either the DFSMSrmm built-in function, disposition control, or you can use

a sticky label routine you have written. DFSMSrmm calls the EDGUX100 installation

exit whenever a tape data set is closed or reaches end of volume. In any case, you

can use either the DFSMSrmm built-in function, your own routine, or any

combination. When the EDGUX100 installation exit is called to enable sticky label

processing, the PL100_ITS_CLOSE option is set. When the exit is called with

PL100_ITS_CLOSE set, there is information in the EDGPL100 parameter list for a

default sticky label that DFSMSrmm has prepared and also information that allows

you to create or customize sticky labels. See “Installation Exit Mapping Macro:

EDGPL100” on page 487.

If there is an DFSMSrmm prepared label, the PL100_LABPTR is non-zero. In

addition, you can determine if this label was created because of disposition control

file processing, or as a default label. PL100_INFO_DISPLAB indicates that the

disposition control file requested the label. Figure 93 on page 279 shows where the

sample exit determines if a label is available and why it was created.

278 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

For each time that the code is entered at label DSPCNT, you can choose to do one

of these:

v If a disposition control file provided user data, it is copied to the prepared label.

See label ’=1’ in Figure 94 on page 280.

v You can customize the prepared label. See label ’=2’ in Figure 94 on page 280.

v If the label is created because of disposition control file processing, you can

suppress the label. See label ’=3’ in Figure 94 on page 280 for where you can

suppress the label.

v If you are not using a disposition control file and would like to use the

DFSMSrmm default label, you add your decision making code at label ’=4’ in

Figure 94 on page 280. This is a much easier option than using your custom

routine. To enable the production of the prepared label, uncomment the code at

label ’=5’ in Figure 94 on page 280. By default, DFSMSrmm does not produce

the label, but has created it for you.

v In any case, whether you produce a label or not, you can set a location name in

PL100_LOCATION, specify if this is a loan location or a storage location, and

determine how moves should be confirmed. See label ’=6’ in Figure 95 on page

280.

JFCBPOOL EQU *

** @04A

* Now we’ll check if we come from CLOSE/END OF VOLUME. @04A

** @04A

 TM PL100_VALID,PL100_ITS_CLOSE Is it a call from C/EOV @04A

 BZ NOTCLOSE No, continue @04A

 ...

 L R3,PL100_LABINFO Address Label info block @04A

 USING PL100_LABDS,R3 Addressability @04A

 TM PL100_OFLAG,PL100_FOUT Is it OUTPUT ? @04A

 BZ NOTCLOSE No, continue @04A

DSPCNT DS 0H @L6A

 STM R14,R10,DSPCNTR STORE REGISTER @K4A

 CLI PL100_VERNO,X’02’ REQUIRED VERSION NUMBER 2 @L6A

 BL DSPCNTE NO, CONTINUE @L6A

 L R5,PL100_LABPTR Do we have a prepared label? @17M

 LTR R5,R5 @17M

 BZ DSPCNT2 NO, CONTINUE @17M

 TM PL100_INFO,PL100_INFO_DISPLAB @17C

 BZ DSPCNT_OPT2 NO, CONTINUE with option 2 @17C

Figure 93. Sample EDGUX100 Installation Exit Sticky Label Support

Chapter 13. Using DFSMSrmm Installation Exits 279

To create your own sticky labels, add your sticky label routine directly to the exit or

add a LOAD or LINK statement to call your sticky label routine externally. Figure 96

shows where your routine for creating sticky labels can be called from EDGUX100.

See label ’=7’ in Figure 96. Be sure that your code sets the PL100_SET_NOLABEL

to B'1' so that DFSMSrmm does not also produce a label.

*---

* sticky label option 1 @17A

*---

* COPY USER DATA INTO STICKY LABEL

*---

 TM PL100_INFO,PL100_INFO_USERDATA @K4

 BZ DSPCNT0 NO, CONTINUE =1

 MVC SLABCUSR,PL100_LAB_USERDATA @K4

*---

* CREATE CUSTOM STICKY LABEL

* Here is where you can customize the prepared label

*---

DSPCNT0 DS 0H =2

 ...

*---

* SUPPRESS STICKY LABEL OUTPUT

* Remove comments in the following code to suppress the label @17A

*---

DSPCNT1 DS 0H @K4

* OI PL100_FUNCTION,PL100_SET_NOLABEL =3

 B DSPCNT2 continue with LOCATION handling @17

*---

* Consider sticky label option 2 @17A

*---

DSPCNT_OPT2 DS 0H @17

* Add here code to decide when the prepared labels should be @17

* created. =4

*---

* For Option 2 we must reset the PL100_SET_NOLABEL flag @17A

* Remove comments in the following code to produce the label @17A

*---

* NI PL100_FUNCTION,255-PL100_SET_NOLABEL =5

Figure 94. Sample EDGUX100 Installation Exit Sticky Label Support

DSPCNT2 DS 0H @K4A

* ASSIGN LOCATION *

* Remove comments in the following code to activate or customize@17A*

* MVC PL100_LOCATION,=CL8’SAMPLE ’ =6

* MVI PL100_LOCTYPE,PL100_LOC_LOAN @K4A

* NI PL100_FUNCTION2,255-PL100_SET_NOCMOVE @K4A

* OI PL100_FUNCTION2,PL100_SET_CMOVE @K4A

Figure 95. Sample EDGUX100 Installation Exit Sticky Label Support Location

DSPCNTE DS 0H @L6A

** @L6M

* To create your own sticky label support, add your code right @L6M

* before the statement ’DSPEND EQU *’. @L6M

* WTO ’Sticky label routine called ’ @04A

* @04A

* Refer to PL100_LABDS DSECT in EDGPL100 macro for an explanation @04A

* of all the fields you may need for sticky label processing. @04A

* @04A

** =7

DSPEND DS 0H @K4A

Figure 96. Sample EDGUX100 Installation Exit Sticky Label Support Own Labels

280 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Step 2: Activate the EDGUX100 Installation Exit

See “Installing the EDGUX100 Routine” on page 291 for information about building

an SMP/E USERMOD to apply the updated source code for EDGUX100 so that it

supersedes any old EDGUX100 USERMODs. Include the necessary JCLIN

statements as shown in Figure 104 on page 291.

Modifying DFSMSrmm Label Output

Use the EDGUX100 installation exit to modify the label that DFSMSrmm produces

as part of disposition processing. You can set new values for the number of rows,

the length of each row in the label. You cannot exceed the maximum label area size

of 2000 characters. You can set an LRECL other than the default LRECL of 80. The

LRECL you set must be the same length or less than the number of columns in

each row in the label. You can change the values by modifying the label area

passed to the EDGUX100 exit based on the PL100_LABDATA field.

PL100_LABPTR is the address of the label DFSMSrmm has prepared. You use the

EDGSLAB mapping macro to map the label area. The label area starts with control

information as shown in Figure 97. You set the LRECL to your selected output label

LRECL, and decide how many columns and rows you will have in your label. The

number of columns can be less than the LRECL

 Once you have decided on your label size, you must decide on the layout of the

data fields. Each row in the label can have none, one, or more data fields mapped

to them. EDGSLAB shows you how DFSMSrmm lays out the labels for cartridges

and tape reels. The sample EDGUX100 installation exit also shows you how to map

your own labels over the SLABLAB label area. You can easily customize the label

area by adapting the sample label area in EDGUX100. See Figure 98 on page 282

for how the label area can be addressed and updated.

SLABENT DS 0D ** BEGIN OF SLAB **

SLABID DS CL8’EDGSLAB’ ** SLAB EYECATCHER **

SLABSPL DS XL1 ** SLAB SUBPOOL NUMBER **

SLABSIZE DS XL3 ** SLAB TOTAL SIZE **

SLABKEY DS XL1 ** SLAB PROTECTION KEY **

SLABVER DS XL1 ** SLAB VERSION **

SLABLRECL DS XL1 ** SLAB OUTPUT FILE LRECL **

SLABTYPE DS CL1 ** SLAB LABEL TYPE **

SLABTYPE_CART EQU X’80’ ** SLAB CARTRIDGE LABEL BUILT **

SLABTYPE_REEL EQU X’40’ ** SLAB REEL LABEL BUILT **

SLABCOL DS XL1 ** SLAB NUMBER OF COLUMNS **

SLABROW DS XL1 ** SLAB NUMBER OF ROWS **

SLABLAB DS 0F ** SLAB STICKY LABEL **

 ORG SLABLAB ** SLAB MAXIMUM LABEL LAYOUT **

SLABMAX DS CL2000 ** **

Figure 97. Sticky Label Area

Chapter 13. Using DFSMSrmm Installation Exits 281

Also, see Figure 99 for how you can overlay the label mapping over the SLABLAB

area. First, define the rows/records for the labels, and then for each row, overlay

the data fields you want to use. Refer to the sample EDGUX100 exit for the

complete sample solution.

 You can also suppress the production of labels by setting the

PL100_SET_NOLABEL bit to B'1'. DFSMSrmm checks for this bit at CLOSE time.

See “Selecting the Method Used for Label Processing” on page 465 for information

about modifying labels.

Controlling Tape Volume Data Set Recording

Use the EDGUX100 installation exit to request that DFSMSrmm records information

about the first data set only and keeps track of the statistics at the volume level.

DFSMSrmm then performs data set name checking on the first data set only.

DFSMSrmm does not keep track of the number of data sets on the volume when

data set recording is turned off for a volume. DFSMSrmm keeps track of some

 L R5,PL100_LABPTR Do we have a prepared label? @17M

 LTR R5,R5 @17M

 BZ DSPCNT2 NO, CONTINUE @17M

 TM PL100_INFO,PL100_INFO_DISPLAB @17C

 BZ DSPCNT_OPT2 NO, CONTINUE with option 2 @17C

 USING SLAB,R5 @L6A

 ...

* CREATE CUSTOM STICKY LABEL *

* Remove comments in the following code to activate or customize@17A*

DSPCNT0 DS 0H @K4A

* LR R1,R3 @K4A

* LA R2,SLABMAX CLEAR PREPARED STICKY LABEL @K4A

* LA R3,2000 @K4A

* LA R6,@CC00506 @K4A

* ICM R7,15,@CB07614 @K4A

* MVCL R2,R6 @K4A

* LR R3,R1 @K4A

* MVI SLABCOL,80 SET ROW/COLUMN @K4A

* MVI SLABLRECL,80 @K4A

* MVI SLABROW,10 @K4A

* MVC SLABUUSR,PL100_LAB_USERDATA @K4A

* MVC SLABUDSN,PL100_DSN @K4A

* MVC SLABUJBN,PL100_JOBNAM @K4A

* MVC SLABUVSL,PL100_VOLSER @K4A

Figure 98. Addressing the Sticky Label Area

 EDGSLAB LIST=YES,DSECT=YES @K4A

 ORG SLABLAB @L6A

SLABULN1 DS CL80 RECORD 1 @L6A

SLABULN2 DS CL80 RECORD 2 @L6A

SLABULN3 DS CL80 RECORD 3 @L6A

SLABULN4 DS CL80 RECORD 4 @L6A

SLABULN5 DS CL80 RECORD 5 @L6A

SLABULN6 DS CL80 RECORD 6 @L6A

SLABULN7 DS CL80 RECORD 7 @L6A

SLABULN8 DS CL80 RECORD 8 @L6A

SLABULN9 DS CL80 RECORD 9 @L6A

SLABULNA DS CL80 RECORD 10 @L6A

 ORG SLABULN1 LAYOUT RECORD1 @L6A

SLABUDSN DS CL44 SLAB USER LABEL DSNAME @L6A

 ORG SLABULN2 LAYOUT RECORD2 @L6A

SLABUUSR DS CL69 SLAB USER USER DATA @K4C

 ORG SLABULN3 LAYOUT RECORD3 @L6A

 ...

Figure 99. Mapping a Custom Sticky Label

282 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

items like the use count to reflect the number of times the volume is read or written.

You must request that DFSMSrmm records only the first data set each time you

rewrite the first data set. Otherwise DFSMSrmm resumes recording information

about all the data sets on the volume.

You might want to limit DFSMSrmm recording of tape data set information for these

reasons:

v A tape volume is assigned for use by a specific application and the application

tracks the tape contents.

v A tape volume contains a large number of files and you do not need to know

details of all the files.

If you have applications that create multiple cataloged data sets on tape, and you

suppress the DFSMSrmm recording of other than the first data set on the volume,

ensure that the data sets other than the first data set are uncataloged. When the

recording of data set information is suppressed, DFSMSrmm does not uncatalog

these data sets during inventory management processing when the parmlib option

UNCATALOG is specified as S or Y. Since DFSMSrmm cannot uncatalog the data

sets, another method must be used to uncatalog them. Leaving non-existent data

sets cataloged could lead to processing problems later.

Step 1: Tailor the DFSMSrmm EDGUX100 Installation Exit

During the OPEN processing for the first file on a volume, the EDGUX100

installation exit retrieves the data set name, job name and job step program name

from system control blocks. The sample EDGUX100 installation exit then scans the

EDMTAB table for a match. If there is a match, the EDGUX100 installation exit sets

the PL100_SET_IGNORE_FILE2_TON bit to request DFSMSrmm only record data

set details for the first file.

To use the EDGUX100 exit for this function, define a table as shown in Figure 100.

The order in which the table entries are listed is important because the exit scans

the table until it finds the first entry where the job name, data set name and

program name masks match the current request. You can change the priority of

matching by changing the order of the table entries.

 The table contains:

jobname

One-to-eight alphanumeric or national characters including % and *.

 % can be used to ignore a positional character in the job name.

EDMTAB DS 0F start of table

* jobname data set name

 DC CL8’* ’,CL44’BACKUP*’

 DC CL8’ABC*’ program name

*

 DC CL8’STSGWD* ’,CL44’*’

 DC CL8’A*’ program name

*

 DC CL8’STSG%%* ’,CL44’STSG%%.BACKUP.*’

 DC CL8’DEF%MAIN’ program name

*

 DC CL8’STSGDPW ’,CL44’DAVE.TOOMUCH.DATA’

 DC CL8’AB999*’ program name

*

 DC CL8’EDMEND’ end of table marker

Figure 100. Sample Table for Controlling Data Set Recording

Chapter 13. Using DFSMSrmm Installation Exits 283

* can be used to ignore all remaining characters in the job name. A jobname

of * means that the entry applies to all jobs.

data set name

Can be up to forty-four characters, following z/OS data set naming conventions,

including % and *.

 The character % can be used to ignore a positional character in the data set

name.

 The character * can be used to ignore all remaining characters in the data

set name. A data set name of * means that the entry applies to all data sets.

The use of the character * is not the same as in the generic data set names

supported by DFSMSrmm for vital records specifications and search data

set masks. Here the * works like the characters *.*might in a generic data

set name mask.

Program name

A value up to eight alphanumeric character including % and *.

 % can be used to ignore a positional character in the program name.

 * can be used to ignore all remaining characters in the program name. A

program name of * means that the entry applies to all programs.

Step 2: Activate the EDGUX100 Installation Exit

See “Installing the EDGUX100 Routine” on page 291 for information about building

an SMP/E USERMOD to apply the updated source code for EDGUX100 so that it

supersedes any old EDGUX100 USERMODs. Include the necessary JCLIN

statements as shown in Figure 104 on page 291.

Changing Location Information with EDGUX100

You can use the EDGUX100 installation exit to perform these tasks:

v Specify a new location name or location type for a volume.

v Clear the location name to prevent a volume from being assigned to a location.

v Add a location name when one was not originally assigned in the disposition

control file.

You can change the contents of the PL100_NAME and PL100_LOCTYPE fields to

change location or name information. On input, the fields contain values set from

the disposition control file.

DFSMSrmm checks the storage location name and type that you specify against

the list of storage locations defined in the DFSMSrmm EDGRMMxx parmlib

LOCDEF command. If you specified a storage location that is not defined to

DFSMSrmm, DFSMSrmm treats the location as a loan location.

Use the PL100_INFO_CMOVE field to determine if a volume move is to be

confirmed by checking for the bit that indicates that a later confirm move is required

or is marked as already completed. Set PL100_SET_CMOVE or

PL100_SET_NOCMOVE for move confirmation action. PL100_SET_CMOVE forces

a later move. PL100_SET_NOCMOVE marks the move as already completed.

EDGUX100 Exit Routine Processing

EDGUX100 gets called at several points if DFSMSrmm does not already have the

required information. For example, if the required information for the current data

set and volume combination was provided in a previous call of the exit, EDGUX100

is not called again. The points that EDGUX100 can be called are as follows:

284 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v At pre-ACS processing time for new allocations, a pointer to the ACERO is

passed in PL100_ACEROPTR.

v At OPEN time in the address space of the program issuing the OPEN request.

During OPEN processing the address of a copy of the JFCB is provided in

PL100_JFCBPTR.

EDGUX100 can also be called at CLOSE or EOV if the information that

DFSMSrmm requires for processing is not available. For example, EDGUX100

can be called if DFSMSrmm is restarted while tape volumes are in use.

v At CLOSE and EOV time in the address space of the program processing the

tape file. PL100_ITS_CLOSE is set and PL100_LABINFO provides information

useful for creating labels.

v When DFSMSrmm updates a write to operator message defined by the

EDGRMMxx parmlib MNTMSG command.

You use the MNTMSG operands to identify the write to operator messages that

you want DFSMSrmm to update with external volume serial number and pool

information. Messages are processed for both specific and non-specific volume

serial numbers. If the JES3 IATUX71 exit is used with the DFSMSrmm EDG3X71

exit, EDGUX100 is called during JES3 fetch and mount message processing.

EDGUX100 can also be called from MSGDISP processing if the information that

DFSMSrmm requires for processing is not available. For example, EDGUX100

can be called if DFSMSrmm is restarted while tape volumes are in use.

DFSMSrmm has not yet checked if the volume is defined in its control data set, if

the volume will be rejected, or if the volume is subject to any other DFSMSrmm

processing.

After the installation exit has been called, DFSMSrmm performs this processing:

v The DFSMSrmm sample EDGUX100 installation exit performs no function when

the supplied JFCB address, supplied ACERO address, and the supplied WTO

address are zero.

v If the expiration date is updated by the exit, EDGUX100 updates the date in the

copy of the JFCB for the current request. DFSMSrmm does not update the real

JFCB control block.

v If a vital record specification management value is returned, DFSMSrmm records

this value together with other details for the data set in the DFSMSrmm control

data set, for use during inventory management.

v During pre-ACS processing if a pool or vital record specification management

value is returned, DFSMSrmm sets the MSPOOL and MSPOLICY variables into

the ACERO if the pre-ACS installation exit IGDACSXT has not already done so.

v If a specific pool name is returned and it meets the pool naming conventions,

DFSMSrmm uses the value to update messages intercepted for MNTMSG

processing, to update tape drive displays through MSGDISP processing and to

perform pool validation of scratch volumes at OPEN time. If JES3 is used and

IATUX71 is in use, the pool is also passed to JES3 for use in JES3 fetch and

mount messages. If you request that DFSMSrmm prevents the tape drive

cartridge loader from being indexed, DFSMSrmm resets the automatic cartridge

load flag during MSGDISP processing. If the selected pool does not meet the

naming conventions, DFSMSrmm uses the pool it has already selected.

v If the volume must be ignored, DFSMSrmm ensures that the current user is

authorized to request that DFSMSrmm ignores this volume. A SAF request is

used to check authorization:

 RACROUTE REQUEST=AUTH,ENTITY=STGADMIN.EDG.IGNORE.TAPE.volser,

 ACCESS=value,LOG=ASIS

Chapter 13. Using DFSMSrmm Installation Exits 285

where:

volser Is the current volume serial number of the mounted volume

value Is either READ or UPDATE

If the user is authorized, DFSMSrmm ignores all further activity for this volume

until end-of-volume processing or until a data set on the volume is closed. This

means that DFSMSrmm does not validate that the correct volume is mounted,

does not record volume usage in its control data set and cannot provide any

management functions for the volume based on the data about to be created.

However, if the user is authorized to ignore processing, this overrides any

decision taken by RACF via authorization in the DATASET

class.(TAPEAUTHDSN=YES, or SETROPTS TAPEDSN). During OPEN

processing, DFSMSrmm overrides RACROUTE return codes of 4 or 8 so that

they are return code 0.

If authorization fails and DFSMSrmm is running in protect mode, DFSMSrmm

rejects the volume. For non-specific mount requests, another volume is

requested. For specific volume requests the OPEN request fails.

If the resource does not exist, the request is treated as not authorized.

If authorization fails and DFSMSrmm is running in record-only mode,

DFSMSrmm ignores the volume and issues the information message, EDG4047I.

If authorization fails and DFSMSrmm is running in warning mode, DFSMSrmm

ignores the volume but issues error and warning messages.

v If a rack number is returned, DFSMSrmm uses this value as if it were a normal

DFSMSrmm rack number for use in messages that are updated as defined by

the parmlib MNTMSG definitions.

v DFSMSrmm validates the information you set in the parameter list as follows:

PL100_VRS

Must meet the z/OS data set naming standards for a single data set qualifier.

PL100_RACKNO

For specific volume requests, this value must be uppercase, alphanumeric,

national, or special characters.

PL100_POOL

For non-specific volume requests the pool prefix must be uppercase, one to

five alphanumeric, national, or special characters ending in *.

PL100_LOCATION

If the location type is set to store or library, DFSMSrmm uses the

EDGRMMxx LOCDEF definitions to validate the location. If the location name

is not valid, DFSMSrmm treats the location name as a loan location.

v If you request no data set recording for a volume, DFSMSrmm updates the

volume record during OPEN processing to identify that the volume does not

record all data sets.

v If you specify the DFSMSrmm EDGRMMxx OPTION DISPDDNAME operand,

DFSMSrmm uses the location, location type, and volume move confirmation

values from the PL100 parameter list to update the volume record location and

destination fields. If you request ″no confirm move″, DFSMSrmm sets the

location, otherwise DFSMSrmm sets the destination for the volume. If the

location type is a loan location, DFSMSrmm only records the loan location.

v If the EDGUX100 exit abnormally ends or if the exit detects an incorrect

parameter list and sets return code 16, DFSMSrmm initiates an SDUMP and

issues a WTOR EDG0303D which prompts the operator to reply RETRY,

CANCEL, CONTINUE, or DISABLE.

286 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

If the operator replies CANCEL, DFSMSrmm fails the current request, but

processes all other requests. If the operator replies DISABLE, DFSMSrmm

continues with the current request. All future requests are processed by

DFSMSrmm without use of the installation exit. The installation exit is disabled.

Tape processing continues. If the reply is CONTINUE, DFSMSrmm processes

the current request ignoring the failure of the installation exit. All future requests

are processed using the installation exit. If the reply is RETRY, DFSMSrmm

retries the current request.

Assigning Expiration Dates

When a JFCB address is supplied, the sample EDGUX100 installation exit checks

to see whether an expiration date, rather than a retention period, is specified by the

user. If an expiration date was specified:

v If the JCL expiration date is 98000, EDGUX100 clears the expiration date so that

DFSMSrmm uses the DFSMSrmm parmlib default retention period to calculate

the expiration date. This prevents DFSMSrmm from treating a special expiration

date as an actual expiration date. If the exit parameter list indicates that the exit

can request the volume is ignored, EDGUX100 requests that DFSMSrmm

ignores the volume.

v If the JCL expiration date is 99000, the sample EDGUX100 installation exit clears

the expiration date field, so that DFSMSrmm uses the DFSMSrmm parmlib

default retention period to calculate an expiration date. This prevents

DFSMSrmm from treating a special expiration date as an actual expiration date.

If the exit parameter list indicates that the exit can specify a vital record

specification management value, the sample EDGUX100 installation exit returns

a vital record specification management value of D99000.

v Before checking for any other expiration date values, EDGUX100 checks to see

if you want the expiration dates to be used as actual expiration dates or special

dates. EDGUX100 checks for the existence of a dummy DD statement with the

name NOTKEYD8.

//NOTKEYD8 DD DUMMY

Code a NOTKEYD8 dummy DD statement to indicate that the date is an actual

expiration date. When you do not code the NOTKEYD8 DD statement in the

current job step or do not code it as a dummy DD statement, the expiration date

is treated as a special date.

If you want to use a DD name other than NOTKEYD8, change the DD name that

is coded in the sample EDGUX100 installation exit. Ensure that you specify a DD

name padded to 8 characters with trailing blanks.

The sample EDGUX100 installation exit does not perform any further special

date processing. However, if you want to add checks for additional special dates

you can do so.

Chapter 13. Using DFSMSrmm Installation Exits 287

Supplying a Scratch Pool Name

When the JFCB address, ACERO address, or the WTO address is supplied, the

EDGUX100 installation exit can supply a scratch pool name under these conditions:

v If the supplied ACERO address is nonzero, the jobname and data set name are

taken from the ACERO.

v If the supplied JFCB address is non-zero, the job name and data set name are

extracted from system control blocks.

v If the supplied WTO address is non-zero, the job name and data set name are

extracted from the WTO message text.

To use the EDGUX100 installation exit for pool selection, enter the job names and

data set names into a table in the assembler source code as shown in Figure 101.

DFSMSrmm scans a scratch pool table for the extracted job name and data set

name to determine if this request requires a specific scratch pool. If a specific

scratch pool is required, the exit requests that DFSMSrmm use the pool selected by

the exit. If the cartridge loader is not to be used for the selected pool the exit

requests that DFSMSrmm prevent the cartridge loader being indexed.

Specify the entries in the table in the order that you want them to be matched by

the exit. The exit scans the table until it finds an entry where both the job name and

data set name masks match the current request. You can change the priority of

matching by changing the order of the table entries.

 Each table entry consists of:

jobname

An 8-byte field that can contain up to 8 alphanumeric or national characters

including % and *.

 The character % to ignore a positional character in the job name.

 The character * to ignore all remaining characters in the job name. A job

name of * means that the entry applies to all jobs.

Examples of job names in the table are: STSGWD*, STSG%%*, STSGDPW.

data set name

A forty-four byte field that can contain up to forty four characters, following z/OS

data set naming conventions, including % and *.

 The character % to ignore a positional character in the data set name.

POOLTAB DS 0F start of pool table

* jobname data set name

 DC CL8’* ’,CL44’BACKUP*’

 DC CL6’A02*’ pool name

 DC AL1(PL100_SET_ACLOFF) do not use loader

*

 DC CL8’STSGWD* ’,CL44’*’

 DC CL6’A*’ pool name

 DC AL1(0) use loader

*

 DC CL8’STSG%%* ’,CL44’STSG%%.BACKUP.*’

 DC CL6’12*’ pool name

 DC AL1(0) use loader

*

 DC CL8’STSGDPW ’,CL44’DAVE.POOL1.DATA’

 DC CL6’AB999*’ pool name

 DC AL1(PL100_SET_ACLOFF) do not use loader

*

 DC CL8’POOLEND’ end of pool table marker

Figure 101. Sample EDGUX100 Pool Selection Table

288 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

The character * to ignore all remaining characters in the data set name. A

data set name of * means that the entry applies to all data sets.

The use of the character* is not the same as in the generic data set names

supported by DFSMSrmm for vital records specifications and search data

set masks. The * works like the characters *.** might in a generic data set

name mask.

Examples of data sets in the table are: STSGWD*, STSG%%.BACKUP.*,

DAVE.POOL1.DATA.

pool name

A 6-byte field that can contain up to five alphanumeric characters ending in *. If

the pool name that you specify does not match the pool naming conventions,

DFSMSrmm ignores the exit selected pool and uses the DFSMSrmm selected

pool.

 If your exit selects a pool that does not match a VLPOOL prefix value, all

volumes that are mounted are rejected.

 Examples of pool names in the table are: A*, 12*, AB999*.

loader status

A 1-byte field that contains a flag indicating whether the tape drive cartridge

loader is to be disabled for the named pool.

 The sample EDGUX100 installation exit ORs this flag byte into the EDGUX100

parameter list PL100_FUNCTION field.

 The valid values are either X’00’ or X’01’. You can set the correct value using

one of these assembler statements:

 DC AL1(0)

 DC AL1(PL100_SET_ACLOFF)

You can use EDGUX100 exit selected pools for your non-system-managed volumes

including volumes managed using BTLS. See “Using the EDGUX100 Installation

Exit from Pre-ACS Processing” on page 277 for information about using the

EDGUX100 exit to manage non-system-managed volumes using pre-ACS

processing.

For system-managed volumes, use ACS routines to assign SMS constructs to new

tape data sets at allocation time. DFSMSrmm does not perform pool validation for

system managed volumes. As a result, if the exit selects a pool for a

system-managed allocation, DFSMSrmm ignores the selection during volume

validation.

If the operator mounts a volume that is not from the pool the exit specifies, the

volume is rejected, and DFSMSrmm issues message EDG4021I.

EDG4021I VOLUME volser REJECTED. IT IS NOT IN AN ACCEPTABLE SCRATCH POOL

Using the System Name to Select a Scratch Pool

You can specify multiple scratch pool selection tables in your EDGUX100

installation exit. This allows you to select scratch pools based on the name of the

running system.

The sample installation exit uses the SYSNAME value from the IEASYSxx parmlib

member to determine the system name. This is the CVTSNAME field.

Figure 102 on page 290 is an example showing how you can add system names to

the existing system name table in the EDGUX100 installation exit. You can add

Chapter 13. Using DFSMSrmm Installation Exits 289

system names in any order. If you want to remove a system from the list, delete the

entry or set the system name to blanks.

 You can define a pool selection table for each system name that contains data set

names, pool names, and automatic cartridge loader controls as shown in Figure 101

on page 288. If there is no match found in the system table for the current system,

DFSMSrmm uses the default selection pool POOLTAB. Figure 103 shows a

selection table for a specific system.

Using Storage Group for Manual Tape Library Pooling

The sample EDGUX100 exit is written to prevent the use of storage groups for

manual tape library scratch pools. Use the EDGUX100 exit as-is for manual tape

library volumes to be pooled based on DFSMSrmm system-based pooling or on

exit-selected pooling.

To use the storage group assigned at allocation time for pooling decisions, modify

the sample EDGUX100 exit. Remove the code that overrides using storage group

for pooling decisions. Do not set the PL100_SET_IGNORE_SGNAME or

PL100_SET_POOL parameters when the request is for a tape drive in a manual

tape library.

Setting Up the EDGUX100 Routine Environment

To reactivate the exit, stop and restart the DFSMSrmm procedure once you have

corrected any error in your exit or use the F DFRMM,REFRESH EXITS operator

command. See z/OS DFSMSrmm Guide and Reference for information.

SYSTAB DS 0F start of SYSTEM table

SYSCOUNT DC A(SYSTABL/SYSTENTL) count of entries

SYSENT1 DS 0F DO NOT CHANGE THIS LINE

 DC CL8’ ’,A(PTBLSYS1) Add the names of the

 DC CL8’ ’,A(PTBLSYS2) systems you want to

 DC CL8’W98MVS1 ’,A(PTBLSYS3) use into the

 DC CL8’ ’,A(PTBLSYS4) prepared entries on

 DC CL8’ ’,A(PTBLSYS5) the left. There is no

 DC CL8’SYSA ’,A(PTBLSYS6) need to change table

 DC CL8’ ’,A(PTBLSYS7) names on the right.

 DC CL8’ ’,A(PTBLSYS8)

* To add more system names to the table, just repeat the last

* table entry, specify a new system name, and the name of

* new pool table. For example:

* DC CL8’ANOTHER ’,A(PTBLSYS9)

* Then build the new table by copying how one of the existing

* PTBLSYSx tables are defined.

SYSEND DS 0F end of table

SYSTABL EQU SYSEND-SYSENT1 length of table

Figure 102. Sample EDGUX100 Installation Exit System Name Table

* POOL TABLE For 3rd System

PTBLSYS3 DS 0F start of pool table

* jobname data set name

 DC CL8’WOODMW* ’,CL44’WOODMW.SYS3.*’

 DC CL6’S03*’ pool name

 DC AL1(PL100_SET_ACLOFF) bypass acl load flag

*

 DC CL8’POOLEND’ end of pool table marker

Figure 103. Pool Selection Table for System 3

290 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Installing the EDGUX100 Routine

Perform these actions to update or replace the exit:

1. Build and install an SMP/E USERMOD to apply the updated source code for the

EDGUX100 installation exit. Include the necessary JCLIN statements to get the

EDGUX100 load module added to the LINKLIB target library.

You can apply the exit using an SMP/E USERMOD as shown in Figure 104.

Modify the FMID and PRE to reflect the release you are running.

a. Allocate a user SAMPLIB data set. In Figure 104 the user SAMPLIB data

set is defined as MY.RMM.SRCLIB and allocated to DD card SRCLIB.

b. Copy the EDGUX100 source from SAMPLIB to the user SAMPLIB and

modify, as needed, for your installation.

c. SMP/E RECEIVE the USERMOD.

d. SMP/E APPLY the USERMOD. Ensure that a DD card exists for the user

SAMPLIB in the APPLY job, or as a DDDEF to SMP/E in the target zone.

After performing these steps, the modified version of the EDGUX100 exit

resides in both the user SAMPLIB and SYS1.SAMPLIB. IBM’s original copy is

only in the distribution libraries at this point. If you accept the USERMOD, only

the modified version of the exit exists. The SMP/E target zone reflects RMID

indicators of VMRMM01 for all of these records:

SAMP EDGUX100 RMID=VMRMM01 SYSLIB=SAMPLIB

SRC EDGUX100 RMID=VMRMM01 SYSLIB=SAMPLIB

MOD EDGUX100 RMID=VMRMM01 LMOD=EDGUX100

LMOD EDGUX100 SYSLIB=LINKLIB

The RMID of VMRMM01 for the SAMP record prevents IBM service from being

installed. This results in an ID search and notification to you that IBM is the

servicing exit.

2. Copy the new exit load module into the LNKLST library.

3. Refresh LLA.

4. Refresh the exit by issuing:

F DFRMM,REFRESH EXITS

//RMMSTUFF JOB ,’SLIP IT IN’,MSGCLASS=H,MSGLEVEL=(1,1)

//STEP1 EXEC SMPEMVS,REGION=6120K

//SYSIN DD *

 SET BDY(GLOBAL) .

 RECEIVE .

/*

//SMPPTFIN DD DATA,DLM=##

++USERMOD (VMRMM01) REWORK(1997082) .

++VER (Z038) FMID(HDZ11D0) .

++JCLIN .

//EDGUX100 EXEC PGM=IEWL,PARM=’LET,NCAL,RENT,REUS,REFR,LIST,XREF’

//SYSLMOD DD DISP=SHR,DSN=SYS1.LINKLIB

//SRCLIB DD DISP=SHR,DSN=MY.RMM.SRCLIB

//AEDGMOD1 DD DISP=SHR,DSN=SYS1.AEDGMOD1

//SYSPRINT DD SYSOUT=*

//SYSLIN DD *

 INCLUDE AEDGMOD1(EDGUX100)

 ENTRY EDGUX100

 NAME EDGUX100(R)

++SRC(EDGUX100) TXLIB(SRCLIB) DISTLIB(ASAMPLIB) .

++SAMP(EDGUX100) TXLIB(SRCLIB) DISTLIB(ASAMPLIB) .

/*

Figure 104. Building an SMP/E USERMOD to Apply the Updated EDGUX100 Exit

Chapter 13. Using DFSMSrmm Installation Exits 291

If DFSMSrmm is running in a shared environment, you must repeat this step on

each system.

The EDGUX100 installation exit is loaded by DFSMSrmm each time DFSMSrmm is

started and stays loaded until DFSMSrmm is stopped. It can be refreshed at any

time by using the operator z/OS MODIFY command to refresh exits:

F DFRMM,REFRESH EXITS

Removing the EDGUX100 Routine

To remove EDGUX100 from the system, you can delete the EDGUX100 load

module from the LNKLIST libraries, and refresh LLA before issuing the operator

MODIFY command.

If DFSMSrmm is running in a shared environment, you must repeat this step on

each system.

Writing the EDGUX100 Routine

EDGUX100 runs in SYSTEM KEY 0 or 5 AMODE(31) RMODE(ANY) in the user’s

address space. KEY 0 is used when a WTO address or an ACERO address is

provided, and KEY 5 is used when a JFCB address is provided. It is loaded using

the z/OS LOAD macro, and can be contained in any APF authorized LNKLST

library.

You can write your installation exit so that it can issue commands or call other

programs to update external inventories. You can also code the exit to issue a

WTOR if needed. Do not issue messages that are contained in the MNTMSG table,

or the EDGUX100 installation exit could be called recursively.

Registers on Entry to the EDGUX100 Exit Routine

Register Contents

0 Not applicable

1 Address of a parameter list mapped by the macro EDGPL100

2-12 Not applicable

13 Address of register save area

14 Caller’s return address

15 Address of EDGUX100 entry point

EDGUX100 Parameter List

All communication is done using the parameter list. The parameter list is mapped

by the macro EDGPL100 as shown in “Installation Exit Mapping Macro: EDGPL100”

on page 487.

The parameter list input values are:

PL100_VALID

This field defines the functions you can request during this call of the installation

exit.

PL100_CAN_IGNORE

If set to B'1' you can request that DFSMSrmm ignores the volume.

292 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

PL100_CAN_VRS

If set to B'1' you can provide a vital record specification management value

for DFSMSrmm to use for this data set.

PL100_CAN_RACKNO

If set to B'1' you can provide an external volume serial number or rack

number for DFSMSrmm to use for this volume in any WTO messages

DFSMSrmm updates.

PL100_CAN_IGNORE_FILE2_TON

If set to B'1' you can request that DFSMSrmm record the data set details

only for the first file on a tape volume.

PL100_CAN_POOL

If set to B'1' you can provide a specific pool name for DFSMSrmm to use

for this volume in any WTO messages DFSMSrmm updates. Also the pool

name is used to validate that a correct scratch volume is mounted for a

request.

PL100_ITS_CLOSE

If set to B'1', this indicates that DFSMSrmm called EDGUX100 because a

tape data set was closed or an end-of-volume condition occurred.

PL100_REQ_VOLSER

This field contains one of: PRIVAT, SCRTCH or a volume serial number. For a

nonspecific request PL100_REQ_VOLSER can contain either PRIVAT or

SCRTCH. For a specific request PL100_REQ_VOLSER contains the actual

volume serial number requested.

PL100_MOUNT_VOLSER

This field contains the volume serial number of the volume mounted to satisfy

this request. This volume serial number is only available when a data set on the

volume is opened or closed.

PL100_WTOPTR

This field contains the address of the WTO message that has been intercepted

by MNTMSG processing. The address is zero during OPEN processing. See

the PL100_WTOPTR field for information on the operator message being

updated.

PL100_JFCBPTR

This field can contain the address of the JFCB copy or is set to zero. You can

use it to locate the expiration date field JFCBXPDT. You can determine if the

user specified an expiration date rather than a retention period by checking the

JFCB for the JFCBEXP flag. If the exit is called during OPEN processing, the

JFCB address is provided. During MNTMSG processing the JFCB address is

set to zero and no JFCB is available.

PL100_POOL

When PL100_JFCBPTR is zero and PL100_CAN_POOL is set to B'1', this field

contains the scratch pool that DFSMSrmm has already determined should be

used for this request. It is determined using the VLPOOL definitions that you

specify in the DFSMSrmm parmlib member. If you do not provide a replacement

value and set the PL100_SET_POOL flag, this is the pool that DFSMSrmm

uses.

PL100_LABINFO

When PL100_ITS_CLOSE is set to B'1', this field points to a data area mapped

by PL100_LABDS. The data area contains information about the volume and

file being processed.

Chapter 13. Using DFSMSrmm Installation Exits 293

PL100_ACCODE

This field contains either the value of the JCL specified ACCODE parameter or

blanks if the ACCODE is specified in the reduced form ’ACCODE=’ or if the JCL

does not contain ACCODE. The field can be 1 to eight characters as described

in z/OS MVS JCL Reference. The first character is the ISO/ANSI accessibility

code. The remaining characters can be any characters you choose. If the

ACCODE value specifies a special value, then your EDGUX100 exit can

process the ACCODE value rather than the special date in the EXPDT keyword

if it exists.

PL100_INFO

This field defines additional information.

PL100_INFO_IGNORE

If set to B'1' The volume is to be ignored by the EDGUX100 installation exit.

PL100_INFO_NOTRMM

If set to B'1', the volume is not defined to DFSMSrmm. This is only set at

CLOSE or EOV time.

PL100_INFO_DISPDD

If set to B'1', a disposition file was found and has been processed for this

DD name.

PL100_INFO_DISPLAB

If set to B'1', the prepared label passed to the exit was requested by an

entry in a disposition control file.

PL100_INFO_CMOVE

If set to B'1', a confirm must be performed and the location requested is set

as the volume’s destination, not the location.

PL100_INFO_USERDATA

If set to B'1', userdata was provided from the disposition file. The user data

has been included in the default label created by DFSMSrmm processing.

PL100_INFO_MTL

If set to B'1', indicates that the allocated tape drive is a manual tape library

tape drive and a storage group has been set by SMS ACS processing.

DFSMSrmm uses the storage group name as the specific scratch pool

unless you select a specific scratch pool or request that DFSMSrmm ignore

the storage group name.

PL100_ACEROPTR

This field contains the address of the ACERO system control block during

pre-ACS processing.

PL100_LAB_USERDATA

This field contains the user data from the disposition processing file for use in

sticky labels.

PL100_LABPTR

This field contains the address of the sticky label prepared by DFSMSrmm.

PL100_LOCATION

This field contains the name of the location specified in the disposition file.

PL100_LOCTYPE

This field contains the type of the location.

The parameter list can be updated as follows:

294 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

PL100_FUNCTION

Use this field to request functions of DFSMSrmm

PL100_SET_IGNORE

Set the PL100_SET_IGNORE bit to indicate that you want this volume

ignored until the current file reaches end-of-volume or is closed.

PL100_SET_IGNORE_MOUNTED

Set the PL100_SET_IGNORE_MOUNTED bit to indicate that you want this

volume ignored based on the mounted volser until the current file reaches

end-of-volume or when the current volume is closed.

PL100_SET_IGNORE_REQUESTED

Set the PL100_SET_IGNORE_REQUESTED bit to indicate that you want

this volume ignored, based on the requested volser until the current file

reaches end-of-volume or when the current volume is closed.

PL100_SET_IGNORE_FILE2_TON

Set the PL100_SET_IGNORE_FILE2_TON bit to indicate that DFSMSrmm

is only to record data set details for the first file on the tape volume.

PL100_SET_POOL

Set the PL100_SET_POOL bit to indicate that you want to use a specific

pool for the current non-specific volume request. When you set

PL100_SET_POOL and provide a pool prefix for a tape drive in a manual

tape library, DFSMSrmm does not use the storage group assigned by SMS

ACS processing.

PL100_SET_ACLOFF

Set the PL100_SET_ACLOFF bit to indicate that you want DFSMSrmm to

disable the cartridge loader for this request.

PL100_SET_NOLABEL

v Set the PL100_SET_NOLABEL bit to B'1' to suppress a label requested

by a disposition control file. See PL100_INFO_DISPLAB.

v Set the PL100_SET_NOLABEL bit to B'0' when DFSMSrmm has created

a default label other than through a disposition control file, and you would

like the label to be produced.

 The other functions you can request are determined by the presence of data in

the output fields.

PL100_JFCBPTR

If a JFCB address was provided as input, set the JFCB expiration date field to

the new expiration date value you want DFSMSrmm to use for this data set.

You can update the JFCB expiration date even if you do not provide a vital

record specification management value.

 Recommendation: Zero the expiration date field in the JFCB copy to allow

DFSMSrmm to calculate a default expiration date.

PL100_VRS

Set the DFSMSrmm vital record specification management value you have

selected. The values you use in this field should correspond to the RMM

ADDVRS DSNAME subcommands you have used. The vital record specification

management value you specify is only used during inventory management vital

records processing once it has been established that use of the data set name

has not produced a match.

Chapter 13. Using DFSMSrmm Installation Exits 295

Only update this field if the PL100_CAN_VRS flag is set, as it is only when this

flag is set that DFSMSrmm makes use of the value you specify. DFSMSrmm

records the vital record specification management value you specify in the

control data set when:

v A new data set is created

v An existing data set is rewritten with DISP=OLD

v A data set not yet recorded by DFSMSrmm is read

 When an existing data set is extended, and the data set already has a vital

record specification management value, DFSMSrmm ignores the new value you

specify and propagates the existing vital record specification management

value.

 In all other cases, the vital record specification management value you specify

is not used by DFSMSrmm.

PL100_RACKNO

You can provide a 6 character value for DFSMSrmm to use as the rack number

or an external volume serial number for adding to the mount messages that

DFSMSrmm intercepts and updates. Provide this value when requesting that

DFSMSrmm ignores the volume. This helps your operators retrieve the correct

volume.

 Only update this field if the PL100_CAN_RACKNO flag is set, as it is only when

this flag is set that DFSMSrmm makes use of the value you specify.

PL100_POOL

You can use this field to provide a specific pool name to be used with a

non-specific output request.

 Provide a 6 character pool identifier for DFSMSrmm to use for adding to the

mount messages and tape drive display requests that DFSMSrmm intercepts

and updates and for use during volume validation. Provide this value when

requesting that DFSMSrmm use a specific scratch pool. This helps your

operators retrieve the correct volume.

 Only update this field if the PL100_CAN_POOL flag is set. Also set

PL100_SET_POOL to B'1', as it is only when this flag is set that DFSMSrmm

makes use of the value you specify.

 If your exit selects a pool that does not meet the pool naming conventions,

DFSMSrmm uses the DFSMSrmm selected pool, and ignores the setting of the

PL100_SET_ACLOFF flag.

 If your exit selects a pool that does not match a VLPOOL prefix value, all

volumes that are mounted are rejected.

PL100_LOCATION

The value is set by DFSMSrmm depending on the keyword LOC=, or OUT=

used in the disposition control file. You can change the value during EDGUX100

processing and DFSMSrmm validates it on return from the exit.

PL100_FUNCTION2

You can use this field to change some of the processing decisions that were

made during disposition control processing. DFSMSrmm uses the

PL100_LOCATION value to set the destination location or the current location.

When DFSMSrmm sets the destination location, you must confirm the volume

move later using the RMM CHANGEVOLUME subcommand. See Chapter 21,

“Setting Up DFSMSrmm Disposition Processing,” on page 461 for more

information about disposition control.

296 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

PL100_SET_CMOVE

Set PL100_SET_CMOVE to B'1' when you want to confirm the volume

move at a later time. DFSMSrmm uses the PL100_LOCATION value to set

the volume destination and not the current location. If the destination is

bin-managed, DFSMSrmm sets the required location. DFSMSrmm assigns

a bin number to the volume during storage location management

processing.

PL100_SET_NOCMOVE

Set PL100_SET_NOCMOVE to B'1' and DFSMSrmm confirms the volume

move immediately. DFSMSrmm uses the PL100_LOCATION value to set

the current location when it does not need to assign a bin number for the

volume.

PL100_SET_IGNORE_SGNAME

Set this field to B'1' when you want to use DFSMSrmm system-based

pooling instead of the storage group name set by SMS ACS processing

when the tape drive is in a manual tape library.

Registers on Return from the EDGUX100 Exit Routine

Register Contents

0 Not applicable

1-14 Restored to contents at entry

15 Return code

EDGUX100 Installation Exit Return Codes

Table 44 shows the contents of register 15 upon return from the exit.

 Table 44. EDGUX100 Installation Exit Return Codes

Return

Code Description

0 Processing was successful. The parameter list might have been updated by the

exit.

16 The exit determined that the parameter list passed to it did not conform to the

correct specifications.

Using the DFSMSrmm EDGUX200 Installation Exit

Use the DFSMSrmm EDGUX200 installation exit to perform these tasks:

v Return a volume to scratch status in an external inventory

v Prevent a volume from returning to scratch status

v Request that DFSMSrmm ignores data set information recorded for a volume

EDGUX200 Exit Routine Processing

The DFSMSrmm sample EDGUX200 installation exit performs these functions:

v Validates the parameter list

v Returns immediately for a system-managed volume

The EDGUX200 installation exit is called during inventory management expiration

processing in the DFSMSrmm started procedure address space. It is called by

DFSMSrmm each time a volume is identified for the return to scratch action. The

volume has not yet been returned to scratch in either the TCDB or the DFSMSrmm

control data set. If the exit requests that the volume is not returned to scratch

Chapter 13. Using DFSMSrmm Installation Exits 297

status, DFSMSrmm leaves the volume in pending release status. If the exit

requests that DFSMSrmm ignores the data set name information, all data set

information for the volume is removed from the DFSMSrmm control data set and

the volume is returned to scratch status.

The EDGUX200 installation exit is not called for volumes that are under manual

scratch control until the scratch release action has been confirmed because of

VLPOOL AUTOSCRATCH(NO). Use the EDGUX200 installation exit to implement

control of return to scratch without using the VLPOOL AUTOSCRATCH(NO) feature.

For example, you can use EDGUX200 to check if the scratch action has been

confirmed before you allow EXPROC to scratch the volume. When

MVFLGE.MVRETSCR is set, the scratch action has not been confirmed. If you want

to manually cleanup volumes on another system, use this flag and set the

PL200_SET_NOSCRATCH to prevent return to scratch. When

MVFLGE.MVRETSCR is off, manual actions are performed and confirmed, and you

can allow the volume to return to scratch.

If the exit abnormally ends or if the exit detects an incorrect parameter list and sets

return code 16, DFSMSrmm initiates an SDUMP and issues a WTOR EDG0303D

which prompts the operator to reply RETRY, CANCEL, CONTINUE, or DISABLE. If

the operator replies CANCEL, the volume is not returned to scratch. If the operator

replies CONTINUE or DISABLE, the volume is returned to scratch and any

functions that were set in the parameter list by the exit are ignored.

Setting Up the EDGUX200 Routine Environment

To reactivate the exit you can either stop and restart the DFSMSrmm procedure

once you have corrected any error in your exit, or you can use the F DFRMM,REFRESH

EXITS operator command. See z/OS DFSMSrmm Guide and Reference for

information.

Installing the EDGUX200 Exit Routine

Perform these actions to update or replace the exit:

1. Build and install an SMP/E USERMOD to apply the updated source code for the

EDGUX200 installation exit.

Include the necessary JCLIN statements to get the EDGUX200 load module

added to the LINKLIB target library.

You can apply the exit using an SMP/E USERMOD as shown in Figure 105 on

page 299. Modify the FMID and PRE to reflect the release you are running.

a. Allocate a user SAMPLIB data set. In Figure 105 on page 299 the user

SAMPLIB data set is defined as MY.RMM.SRCLIB and allocated to DD card

SRCLIB.

b. Copy the shipped EDGUX200 source from SAMPLIB to the user SAMPLIB

and modify as needed for your installation.

c. SMP/E RECEIVE the USERMOD.

d. SMP/E APPLY the USERMOD. Ensure that a DD card exists for the user

SAMPLIB in the APPLY job or as a DDDEF to SMP/E in the target zone.

After performing these steps, the modified version of the EDGUX200 exit

resides in both the user SAMPLIB and SYS1.SAMPLIB. IBM’s original copy is

only in the distribution libraries at this point. If you accept the USERMOD, only

the modified version of the exit exists. The SMP/E target zone reflects RMID

indicators of VMRMM02 for all of these records:

298 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

SAMP EDGUX200 RMID=VMRMM02 SYSLIB=SAMPLIB

SRC EDGUX200 RMID=VMRMM02 SYSLIB=SAMPLIB

MOD EDGUX200 RMID=VMRMM02 LMOD=EDGUX200

LMOD EDGUX200 SYSLIB=LINKLIB

The RMID of VMRMM02 for the SAMP record prevents IBM service from being

installed. This results in an ID search and notification to you that IBM is the

servicing exit.

2. Copy the new exit load module into the LNKLST library.

3. Refresh LLA.

4. Refresh the exit by issuing:

F DFRMM,REFRESH EXITS

If DFSMSrmm is running in a shared environment, you must repeat this step on

each system.

The EDGUX200 installation exit is loaded by DFSMSrmm each time DFSMSrmm is

started and stays loaded until DFSMSrmm is stopped. It can be refreshed at any

time by using the operator MODIFY command to refresh exits:

F DFRMM,REFRESH EXITS

Removing the EDGUX200 Routine

To remove EDGUX200 from the system, you can delete the EDGUX200 load

module from the LNKLIST libraries, and refresh LLA before you issue the operator

MODIFY command.

If DFSMSrmm is running in a shared environment, you must repeat this step on

each system.

Writing the EDGUX200 Exit Routine

EDGUX200 runs in PROBLEM KEY, SUPERVISOR STATE AMODE(31)

RMODE(ANY) in the address space of the DFSMSrmm started procedure. It is

loaded using the z/OS LOAD macro, and can be contained in any APF authorized

LNKLST library.

//RMMSTUFF JOB ,’SLIP IT IN’,MSGCLASS=H,MSGLEVEL=(1,1)

//STEP1 EXEC SMPEMVS,REGION=6120K

//SYSIN DD *

 SET BDY(GLOBAL) .

 RECEIVE .

/*

//SMPPTFIN DD DATA,DLM=##

++USERMOD (VMRMM02) REWORK(1997082) .

++VER (Z038) FMID(HDZ11D0) .

++JCLIN .

//EDGUX200 EXEC PGM=IEWL,PARM=’LET,NCAL,RENT,REUS,REFR,LIST,XREF’

//SYSLMOD DD DISP=SHR,DSN=SYS1.LINKLIB

//SRCLIB DD DISP=SHR,DSN=MY.RMM.SRCLIB

//AEDGMOD1 DD DISP=SHR,DSN=SYS1.AEDGMOD1

//SYSPRINT DD SYSOUT=*

//SYSLIN DD *

 INCLUDE AEDGMOD1(EDGUX200)

 ENTRY EDGUX200

 NAME EDGUX200(R)

++SRC(EDGUX200) TXLIB(SRCLIB) DISTLIB(ASAMPLIB) .

++SAMP(EDGUX200) TXLIB(SRCLIB) DISTLIB(ASAMPLIB) .

/*

Figure 105. Building an SMP/E USERMOD to Apply the Updated EDGUX200 Exit

Chapter 13. Using DFSMSrmm Installation Exits 299

You can write your installation exit to issue commands or call other programs to get

external inventories updated.

Registers on Entry to the EDGUX200 Exit Routine

Register Contents

0 Not applicable

1 Address of a parameter list mapped by the macro EDGPL200

2-12 Not applicable

13 Address of register save area

14 The caller’s return address

15 Address of EDGUX200 entry point

EDGUX200 Parameter List

All communication is done using the parameter lists fields. The parameter list is

mapped by the macro EDGPL200 as shown in “Installation Exit Mapping Macro:

EDGPL200” on page 492.

The parameter list input values are:

PL200_VALID

This field defines which functions you can request during this call of the

installation exit.

PL200_CAN_SCRTCH

If set to B'1' DFSMSrmm is returning the volume to scratch and you can

request DFSMSrmm not to do this or can request DFSMSrmm to ignore

data set name information for the volume.

PL200_VOLSER

This field contains the volume serial number of the volume being returned to

scratch.

PL200_RACK_NUMBER

This field contains the rack number of the volume being returned to scratch.

PL200_MEDIA_NAME

This field contains the media name used for the volume being returned to

scratch.

PL200_LOCATION

This field contains the location name used for the volume being returned to

scratch. It can be any value that is valid for volumes in the installation. It can be

any valid location name, including storage locations defined as Home locations,

but not a regular storage location.

PL200_DSNAME

This field contains the name of the first data set on the volume. There might be

other data sets on the volume, but this information is not available to the exit.

PL200_VOLUME_FLAGS

This flag byte is used to give you information about the volume.

PL200_SMS_VOL

If set to B'1' this volume is a system-managed volume. For system-managed

volumes DFSMSrmm dynamically updates the TCDB so you do not need to.

300 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

PL200_HOME_LOCDEF

This flag byte is used to give you information that the volume is in the storage

location defined as home.

PL200_MANUAL_SCRATCH

This flag byte is used to give you information that the volume is in VLPOOL

with AUTOSCRATCH(NO).

PL200_EDGSVREC_ADDR

This flag byte is used to give you information about the address of the volume.

PL200_CATSYSID

This flag byte is used to give you information about the CATSYSID list for the

running system.

PL200_DESCRIPTION

This field contains descriptive information about the volume that is returning to

scratch status.

PL200_OWNER

This field contains the owner ID of the volume owner.

The parameter list can be updated as follows:

PL200_FUNCTION

This field describes functions that can be updated.

PL200_SET_NOSCRTCH

Set the PL200_SET_NOSCRTCH bit if you do not want DFSMSrmm to

return the volume to scratch status at this time. You can control return to

scratch processing each time inventory management expiration processing

is run.

PL200_SET_IGNORE_DSN

Set the PL200_SET_IGNORE_DSN bit if you do not want DFSMSrmm to

use the data set information for this volume. Setting this flag allows you to

control the validation that DFSMSrmm performs at OPEN time. If

DFSMSrmm cannot use the data set name information it cannot ensure that

the volume has not changed since it was last used. DFSMSrmm will still

use the internal volume label for validation.

Registers on Return from the EDGUX200 Exit Routine

Register Contents

0 Not applicable

1-14 Restored to contents at entry

15 Return code

EDGUX200 Installation Exit Return Codes

Table 45 shows the contents of register 15 upon return from the exit.

 Table 45. EDGUX200 Installation Exit Return Codes

Return

Code Description

0 Processing was successful. The parameter list might have been updated by the

exit.

16 The exit determined that the parameter list passed to it did not conform to the

correct specifications.

Chapter 13. Using DFSMSrmm Installation Exits 301

302 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 14. Running DFSMSrmm with DFSMShsm

DFSMSrmm can provide enhanced management functions for the tape volumes

that DFSMShsm uses for each of its tape functions. The way the two products work

together depends on how you are using each of them in your installation. Run

DFSMSrmm with DFSMShsm to enhance the management of the volumes

DFSMShsm uses. For example, DFSMSrmm can manage the movement of tapes

that must be sent out of the library for disaster recovery. Using DFSMSrmm and

DFSMShsm together, you can use the scratch tape pool rather than a DFSMShsm

tape pool.

DFSMSrmm provides the EDGTVEXT, and EDGDFHSM programming interfaces

that can be used by products like DFSMShsm, OAM, and Tivoli Storage Manager.

Use these programming interfaces for DFSMSrmm tape management so that you

can maintain correct volume status. DFSMSrmm treats DFSMShsm like any other

tape volume user and retains DFSMShsm volumes based on vital record

specifications and retention period. DFSMShsm automatically calls EDGTVEXT so

you do not need to perform any special set up for DFSMShsm to communicate with

DFSMSrmm. You can use the TVEXTPURGE parmlib option in the DFSMSrmm

EDGRMMxx parmlib member to control the action DFSMSrmm takes when

DFSMShsm calls EDGTVEXT. A benefit of this interaction is that DFSMSrmm can

prevent DFSMShsm from overwriting its own control data set backup, automatic

dump, ABARS, and copies of backup or migration tapes. Although DFSMShsm

checks its own migration and its own backup tapes, DFSMSrmm checks them as

well. For more information on these programming interfaces, see “Managing

DFSMShsm Tapes: EDGDFHSM” on page 247 and “Releasing Tapes: EDGTVEXT”

on page 245.

Defining DFSMShsm to RACF

To run DFSMShsm with DFSMSrmm, define DFSMShsm to RACF. Define the

DFSMShsm user ID with the STARTED class. See z/OS DFSMShsm

Implementation and Customization Guide.

DFSMShsm issues the ARC0516I error message if DFSMShsm cannot successfully

load the EDGTVEXT exit or if an ABEND occurs. The error message will not scroll

off the screen until the operator responds to the message. If an ABEND occurs, the

EDGTVEXT exit becomes disabled so that you can correct the problem. Issue the

RELEASE RMM command to reactivate the DFSMShsm invocation of EDGTVEXT.

Authorizing DFSMShsm to DFSMSrmm Resources

Before you can use DFSMSrmm with DFSMShsm, you are required to authorize

DFSMShsm to STGADMIN.EDG.MASTER, STGADMIN.EDG.OWNER.user, and

STGADMIN.EDG.RELEASE.

If you have multiple DFSMShsm USER IDs, for example in a multi-system or

multi-host environment, and any DFSMShsm ID can create tapes or return tapes to

scratch status or return tapes to the DFSMShsm tape pool, you must authorize

each DFSMShsm USER ID. Define STGADMIN.EDG.OWNER.hsmid for each

DFSMShsm USER ID and give the other DFSMShsm USER IDs UPDATE access

to it.

© Copyright IBM Corp. 1992, 2007 303

See Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on page

213 for information about authorizing resources.

Table 46 shows the authorization required to use scratch tapes with DFSMShsm.

 Table 46. Authorization Required to Use Scratch Tapes with DFSMShsm

Resource Access Required

STGADMIN.EDG.RELEASE READ

STGADMIN.EDG.MASTER READ

STGADMIN.EDG.OWNER.hsmid UPDATE

Table 47 shows the authorization required to use DFSMShsm with a

DFSMShsm-managed scratch tape pool.

 Table 47. Authorization Required to Use DFSMShsm with a DFSMShsm Scratch Pool

Resource Access Required

STGADMIN.EDG.MASTER UPDATE

STGADMIN.EDG.OWNER.hsmid UPDATE

Authorizing ABARS to DFSMSrmm Resources

To use DFSMSrmm with DFSMShsm ABARS, you must assign ABARS IDs the

correct levels of authorization to STGADMIN.EDG.MASTER,

STGADMIN.EDG.OWNER.user, and STGADMIN.EDG.RELEASE.

If you have multiple ABARS USER IDs, for example in a multi-system environment,

and any ABARS ID can return tapes to scratch status, you must authorize each

ABARS USER ID. Define STGADMIN.EDG.OWNER.abarsid for each ABARS

USER ID and give the other ABARS USER IDs UPDATE access to it. This allows

one ABARS ID to release the tapes initially obtained from scratch by the other

ABARS ID.

See Chapter 11, “Authorizing DFSMSrmm Users and Ensuring Security,” on page

213 for information about authorizing resources.

Table 48 shows the authorization required to use DFSMSrmm with ABARS.

 Table 48. Authorization Required to Use DFSMSrmm with ABARS

Resource Access Required

STGADMIN.EDG.RELEASE READ

STGADMIN.EDG.MASTER READ

STGADMIN.EDG.OWNER.abarsid UPDATE

Setting DFSMSrmm Options When using DFSMShsm

You use the DFSMSrmm parmlib EDGRMMxx to specify the installation options for

DFSMSrmm as described in “Defining System Options: OPTION” on page 175. If

you are using expiration dates to manage tapes, you should consider the values

you specify for the parmlib OPTION command MAXRETPD operand and the

VLPOOL command EXPDTCHECK operand.

304 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v The MAXRETPD operand specifies the maximum retention period that a user

can request for data sets on volumes and is described in “Defining System

Options: OPTION” on page 175.

v The TVEXTPURGE operand specifies how you want to handle the release of

DFSMShsm tape volumes and is described in “Defining System Options:

OPTION” on page 175.

v The VLPOOL command EXPDTCHECK operand described in “Defining Pools:

VLPOOL” on page 205 tells DFSMSrmm how to manage a volume based on the

expiration date field in the volume label. See “A Pooling Example” on page 107

for information about setting up pools.

When DFSMShsm sets 99365 as the expiration date to manage its tapes, 99365

means permanent retention or to never expire. If you choose to use DFSMShsm

expiration date protected tape volumes, DFSMShsm sets the date 99365 to prevent

DFSMSrmm from considering the volumes for release at any time. You must specify

the MAXRETPD(NOLIMIT) operand to ensure that DFSMSrmm honors the 99365

date.

You also use the DFSMSrmm parmlib MAXRETPD operand value to reduce the

expiration date for all volumes including DFSMShsm volumes. If you want to reduce

the 99365 permanent retention expiration date, specify the MAXRETPD with a

value between 0 and 9999 days.

Recommendation: Use DFSMSrmm vital record specifications instead of using the

99365 permanent retention date to retain DFSMShsm volumes. See “Defining Vital

Record Specifications to Manage DFSMShsm Tapes” on page 307 for information

on setting up vital record specifications.

If you use expiration dates see “Retaining DFSMShsm Tapes using Expiration

Dates” on page 307 for details on how DFSMSrmm provides facilities to avoid

reinitializing tapes before reuse or having the operator reply to IEC507D messages.

Chapter 14. Running DFSMSrmm with DFSMShsm 305

Setting DFSMShsm Options When using DFSMSrmm

As DFSMShsm uses a tape volume, DFSMSrmm records information about data

sets and multivolume data sets at OPEN time. DFSMSrmm can use this information

to manage the volumes based on the DFSMSrmm policies you define.

DFSMShsm uses the DCB Open/EOV volume security and verification exit to

ensure that an acceptable volume is mounted for DFSMShsm’s use. DFSMShsm

uses this exit to reject unacceptable volumes. For example, DFSMShsm rejects

volumes already in use by DFSMShsm and volumes that are not authorized for use

by DFSMShsm. DFSMSrmm records information only for those volumes not

rejected by DFSMShsm.

DFSMSrmm provides facilities so that DFSMShsm can tell DFSMSrmm when it no

longer requires a tape volume or when a tape volume changes status. The benefit

is that DFSMShsm cannot mistakenly overwrite one of its own tape volumes if an

operator mounts a tape volume in response to a request for a non-specific tape

volume.

Setting DFSMShsm System Options

Example: The DFSMShsm system options that relate to using a tape management

system with global or private scratch pools are shown in this example:

SETSYS EXITON(ARCTVEXT)/EXITOFF(ARCTVEXT) -

 SELECTVOLUME -

 TAPEDELETION -

 TAPESECURITY -

 PARTIALTAPE

Setting DFSMShsm Dump Definitions

Example: The DFSMShsm dump definitions are shown in this example:

DEFINE DUMPCLASS(class -

 AUTOREUSE -

 TAPEEXPIRATIONDATE(date) -

 RETENTIONPERIOD(day))

DFSMSrmm Support for DFSMShsm Naming Conventions

DFSMSrmm supports all DFSMShsm options and any of the naming conventions

for DFSMShsm tape data sets except for password security on tape volumes. See

“Recommendations for Using DFSMSrmm and DFSMShsm” on page 319 for

information about the DFSMShsm options to use with DFSMSrmm.

DFSMSrmm Support for Retention and Pooling

With DFSMShsm, you can use DFSMSrmm system-based scratch tape pools,

exit-selected scratch pools, or DFSMShsm-managed tape pools.

Recommendation: Use a DFSMSrmm scratch pool. Use the DFSMShsm-managed

pool only when necessary. For example, use the DFSMShsm-managed pool if you

want to keep DFSMShsm-managed pools for Enhanced Capacity Cartridge System

Tapes, as DFSMShsm fully uses a tape’s capacity.

306 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

You must let DFSMShsm decide whether a tape volume contains valid data and

whether it should return to the DFSMSrmm scratch pool or DFSMShsm-managed

tape pool.

Define vital record specifications to retain tape volumes until DFSMShsm finishes

with them. DFSMSrmm uses the retention period determined by the vital record

specification to extend any expiration date or retention period previously set for the

volume. Additionally, you can use vital record specifications to identify volumes that

should be moved out of the installation media library for safe keeping, or moved

from an automated to manual library.For DFSMShsm-managed tapes, you do not

have to respond to the IEC507D messages that are issued for expiration data

protected tapes because DFSMShsm can override expiration for its own tapes. If

you choose to use DFSMShsm expiration date protected tape volumes, DFSMShsm

sets the expiration date 99365 which means permanent retention to prevent

DFSMSrmm from considering the volumes for release at any time.

Retaining DFSMShsm Tapes using Expiration Dates

Example: To use DFSMShsm expiration date protection, specify the DFSMShsm

startup option as shown in this example:

SETSYS TAPESECURITY(EXPIRATION)

If you use a system scratch tape pool for DFSMShsm tapes, you need a way to

manage tapes protected with expiration dates that are set by DFSMShsm. To help

you manage this situation, DFSMSrmm lets you automate the responses to

expiration date protection messages for scratch pool tape volumes. Use the parmlib

member VLPOOL command to setup this automation. Set the VLPOOL

EXPDTCHECK operand to EXPDTCHECK(N) as described in “Defining Pools:

VLPOOL” on page 205. DFSMSrmm automatically lets your users reuse the

volumes in the pool without operator intervention and without creating data integrity

exposures.

If you use a DFSMShsm-managed tape pool, DFSMShsm validates and overrides

expiration dates on its emptied, previously used tapes.

Defining Vital Record Specifications to Manage DFSMShsm Tapes

Movement and retention policies are defined using vital record specifications by

specifying data set names or volume serial numbers. To define vital record

specifications, use the RMM ADDVRS subcommand.See z/OS DFSMSrmm Guide

and Reference for information about the RMM ADDVRS subcommand and the

operands you can specify.

When specifying the RMM ADDVRS command operands, it might be helpful to think

about the operands in three categories:

v Operands to define retention policies including COUNT and CYCLES that are

used in these examples

v Operands to define movement policies including DELAY, LOCATION, and

STORENUMBER that are used in these examples

v Operands to manage the vital record specification itself including DELETEDATE

and OWNER which are defaults in the RMM ADDVRS subcommand

Chapter 14. Running DFSMSrmm with DFSMShsm 307

– DELETEDATE(1999/365) specifies the date when the vital record specification

no longer applies. The default value is 1999/365 which means the vital record

specification is permanent. It can only be manually deleted if it is no longer

appropriate.

– OWNER(owner) specifies the user ID that owns the vital record specification.

As shown in the examples that follow, you can specify data set name masks in vital

record specifications to manage migration, backup, dumps, TAPECOPY, DUPLEX

tape feature, tapes written by ABARS, ABARS accompany tapes, and control data

set version backups. You can tailor the examples to define policies for your

DFSMShsm tapes. As you gain more experience defining vital record specifications,

you will see that there might be several ways to define the retention and movement

policies you desire.

The examples use the current DFSMShsm data set naming formats. Some old

name formats were in use prior to APAR OY20664. APAR OY20664 required you to

use PATCH commands to use the new format. The new format is standard in

DFSMShsm. If you have occurrences of the old naming formats, you might need to

define vital record specifications that use both naming formats. Delete the vital

record specifications with the old naming format once the old names no longer

exist. See z/OS DFSMShsm Implementation and Customization Guide for current

DFSMShsm data set naming formats.

Retaining All DFSMShsm Tapes

You can retain all DFSMShsm tapes that require no movement, with the exception

of tapes that are written by ABARS, as shown in Figure 106 and Figure 107 on

page 309. See “Retaining and Moving Tapes Written by ABARS” on page 314 and

“Retaining and Moving ABARS Accompany Tapes” on page 315 for examples for

moving and retaining ABARS tapes.

DSNAME(’mprefix.**’)

Specifies the DFSMShsm-defined migrated data set prefix.

DSNAME(’bprefix.**’)

Specifies the DFSMShsm-defined backup and dump data set prefix.

DSNAME(’authid.**’)

Specifies the DFSMShsm prefix used for control data set backups.

COUNT(99999)

Specifies to retain all data sets forever or until DFSMShsm releases the volume

by notifying DFSMSrmm through the EDGTVEXT installation exit.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

Retaining Open Data Sets

You can define vital record specifications to control the retention of data sets that

might have been left open by a system failure or that might be open during

RMM ADDVRS DSNAME(’mprefix.**’) COUNT(99999) CYCLES

RMM ADDVRS DSNAME(’bprefix.**’) COUNT(99999) CYCLES

RMM ADDVRS DSNAME(’authid.**’) COUNT(99999) CYCLES

Figure 106. Retaining DFSMShsm Tapes that Require No Movement

308 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm inventory management. Using the OPEN or ABEND data set name

masks in a vital record specification allows you to you define specific policies for

these data sets so that they are not retained like normal data sets.

Specify the JOBNAME operand with the DFSMShsm and ABARS procedure names

in the vital record specifications that you define to manage open data sets. This

ensures that DFSMShsm and ABARS volumes are always retained permanently

under DFSMSrmm until DFSMShsm releases them.

DSNAME(’ABEND’)

A reserved data set name mask to manage all data sets closed as a result of

an abnormal end in a task.

DSNAME(’OPEN’)

A reserved data set name mask to manage all data sets open when inventory

management vital record processing is run or open when the system failed.

JOBNAME(hsm_proc)

DFSMShsm procedure name.

JOBNAME(abars_proc)

ABARS procedure name.

COUNT(99999)

Specifies to retain all data sets forever or until DFSMShsm releases the volume

by notifying DFSMSrmm through the EDGTVEXT installation exit.

CYCLES

Specifies that DFSMSrmm should retain data sets based on cycles or copies of

a data set.

Retaining Single File Format Migration Tapes

Figure 108 shows how to retain all single file format tapes created as original tapes

by DFSMShsm migration until DFSMShsm releases the tapes.

mprefix

Specifies the DFSMShsm-defined migrated data set prefix.

COUNT(99999)

Specifies to retain all data sets forever or until DFSMShsm releases the volume

by notifying DFSMSrmm through the EDGTVEXT installation exit.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

RMM ADDVRS DSNAME(’ABEND’) JOBNAME(hsm_proc) COUNT(99999) CYCLES

RMM ADDVRS DSNAME(’ABEND’) JOBNAME(abars_proc) COUNT(99999) CYCLES

RMM ADDVRS DSNAME(’OPEN’) JOBNAME(hsm_proc) COUNT(99999) CYCLES

RMM ADDVRS DSNAME(’OPEN’) JOBNAME(abars_proc) COUNT(99999) CYCLES

Figure 107. Retaining DFSMShsm Tapes with the DFSMShsm and ABARS Procedure Name

RMM ADDVRS DSNAME(’mprefix.HMIGTAPE.DATASET’) -

 COUNT(99999) CYCLES

Figure 108. Keeping All Single File Format Migration Tapes

Chapter 14. Running DFSMSrmm with DFSMShsm 309

Retaining Multifile Format Migration Tapes

Figure 109 shows how to keep multifile format migration tapes. Multifile format

applies to reels and not to cartridges.

mprefix

Specifies the DFSMShsm-defined migrated data set prefix.

% Represents one character of a data set name.

** Represents zero or more qualifiers of a data set name.

COUNT(1)

Specifies to keep a single cycle. There should never be more than one cycle as

DFSMShsm generates the data set names using dates and times.

COUNT(99999) can be specified and provide the same results.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

Retaining Single File Format Backup Tapes

Figure 110 shows how to retain all single file format tapes created as originals by

DFSMShsm backup until DFSMShsm releases the tapes.

bprefix

Specifies the DFSMShsm-defined backup and dump data set prefix.

COUNT(99999)

Specifies to retain all data sets forever or until DFSMShsm releases the volume

by notifying DFSMSrmm through the EDGTVEXT installation exit.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

Retaining Multifile Format Backup Tapes

The example in Figure 111 shows how to keep multifile format backup tapes.

Multifile format applies to reels and not to cartridges.

bprefix

Specifies the DFSMShsm-defined backup and dump data set prefix.

RMM ADDVRS DSNAME(’mprefix.HMIG.T%%%%%%.**’) -

 COUNT(1) CYCLES

Figure 109. Keeping Multifile Format Migration Tapes

RMM ADDVRS DSNAME(’bprefix.BACKTAPE.DATASET’) -

 COUNT(99999) CYCLES

Figure 110. Keeping Single File Format Backup Tapes

RMM ADDVRS DSNAME(’bprefix.BACK.T%%%%%%.**’) -

 COUNT(1) CYCLES

Figure 111. Keeping Multifile Format Backup Tapes

310 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

% Represents one character of a data set name.

** Represents zero or more qualifiers of a data set name.

COUNT(1)

Specifies to keep a single cycle. There should never be more than one cycle as

DFSMShsm generates the data set names by using dates and times.

COUNT(99999) can be specified and provide the same results.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

Retaining and Moving TAPECOPY Tapes or DUPLEX Tapes

The DFSMShsm TAPECOPY command and the DUPLEX tape feature create tapes

that are called alternate tapes. Both the TAPECOPY command and the DUPLEX

tape feature use the same naming convention for the alternate tapes.

To retain alternate tapes and to move them to another location,you can define two

vital record specifications, one for backup copies and one for migration copies as

shown in Figure 112.

mprefix

Specifies the DFSMShsm-defined migration data set prefix.

bprefix

Specifies the DFSMShsm-defined backup and dump data set prefix.

COUNT(99999)

Specifies to retain all data sets forever or until DFSMShsm releases the volume

by notifying DFSMSrmm through the EDGTVEXT installation exit.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

LOCATION(REMOTE)

Specifies the storage location called REMOTE to which the number of volumes

for the data sets specified in STORENUMBER should be moved.

STORENUMBER(99999)

Specifies that all copies should be kept in the specified storage location until

they are returned to scratch by DFSMShsm. Specifying STORENUMBER as

99999 in the two examples ensures that when DFSMShsm release the original

volumes, it also returns the alternate tapes.

 As you create copies of migration and backup tapes with the DFSMShsm

TAPECOPY command, DFSMSrmm recognizes the tapes, retains them, and

identifies them for movement to the named storage location. During DFSMShsm

RECYCLE processing, DFSMShsm releases an alternate tape when it releases the

original tape. DFSMSrmm identifies that these volumes should return to the library

RMM ADDVRS DSNAME(’mprefix.COPY.HMIGTAPE.DATASET’) -

 COUNT(99999) CYCLES LOCATION(REMOTE) STORENUMBER(99999)

RMM ADDVRS DSNAME(’bprefix.COPY.BACKTAPE.DATASET’) -

 COUNT(99999) CYCLES LOCATION(REMOTE) STORENUMBER(99999)

Figure 112. Keeping Tapes Created by the DFSMShsm TAPECOPY Command and DUPLEX

Tape Feature

Chapter 14. Running DFSMSrmm with DFSMShsm 311

after DFSMShsm releases the volume. You can use this mechanism to get copy

tapes ejected from an automated tape library after creation and returned to the

library after RECYCLE.

Use of DFSMSrmm to manage movement is only available for those alternate

volumes you have created since implementing the new DFSMShsm TAPECOPY

data set name format. The old naming format used for alternate volumes was the

same as that used for the base volumes. If you have copies which were created

with the old naming convention we suggest that you use DFSMShsm RECYCLE

against the base volumes or take a new copy of the base volume. See “Disaster

Recovery Using DFSMShsm Alternate Tapes with DFSMSrmm” on page 318 for

information on use of alternate tapes during recovery.

Retaining and Moving Dump Tapes

When defining vital record specifications for retaining dump tapes, consider these

conditions:

v The dump class definitions because the dump classes and the vital record

specifications you define must work together.

v The dump class and DASD volume serial numbers when you define the data set

names you use in the data set name masks.

The data set name format used by DFSMShsm for dump tapes includes the

dump class and the DASD volume serial number. These are the two most likely

variables in the data set name on which you will base your retention and

movement policies.

v The dump classes that are managed the same.

v The dump classes that require separate management.

v The dump classes that need to be stored off site.

v The need to define additional vital record specifications to support the old data

set naming conventions for a period of time.

Figure 113 is the minimum you are required to specify in a vital record specification

for DFSMSrmm to keep dump tapes and to prevent DFSMSrmm from releasing

DFSMShsm volumes.

bprefix

Specifies the DFSMShsm-defined backup and dump data set prefix.

** Represents zero or more qualifiers of a data set name.

COUNT(1)

Specifies to retain a single cycle. In the example, the COUNT(1) is used to

retain a single dump cycle. Since DFSMShsm generates a unique name for

each dump cycle, COUNT(1) retains all dump cycles.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

 If you want to be more specific and manage cycles of dumps, using differing

policies you can extend the data set name mask as shown in Figure 114 on page

313

RMM ADDVRS DSNAME(’bprefix.DMP.**’) -

 COUNT(1) CYCLES

Figure 113. Keeping Tapes Used for Dump

312 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

313.

bprefix

Specifies the DFSMShsm-defined backup and dump data set prefix.

class

Specifies the DUMPCLASS you have defined to DFSMShsm.

V%%%%%%

The six character volume serial number.

** Represents zero or more qualifiers of a data set name.

COUNT(1)

Specifies to retain a single data set that matches the filter mask.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

 You can also define vital record specifications to manage different types of dump

classes having different cycles. Figure 115 shows the use of a pseudo-GDG data

set name to identify dump cycles for movement to storage locations for disaster

recovery. A DFSMSrmm pseudo-GDG is a collection of data sets, using the same

data set name, that DFSMSrmm manages like a GDG. A pseudo-GDG data set

name contains the ¬ as a placeholder for the characters in the pattern that change

with each generation.

In the example, ¬ is used to mask the DFSMShsm generated date and time in the

data set names so that all generations of a dump can be logically managed

together.

bprefix

Specifies the DFSMShsm-defined backup and dump data set prefix.

V%%%%%%

The six character volume serial number.

¬ Is a place holder for a single character in a data set name mask for a

pseudo-GDG data set name. When ¬ is used in a data set name mask,

DFSMSrmm manages the data sets matching the data set name mask like a

generation data group.

COUNT(100)

Specifies to retain all dump cycles managed by DFSMShsm. 100 is the limit for

the number of dump cycles.

RMM ADDVRS DSNAME(’bprefix.DMP.class.V%%%%%%.**’) -

 COUNT(1) CYCLES

Figure 114. Managing Cycles of Dumps

RMM ADDVRS DSNAME(’bprefix.DMP.class.V%%%%%%.T¬¬¬¬¬¬.D¬¬¬¬¬’) -

 COUNT(100) CYCLES LOCATION(REMOTE) STORENUMBER(2) -

 DELAY(1)

Figure 115. Retaining and Moving Volumes by Cycles

Chapter 14. Running DFSMSrmm with DFSMShsm 313

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

LOCATION(REMOTE)

Specifies the storage location called REMOTE to which the number of volumes

for the data sets specified in STORENUMBER should be moved.

STORENUMBER(2)

Two cycles are kept in the storage location REMOTE. All other cycles up to the

COUNT(100) value are retained in the HOME location.

DELAY(1)

The current cycle is kept in the library for one day before being removed to the

storage location.

 In Figure 115 on page 313 all 100 cycles of a dump taken for a specific volume and

class combination are kept if produced by DFSMShsm. For each matching vital

record group:

v The current cycle is kept in the library for one day before being removed to the

storage location.

v Two cycles are kept in the storage location.

v All other cycles are returned to and kept in the library until DFSMShsm releases

them.

v You can use any combination of LOCATION, STORENUMBER, NEXTVRS, and

DELAY to provide the required level of service.

v COUNT(100) is coded so DFSMSrmm keeps all cycles that DFSMShsm

produces. You can tailor the example by using different values for the class

name.

You might need to define additional vital record specifications to support the old

data set naming conventions for a period of time.

Retaining and Moving Tapes Written by ABARS

Figure 116 on page 315 shows how to keep 10 tapes written by ABARS that were

created under DFSMS, and provide storage location management for them based

on cycles as if they are a generation data group definition.

When you define a vital record specification as shown in Figure 116 on page 315,

DFSMSrmm keeps 10 versions of each of the aggregate backup output data sets

and any copies ABARS created. DFSMSrmm retains the latest 10 versions in the

REMOTE location and any others in the home location. If there is only one copy of

each aggregate backup version produced, and there are 10 versions of each

aggregate backup, DFSMSrmm keeps 10 versions of each aggregate backup. If

there are 2 copies of each, DFSMSrmm keeps 10 versions of each copy of each

aggregate backup.

In the example, the COUNT and STORENUMBER are the same. You could use

different values where STORENUMBER is less than or equal to COUNT when you

want to store a number of tapes offsite.

314 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

outputdatasetprefix

Specifies the same value as entered in the ISMF aggregate processing

application as the prefix to be used for output data set.

% Represents the characters D, C, O, and I that are used by DFSMShsm ABARS

processing.

C%%

Represents the copy number.

V¬¬¬¬

Represents the version number DFSMShsm maintains as a pseudo-generation

data group.

COUNT(10)

Specifies the number of versions of the aggregate backup to retain.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

LOCATION(REMOTE)

Specifies the storage location called REMOTE to which the number of volumes

for the data sets specified in STORENUMBER should be moved.

STORENUMBER(10)

Represents a number of versions to be kept in a storage location.

Retaining and Moving ABARS Accompany Tapes

Retaining ABARS accompany tapes applies equally to old ABARS tapes and

ABARS tapes created under DFSMS. You can retain and manage ABARS

accompany tapes based on the naming conventions your installation uses. Modify

the example shown in Figure 117 with data set names, COUNT, and

STORENUMBER values for your installation. In the example shown in Figure 117,

we assume that all accompany tapes end with ’.COPY’.

To keep ABARS accompany tapes, specify this command:

app11.**.COPY

Specifies the data set name mask that identifies the application data set

names to retain. DFSMSrmm keeps all data sets that begin with prefix

app11 and end with COPY. You can use any data set name you choose

and can select vital record specification options to best match those

selected for your aggregate groups or other retention and movement

policies.

COUNT(10)

Specifies the number of versions of the data set to retain.

RMM ADDVRS DSNAME(’outputdatasetprefix.%.C%%V¬¬¬¬’) -

 COUNT(10) CYCLES -

 LOCATION(REMOTE) STORENUMBER(10) -

Figure 116. Keeping ABARS Tapes

RMM ADDVRS DSNAME(’app11.**.COPY’) COUNT(10) CYCLES -

 LOCATION(REMOTE) STORENUMBER(10) DELAY(1)

Figure 117. Keeping ABARS Accompany Tapes

Chapter 14. Running DFSMSrmm with DFSMShsm 315

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a

data set.

LOCATION(REMOTE)

Specifies the storage location called REMOTE to which the number of

volumes for the data sets specified in STORENUMBER should be moved.

STORENUMBER(10)

Represents a number of versions to be kept in a storage location.

Retaining DFSMShsm Control Data Set Backup Tapes

To keep all cycles of DFSMShsm control data set and journal backup tapes until

DFSMShsm releases them, issue RMM ADDVRS subcommands as shown in

Figure 118:

authid.**

Specifies the DFSMShsm prefix used for control data set backups.

% Represents the characters M, B, or O used by DFSMShsm for each of its

control data sets.

V¬¬¬¬¬¬¬

Represents the version number DFSMShsm maintains as a pseudo-generation

data group.

COUNT(99999)

Specifies to retain all data sets forever or until DFSMShsm releases the volume

by notifying DFSMSrmm through the EDGTVEXT installation exit.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

 All versions of each of the control data set and journal backups are retained until

released when DFSMShsm calls DFSMSrmm to release the tape volume. You can

optionally use any of the RMM ADDVRS subcommand operands to meet your

movement and retention requirements. For example, you can use the LOCATION

and STORENUMBER operands to identify that movement is required.

Retaining Cycles of Dump Tapes

You can move dump cycles to storage locations for disaster recovery. Use

additional options for pseudo-generation data groups, to retain and move by

CYCLES using the old naming format as shown in Figure 119.

RMM ADDVRS DSNAME(’authid.%CDS.BACKUP.V¬¬¬¬¬¬¬’) -

 COUNT(99999) CYCLES

RMM ADDVRS DSNAME(’authid.JRNL.BACKUP.V¬¬¬¬¬¬¬’) -

 COUNT(99999) CYCLES

Figure 118. Keeping DFSMShsm Control Data Set and Journal Backup Tapes

RMM ADDVRS -

DSNAME(’bprefix.DMP.T¬¬¬¬¬¬.class.D¬¬¬¬¬.V%%%%%%’) -

 COUNT(100) CYCLES LOCATION(REMOTE) STORENUMBER(2) -

 DELAY(1)

Figure 119. Moving Dumps to Storage Locations

316 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

bprefix Specifies the data set name mask that identifies the application.

T* Is the time mask to mask the time the dump was created.

class Specifies the DUMPCLASS you have defined to DFSMShsm.

D* Is the date mask to mask the date the dump was created.

V%%%%%%

The six character volume serial number.

COUNT(100)

Specifies to retain all dump cycles managed by DFSMShsm. 100 is the limit

for the number of dump cycles.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a

data set.

LOCATION(REMOTE)

Specifies the storage location called REMOTE to which the number of

volumes for the data sets specified in STORENUMBER should be moved.

STORENUMBER(2)

Represents a number less than the total number of versions to be kept. All

other cycles are retained, up to the COUNT value in the HOME location.

DELAY(1)

The current cycle is kept in the library for one day before being removed to

the storage location.

 You might need to use both types of dump vital record specifications until you have

replaced all old retained volumes.

Retaining ABARS Backup Tapes

For ABARS backups taken prior to DFSMS, the naming convention was different

and used true GDG names. Figure 120 shows an example for keeping 10 ABARS

backup tapes using GDG names.

outputdatasetprefix

Specifies the same value as entered in the ISMF aggregate processing

application as the prefix to be used for output data set.

% Represents the characters D, C, O, and I used by DFHSM ABARS processing.

GDG

Specifies that the data set name is a generation data group name.

COUNT(10)

Specifies the number of versions of the aggregate backup to retain.

CYCLES

Specifies that DFSMSrmm retain data sets based on cycles or copies of a data

set.

RMM ADDVRS DSNAME(’outputdatasetprefix.%’) GDG -

 COUNT(10) CYCLES LOCATION(REMOTE) STORENUMBER(10) -

 DELAY(1)

Figure 120. Keeping ABARS Backup Tapes Using GDG Names

Chapter 14. Running DFSMSrmm with DFSMShsm 317

LOCATION(REMOTE)

Specifies the storage location called REMOTE to which the number of volumes

for the data sets specified in STORENUMBER should be moved.

STORENUMBER(10)

Represents a number of versions to be kept in a storage location.

DELAY(1)

The current cycle is kept in the library for one day before being removed to the

storage location.

Retaining DFSMShsm Tapes Extra Days Retention

You can use DFSMSrmm to release DFSMShsm tapes that are requested to be

purged by DFSMShsm. By default, the expiration date protection for DFSMShsm

tapes is done by DFSMShsm. DFSMShsm uses 1999/365 as the expiration date for

permanent retention. To enable extra days retention for purged DFSMShsm tape

volumes, you need to set up retention options in the vital record specifications that

are used to retain the tape volumes.

1. Ensure that the DFSMSrmm EDGRMMxx parmlib OPTION MAXRETPD

operand is set to NOLIMIT to prevent DFSMSrmm from reducing the expiration

date used for the DFSMShsm tape volumes. See “Defining System Options:

OPTION” on page 175 for information about the MAXRETPD, VRSEL, and

TVEXTPURGE operands.

2. Specify the DFSMSrmm EDGRMMxx parmlib OPTION VRSEL(NEW) operand

and the OPTION TVEXTPURGE(EXPIRE) operand.

3. Define a name vital record specification that specifies the EXTRADAYS

retention type and chain the name vital record specification to the vital record

specifications used to retain DFSMShsm tape volumes. Also use the COUNT

operand to specify the number of days you would like the tape volumes to be

retained.

4. Include the UNTILEXPIRED retention type in the vital record specifications you

use to retain DFSMShsm tape volumes and chain these vital record

specifications to the name vital record specifications that include the

EXTRADAYS retention type.

RMM ADDVRS DSNAME(’mprefix.**’) UNTILEXPIRED NEXTVRS(HSMEXT)

RMM ADDVRS DSNAME(’bprefix.**’) UNTILEXPIRED NEXTVRS(HSMEXT)

RMM ADDVRS DSNAME(’authid.**’) UNTILEXPIRED NEXTVRS(HSMEXT)

RMM ADDVRS NAME(HSMEXT) EXTRADAYS COUNT(N)

Disaster Recovery Using DFSMShsm Alternate Tapes with DFSMSrmm

DFSMShsm supports the creation of a duplicate cartridge tape, called an alternate,

for each migration tape or each backup tape. The major use of this is to support

remote storage of the alternate so that it can easily be used in case of a disaster.

The recommended process includes these steps related to tape usage:

1. Have a copy of the DFSMShsm control data sets at the disaster site.

2. Perform a TAPEREPL by specifying the DISASTERALTERNATE parameter.

This flags each existing alternate tape as a disaster alternate.

3. Place DFSMShsm in DISASTER mode. When in disaster mode DFSMShsm

dynamically checks before mounting an input tape whether the needed data

resides on a tape having a disaster alternate. If it does, the disaster alternate is

requested.

318 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm recognizes when DFSMShsm is opening tape data sets and tolerates

the data set names that DFSMShsm uses as long as the last 17 characters of the

data set name match.

When you perform a true replacement by using the TAPEREPL command, without

the DISASTERALTERNATE keyword, DFSMShsm uses the data set name it uses

for the original tapes.

Securing Tapes When Running DFSMShsm and DFSMSrmm

How you use the DFSMShsm SETSYS option TAPESECURITY influences the

TPRACF value in the DFSMSrmm parmlib member EDGRMMxx. DFSMShsm can

optionally use RACF TAPEVOL profiles to secure its volumes. You can combine the

DFSMShsm method for securing volumes with DFSMSrmm RACF options as

described in “Defining System Options: OPTION” on page 175 to ensure complete

security for your tape data.

Select the appropriate combinations for your environment from these options:

v Use RACF with TAPEVOL and TAPEDSN.

v Use DFSMShsm TAPESECURITY with RACF or EXPIRATIONINCLUDE.

v Use RACF or RACFINCLUDE when RACF TAPEVOL profiles are used.

v Use EXPIRATION or EXPIRATIONINCLUDE when RACF TAPEDSN or

DEVSUPxx TAPEAUTHDSN is used.

v Use DFSMSrmm TPRACF with A, P, or N and VLPOOL RACF with Y or N.

Recommendations for Using DFSMSrmm and DFSMShsm

Related Reading: See z/OS DFSMShsm Implementation and Customization Guide

for details on DFSMShsm data set naming formats.

Follow these guidelines when running DFSMSrmm with DFSMShsm:

v Run DFSMShsm with scratch tapes that DFSMSrmm manages so you can have

a single scratch pool for all users of tape and so you can gain any benefits

available from pre-mounting of scratch tapes in cartridge loaders.

v Use RACF TAPEVOL or DATASET profiles to ensure tape data security on your

system.

v Set these suggested DFSMShsm system option parameters.

SETSYS EXITOFF(ARCTVEXT) -

 SELECTVOLUME(SCRATCH) -

 TAPEDELETION(SCRATCH) -

 TAPESECURITY(RACF) -

 PARTIALTAPE(MARKFULL)

Specify EXITOFF(ARCTVEXT) if DFSMSrmm is your only tape management

product because DFSMShsm always calls the DFSMSrmm programming

interface EDGTVEXT.

Specify SELECTVOLUME(SCRATCH) to cause DFSMShsm to issue a

nonspecific mount request for output tapes which can be satisfied by any empty

tape acceptable to both DFSMShsm and DFSMSrmm.

Specify PARTIALTAPE(MARKFULL):

– If you are using automatic cartridge loaders so DFSMShsm marks partially

used volumes as full. This allows the first output tape of each task to be a

nonspecific mount, which means that you get faster tape mounts. You can

specify migration and backup options separately.

Chapter 14. Running DFSMSrmm with DFSMShsm 319

|
|

|
|
|

|

– If you want to get migration and backup data duplicated and moved to a

storage location in a timely manner. Marking the tapes full prevents a task’s

last tape, that is only partially filled, from remaining in the library an additional

24 hours before being duplicated the next day for disaster protection.

– If you use TAPECOPY or the DUPLEX tape feature to duplicate tapes and

ship them to a storage location, use MARKFULL to end one day’s cycle and

begin another day’s cycle. TAPECOPY only processes full volumes which

means that the original tapes have no copy until they are full. This means that

a copy might not be available at the storage location as quickly as expected.

Using the DUPLEX tape feature means that both the original and copy tapes

are created at the same time. DFSMSrmm ships the DUPLEX copy to the

storage location as quickly as possible. This might create problems if

DFSMShsm expects to continue the writing to the tape the next day. Marking

the DUPLEX tapes full allows DFSMSrmm to process both TAPECOPY copies

and DUPLEX tapes in the same way.

v Set these suggested dump definitions:

DEFINE DUMPCLASS(class -

 AUTOREUSE -

 RETENTIONPERIOD(days))

Use RETENTIONPERIOD instead of TAPEEXPIRATIONDATE to allow the tapes

to be reused or written to by any other program without their needing to be

reinitialized after DFSMShsm expires them.

Use AUTOREUSE to have the tapes returned to a scratch pool as soon as the

data on the tape are invalidated. This option is necessary for DFSMShsm to call

DFSMSrmm to release the tape volume. Without AUTOREUSE, a DELVOL

command must be issued for each tape after it is returned to the locale of the

tape drives.

Do not use AUTOREUSE for a DFSMShsm-managed pool when also removing

tapes from the vicinity of the tape drives. This is because DFSMShsm might

select a remotely located tape before DFSMSrmm is able to cause the tape’s

physical return to the locale of the tape drives.

320 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 15. Running DFSMSrmm with JES3

DFSMSrmm provides SMP/E USERMODs in SAMPLIB that you can apply to the

standard JES3 user exits and other JES3 modules. Use EDG3UX71, EDG3UX29,

and EDG3UX62 to set up DFSMSrmm with JES3. Install the USERMODs to

prevent JES3 from validating certain volume mounts, to update JES3 fetch and

mount messages, and to enable the use of no label tape volumes with JES3.

In a JES3 system, JES3 validates volume mounts when JES3 is managing tape

drives and performing pre-processing setup. JES3 ensures that scratch tapes have

reached their expiration date and that volumes are correctly write-enabled or

protected. JES3 validation can conflict with DFSMSrmm and RACF processing. For

example, you can use ‘logical write protect’ with IBM tape drives to prevent a user

from writing to a tape even if the tape is physically write-enabled. Since

DFSMSrmm ensures that all scratch tapes are valid and provides features to ignore

the expiration dates on volumes, you might want to prevent JES3 from validating

certain volume mounts.

Preventing JES3 from Validating Volumes

Use the EDG3UX29 USERMOD to prevent JES3 from validating volumes to avoid

conflicts with DFSMSrmm validation.

In a JES3 system, the default value for EXPDTCHK is YES. This value can conflict

with the tape management system function that allows you to use expiration date

protected tapes. EDG3UX29 sets EXPDTCHK=NO.

In a JES3 system, the default value for RINGCHK is YES. This value can conflict

with the tape management system function, DFSMSdfp, and RACF function that

forces logical write protect or allows a user to open a tape data set for READ even

though the tape is write enabled. EDG3UX29 sets RINGCHK=NO.

Updating JES3 Fetch and Mount Messages

DFSMSrmm provides USERMODs for use when updating JES3 fetch and mount

messages with shelf location and pool information.

When you are using EDGUX100 for scratch pooling as described in “Using the

DFSMSrmm EDGUX100 Installation Exit” on page 267, use the EDG3UX71

USERMOD to ensure the correct tape pool is requested.

In a JES3 complex all systems running DFSMSrmm must have the same

EDGUX100 installation exit and the same parmlib VLPOOL operand values to

ensure that a scratch volume is not rejected because it is from the wrong pool.

DFSMSrmm also provides USERMODs EDG3LVVR and EDG3IIP1 that you can

use to ensure that the correct tape pool is requested. If you do not use one of the

USERMODs which allows DFSMSrmm to update a message or tape display,

DFSMSrmm cannot provide tape pool information and the wrong tape pool might be

requested. Any incorrect tape mounted is rejected by DFSMSrmm volume validation

and a remount requested. The remount request does use the correct pool.

Steps for Using the EDG3UX71 USERMOD

Before you begin: Validate that the EDG3UX71 USERMOD does not conflict with

any modifications that you have made to the IATUX71 exit.

© Copyright IBM Corp. 1992, 2007 321

DFSMSrmm supplies a USERMOD to IATUX71, called EDG3UX71, in SAMPLIB.

Use EDG3UX71 to update IATUX71 in order to replace and append text to JES3

fetch-and-mount messages and to provide text for tape drive displays. Perform

these steps to use the EDG3UX71 USERMOD to update the IAT5210 message:

1. Install the USERMOD by using SMP/E.

2. Set the SETPARAM DSN option in the JES3 initialization deck to a value other

than 0. For exit-selected scratch pooling, EDGUX100 depends on the data set

name being included in the fetch-and-mount messages. Ensure that you have

the DSN keyword coded on the JES3 SETPARAM statement in the initialization

deck, and that the data set name length value is sufficient to provide selection

control in EDGUX100. The value is the length of the data set name to be

included in mount messages and fetch messages that are issued by JES3.

Recommendations:

a. Set the data set name length to 9 if you use only the first qualifier for

pooling.

b. Set the data set name length to 31 if you want the EDGUX100 installation

exit to use the data set name for pool selection.

Result: The IAT5210 message is updated.

Using the EDG3IIP1 USERMOD

Use the EDG3IIP1 USERMOD in SAMPLIB to update IATIIP1 to force DEFER for

all tape requests. If you use EDG3UX71, you do not need to use EDG3IIP1. The

EDG3IIP1 USERMOD updates IATIIP1 to mark tape allocations for deferred

processing. This is equivalent to coding UNIT=(unit,,DEFER) as a JCL keyword.

Before you begin: Validate that the EDG3IIP1 USERMOD does not conflict with

any other modifications to the IATIIP1 module.

Install the USERMOD by using SMP/E.

Using the EDG3LVVR USERMOD

Use the EDG3LVVR USERMOD in SAMPLIB to update the tape drive display with

the correct exit selected pool. The EDG3LVVR USERMOD updates IATLVVR to

AWAIT MSGDISP for scratch mount. If you use EDG3UX71, you do not need to

use EDG3LVVR.

Before you begin: Validate that the EDG3LVVR USERMOD does not conflict with

any other modifications to the IATLVVR module.

The EDG3LVVR USERMOD updates IATLVVR to add a short wait to the verify

function. The wait allows the setup function time to issue the IAT5210 message. A

JES3 MCS console is required when using this USERMOD.

1. Define a JES3 MCS console.

Refer to z/OS JES3 Initialization and Tuning Guide for details on how to define

MCS consoles for use with JES3. You need to define an MCS console with

logical association to JES3 and use it as the tape operator console to receive

the mount messages as updated by DFSMSrmm. Use the JES3 CONSOLE

statement with the TYPE=MCS keyword.

Use the MCS console routing codes to select which JES3 issued messages are

seen on the MCS console. JES3 routes the tape messages to MCS consoles

with a route code of 3.

322 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

This method cannot be used in a multi-system JES3 complex where tape drives

are attached to a JES3 local processor, because DFSMSrmm can only correctly

update the tape drive display on the global processor.

2. Install the USERMOD by using SMP/E.

Using the EDG3UX62 USERMOD to Create and Mount No Label Tapes

Before you begin: Validate that the EDG3UX62 USERMOD does not conflict with

any other modifications to the IATUX62 module.

Installing the EDG3UX62 USERMOD is optional. If you decide to install it, use

SMP/E.

Install EDG3UX62 when you are using JES3 pre-execution setup for tape volumes.

After you implement EDG3UX62, you can accomplish these tasks:

v Create NL tape volumes from scratch volumes.

v Use duplicate volumes when using deferred tape mount processing.

v Mount a volume with standard labels for a non-specific NL request.

v Process any standard label volume when requesting a specific volume where the

specific volume and the mounted volume have the same label type. For example,

the user requests an AL tape volume and the operator mounts an AL tape

volume.

v Specify volumes with duplicate volume serial numbers.

The EDG3UX62 USERMOD updates IATUX62 to override the JES3 decision to

reject a tape when a non-specific NL tape is requested and a standard label

write-enabled tape is mounted. During JES3 verify processing, JES3 ensures that

the mounted volume matches the requested volume. If an NL tape is requested,

JES3 ensures that an NL tape is mounted. For specific volume requests this is

correct processing, but for non-specific requests DFSMSrmm forces all scratch

volumes to contain a standard volume label. As a result, JES3 rejects any scratch

volume that is mounted.

Chapter 15. Running DFSMSrmm with JES3 323

324 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 16. Performing Inventory Management

DFSMSrmm Samples Provided in SAMPLIB

v EDGJHSKP Sample JCL for Using the EDGHSKP Utility

v EDGJHKPA Sample IBM Tivoli Workload Scheduler for z/OS Job for

Allocating the Data Sets Required for Inventory Management

DFSMSrmm provides the EDGHSKP utility to help you perform inventory

management. You can run inventory management functions in a single job step or

can split requests into multiple steps and jobs if required. Running inventory

management as a single step allows DFSMSrmm to optimize processing. The

default processing for EDGHSKP is to run all inventory management functions in

sequence as described in “EXEC Parameters for EDGHSKP” on page 333. Use this

chapter to set up and run inventory management activities and to schedule all

DFSMSrmm utilities.

You use the EDGHSKP utility to request that DFSMSrmm perform inventory

management processing. The utility validates parameters, checks that the correct

files are allocated and can be used, and requests that the DFSMSrmm subsystem

performs the functions you request. The utility uses the EDGBKUP utility to perform

backup processing.

During DFSMSrmm subsystem inventory management processing, you can see the

address space executing EDGHSKP waiting for the subsystem processing to

complete. Use the RMM LISTCONTROL subcommand with the CNTL operand to

see which inventory management functions are active and when the individual

functions were last successfully processed. If you cancel a batch job running

DFSMSrmm processing (such as EDGHSKP), the processing in the DFSMSrmm

subsystem is interrupted and the function ends early.

During inventory management the DFSMSrmm subsystem issues messages that

describe processing. Messages are in the MESSAGE data set. During expiration

processing, DFSMSrmm identifies data sets that might be open and puts them in a

list in the MESSAGE file. See Figure 136 on page 358 for an example of this

output.

Scheduling DFSMSrmm Utilities

You can schedule each DFSMSrmm utility to run on its own, or schedule many

activities to run together in a sequence. You can schedule activities such as vital

records processing to be performed daily. Other activities can be scheduled less

frequently, for example on a weekly basis. You can use a job scheduling product

like the IBM Tivoli Workload Scheduler for z/OS to run the utilities. See Chapter 22,

“Running DFSMSrmm with the IBM Tivoli Workload Scheduler for z/OS,” on page

467 for information about using the IBM Tivoli Workload Scheduler for z/OS for

scheduling DFSMSrmm utilities.

Table 49 on page 326 suggests how frequently to run DFSMSrmm utilities.

References are listed to help you locate the information about the utilities.

© Copyright IBM Corp. 1992, 2007 325

|
|
|

Table 49. Scheduling DFSMSrmm Utilities

Activity Frequency Reference

Processing vital records Daily “JCL for EDGHSKP”

on page 333 and

“Running Vital Record

Processing” on page

341

Performing expiration processing Daily “JCL for EDGHSKP”

on page 333 and

“Running Expiration

Processing” on page

355

Performing storage location management Weekly “JCL for EDGHSKP”

on page 333 and

“Running Storage

Location Management

Processing” on page

353

Creating an extract data set Daily “JCL for EDGHSKP”

on page 333

Creating volume movement and inventory

reports

Weekly See z/OS DFSMSrmm

Reporting

Creating security and audit reports Monthly See z/OS DFSMSrmm

Reporting

Backing up the DFSMSrmm control data set Daily “JCL for EDGHSKP”

on page 333,

“Backing Up the

Control Data Set” on

page 365, and

“Backing Up the

Control Data Set” on

page 378

Backing up the DFSMSrmm journal Daily “JCL for EDGHSKP”

on page 333,

“Backing Up the

Control Data Set” on

page 365, and

“Backing Up the

DFSMSrmm Control

Data Set and Journal”

on page 378

Verifying the control data set Monthly “Using EDGUTIL for

Tasks Such as

Creating and Verifying

the Control Data Set”

on page 392

Initializing and erasing volumes Weekly Chapter 18,

“Initializing and

Erasing Tape

Volumes,” on page

417

326 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Running Inventory Management

If you decide to run inventory management in multiple steps, we suggest that you

run inventory management as follows:

1. Back up the control data set and journal and keep multiple backup generations

to aid recovery.

2. Run vital record processing first before expiration and storage location

management processing. This is to identify which volumes to retain and where

volumes should be moved, based on vital record specifications.

3. Run expiration processing to identify those volumes not required for vital

records that are ready to expire. During expiration processing, release actions

for volumes are noted.

4. IBM recommends that you verify that volumes removed from VRS retention, or

that have otherwise expired, are the volumes that are expected to expire.

Consider adding a job step that reviews the lists of volumes that are no longer

under VRS control or have expired and prevent further automated processing if

necessary. DFSMSrmm provides VLPOOL RELEASEACTION(NOTIFY) to help

with this task. You can use the automated setting of this release action to

ensure that you have to confirm all volumes before they can be returned to

scratch.

5. Run storage location management to set a destination location for a volume.

Optionally run storage location management to assign shelf locations in storage

locations for volumes that are being sent out of or returned to the removable

media library. You must run storage location management processing after vital

record processing has been successfully run, but not necessarily in the same

run of EDGHSKP.

6. Run an EDGINERS job after expiration processing completes to ensure that

volumes that are waiting to be released and waiting to be initialized are returned

to scratch. Use automatic processing to request EDGINERS to initialize and

erase any volumes flagged in the control data set. Run EDGINERS before and

after each run of EDGHSKP.

7. Create an extract data set to use as input to the DFSMSrmm report utility,

EDGRPTD, and create a report that shows the new volume movements

required.

DFSMSrmm prevents expiration processing from releasing volumes that have been

updated since the last run of vital records processing. You normally need a

minimum of two EDGHSKP runs to process an expired volume and return it to

scratch, which involves at least a 24 hour delay if you are running expiration

processing daily. During this time, you can reclaim an expired volume from pending

release status by setting a new expiration date. You can also reclaim an expired

volume from scratch status by using the RMM CHANGEVOLUME subcommand to

change the volume status to master or user. When you use DFSMSrmm to reclaim

a volume that resides in a system-managed tape library to master or user status,

the volume is changed to PRIVATE in the TCDB.

Inventory Management Considerations

You can perform some inventory management activities only under specific

conditions:

v In an environment where the DFSMSrmm control data set is shared, and you use

system-managed tape, you must run inventory management on a system that

has access to the TCDB. If the TCDB is not shared by each system that is

Chapter 16. Performing Inventory Management 327

sharing the control data set, and there are multiple TCDBs, run inventory

management at least once against each TCDB on a system that has access to

that TCDB.

v When either of these conditions exist, you must run inventory management on a

system that has access to the catalogs.

– The DFSMSrmm control data set is shared, the DFSMSrmm control data set

and catalogs are not synchronized, and you want to retain data sets that are

based on the catalog information.

– The DFSMSrmm parmlib OPTION command UNCATALOG is coded with Y or

S to indicate that catalog processing is required.

v In an unshared user catalog environment, you must specify the DFSMSrmm

EDGRMMxx parmlib OPTION command CATSYSID operand to use DFSMSrmm.

When you use unshared catalogs, ensure that the DFSMSrmm control data set

and the user catalogs are synchronized. You must run inventory management

expiration processing on each different catalog environment.

v When DFSMSrmm is active, you cannot reorganize the control data set.

v The DFSMSrmm subsystem address space performs all inventory management

functions, except backing up the control data set and backing up the journal.

During inventory management processing, the address space running EDGHSKP

waits until processing completes. Once the subsystem processing completes,

EDGHSKP performs backup processing in its home address space; this can

include the backup of the DFSMSrmm control data set and the journal.

v When inventory management functions are active, you can continue using RMM

TSO subcommands and DFSMSrmm continues to record tape usage.

v You must define at least one vital record specification in order to run DFSMSrmm

vital record processing. The EDGRMMxx parmlib OPTION command VRSMIN

operand provides control over this processing.

Example: Use the RMM ADDVRS subcommand to define a vital record

specification.

RMM ADDVRS DSN(’**’) WHILECATALOG

DFSMSrmm Inventory Management Considerations when Client/Server

Support is Enabled

This topic describes utilities that provide restricted functions when run on a client or

server system.

328 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm Utility Considerations Where to Find More Information

EDGHSKP v You can run all inventory

management functions except

BACKUP on a client system.

However, because there is no

direct connection to the control

data set, the elapsed times will be

longer when run on a client

system. We recommend you run all

inventory management functions

other than CATSYNCH and

EXPROC on either the server or a

standard DFSMSrmm system.

v When you attempt backup on a

client system, the utility ends with

RC16 and DFSMSrmm issues

message EDG6137I stating that it

cannot be run on a client system

Chapter 16, “Performing Inventory

Management,” on page 325

Allocating Data Sets for Inventory Management

DFSMSrmm Samples Provided in SAMPLIB

v EDGJHKPA Sample JCL for Allocating the Data Sets Required for Inventory

Management

v EDGPHKPA Sample OPC for Allocating the Data Sets Required for

Inventory Management

Before running EDGHSKP, you must define several data sets. The data sets that

are used by both the EDGHSKP utility and the DFSMSrmm subsystem address

space must be pre-allocated and cataloged as shown in Table 50. When enhanced

data integrity function (EDI) is activated, you must include the pre-allocated,

cataloged data sets associated with DFSMSrmm EDGHSKP utility processing in the

parmlib member IFGPSEDI. The data sets that you must include are the ACTIVITY,

EDGSPLCS, MESSAGE, REPORT, REPTEXT, and XREPTEXT data sets.

 Table 50. DFSMSrmm EDGHSKP Data Sets

DD Statement

Preallocated,

Cataloged, DASD

Data Set Description

ACTIVITY Yes Contains detailed information about data set related changes

DFSMSrmm makes to the control data set during inventory

management. This data set is required when you specify the VERIFY

parameter.

BACKUP No Contains the backup copy of the DFSMSrmm control data set.

Specify this data set to run backup processing for the control data

set. You can back up directly to tape when you specify the

BACKUP(DSS) parameter even when DFSMSdss concurrent copy is

not available.

DSSOPT No Contains DUMP or RESTORE command options used by DFSMSdss

during backup processing. See “Customizing the DSSOPT DD

Statement” on page 377 for information about changing the

commands.

Chapter 16. Performing Inventory Management 329

|

Table 50. DFSMSrmm EDGHSKP Data Sets (continued)

DD Statement

Preallocated,

Cataloged, DASD

Data Set Description

EDGSPLCS Yes Contains statements to be used with the EDGSPLCS utility. They are

created by EXPROC when you use the SYSIN EXPROC option

EDGSPLCS(YES).

JRNLBKUP No Contains the backup copy of the DFSMSrmm journal. Specify this

data set to run backup processing for the journal. DFSMSrmm uses

IDCAMS to back up the journal when you specify the BACKUP(AMS)

or BACKUP(DSS) parameter. You can back up directly to tape when

you specify the BACKUP(DSS) parameter even when DFSMSdss

concurrent copy is not available.

MESSAGE Yes Lists the messages the DFSMSrmm subsystem issues during

inventory management. This data set is required.

REPORT Yes Contains a detailed report of DFSMSrmm vital record specification

processing. Specify if you want a report when you have specified the

VRSEL parameter.

REPTEXT Yes Contains the extract copy of the DFSMSrmm control data set. The

extract copy is called the extract data set. You must specify either

the REPTEXT DD statement or the XREPTEXT DD statement when

you use the EDGHSKP RPTEXT parameter.

SYSPRINT No Contains the utility program messages that IDCAMS and ADRDSSU

issue when backing up the DFSMSrmm control data set. The

SYSPRINT data set is required when you specify the BACKUP

parameter. This data set can be a SYSOUT file.

XREPTEXT Yes Contains the extract copy of the DFSMSrmm control data set. The

extract copy is called the extract data set. You must specify either

the REPTEXT DD statement or the XREPTEXT DD statement when

you use the EDGHSKP RPTEXT parameter.

To avoid enqueue contention, consider these conditions:

v These data sets cannot be created in the same job as they are used. If you plan

to retain multiple versions of these data sets, consider using a subsequent job

step to copy the data sets to a new GDG generation.

v The JCL used to run EDGHSKP should specify DISP=SHR for these data sets.

Recommendation: For your regularly scheduled inventory management, use a

data set to serialize the jobs that run EDGHSKP to ensure that only one copy of

EDGHSKP is running on a system. You can run EDGHSKP with RPTEXT,

EXPROC, or CATSYNCH options at the same time on different systems. You can

also run EDGHSKP with the RPTEXT option at the same time on the same

system. To run each of these tasks in parallel, for example, to run EXPROC on

each system in a complex at the same time, use a different preallocated and

cataloged data set for each job instead of including the ENQDSN DD statement.

To avoid problems that might occur when multiple EDGHSKP jobs are running

together, add a DD statement to the job step that runs EDGHSKP as shown in

Figure 121:

//ENQDSN DD DISP=OLD,DSN=RMM.HSKP.ENQ

Figure 121. JCL for Adding a DD Statement to the EDGHSKP Job Step

330 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|||
|
|

Alternatively you can use the sample RMM OPC application which uses OPC

special resources to prevent multiple jobs running together as described in

Chapter 22, “Running DFSMSrmm with the IBM Tivoli Workload Scheduler for

z/OS,” on page 467.

To protect the data sets that must be preallocated, cataloged, and on DASD, ensure

that the RACF user ID associated with the DFSMSrmm subsystem has authority to

write to the data sets.

Recommendation: Always run DFSMSrmm with the optional files ACTIVITY and

REPORT. Maintain these files, as well as the MESSAGE, BACKUP, JRNLBKUP,

SYSPRINT, REPTEXT, and XREPTEXT files, as GDGs or copy them to GDGs. You

might find that multiple versions of the files are helpful for use in diagnosing

problems or for creating reports.

Creating an Extract Data Set

You can create an extract data set to use as input for creating reports. You can

create two types of extract data sets. They both contain information from the

DFSMSrmm control data set. The difference in the extract data sets is that the

extract created when you specify the XREPTEXT DD statement, contains additional

extended records that are a combination of data set information and volume

information that can be useful as input to DFSMSrmm reporting tools.

DFSMSrmm reads sequentially through its control data set, and creates a record in

the extract data set for each shelf location, volume, data set, software product,

owner and vital record specification record. DFSMSrmm can convert information like

the date information into a format you specify. The extract data set is a point-in-time

copy of the control data set contents. Use the RMM TSO SEARCH and LIST

subcommands to obtain the most current information.

You can use the extract data set as input to any of these programs:

v DFSMSrmm Report Generator

v DFSMSrmm report utility EDGRPTD

You can use the extract data set containing extended records as input to any of

these programs:

v DFSMSrmm Report Generator

v DFSMSrmm report utility EDGRPTD

v DFSMSrmm-supplied exec EDGRRPTE

Refer to z/OS DFSMSrmm Reporting for information about using the DFSMSrmm

Report Generator, EDGRPTD, and EDGRRPTE.

Calculating DASD Space and Placement for the Extract Data Set

Table 51 helps you calculate DASD space requirements for the extract data set

specified by the REPTEXT DD statement or the XREPTEXT DD statement.

 Table 51. DFSMSrmm Extract Data Set DASD Space Requirements

Extract Data Set Content DASD Space

Data sets v 475 KB for every 1000 data sets when

REPTEXT DD is specified.

v 1835 KB for every 1000 data sets when

XREPTEXT DD is specified.

Chapter 16. Performing Inventory Management 331

Table 51. DFSMSrmm Extract Data Set DASD Space Requirements (continued)

Extract Data Set Content DASD Space

Shelf locations in the library that do not

contain volumes

11 KB for every 1000 shelf locations

Shelf locations in storage locations 11 KB for every 1000 shelf locations

Owners 35 KB for every 1000 volumes

Software products 17 KB for every 1000 software products

Volumes 796 KB for every 1000 volumes

Vital record specification 20 KB for every 1000 vital record

specifications

Convert the final figure into a space allocation. The extract data set has a record

format of variable-length blocked records. Choose either a system-determined block

size, or a block size suitable for the device your installation uses.

To calculate the space required:

1. Divide the total KB of space by 4. This calculation gives you the number to use

in the space allocation.

2. Use a fraction of this total space as secondary space if you want to have an

extract data set that extends to multiple extents.

You can use JCL as shown in Figure 122 to create the extract data set prior to

running EDGHSKP.

 where:

pp Specifies the calculated primary space.

ss Specifies a fraction used for secondary space.

Placing the Extract Data Set

You can place the extract data set on any volume.

JCL for Creating an Extract Data Set

To create an extract data set, specify the RPTEXT parameter. You can submit a job

with JCL as shown in Figure 123. To create an extract data set that contains

extended records, uncomment the XREPTEXT DD statement. When you specify

both XREPTEXT and REPTEXT, DFSMSrmm uses the XREPTEXT DD statement.

 Use the DATEFORM parameter to specify the format for date fields in the report

extract data set. The DATEFORM parameter can take any of these values:

//REPTEXT DD DISP=(NEW,CATLG),DSN=RMM.EXTRACT.DSET,

// UNIT=SYSALLDA,AVGREC=U,SPACE=(4096,(pp,ss))

Figure 122. JCL for Specifying the Extract Data Set

 //HSKP EXEC PGM=EDGHSKP,

 // PARM=’RPTEXT,DATEFORM(E)’

 //MESSAGE DD DISP=SHR,DSN=HSKP.MESSAGES

 //REPTEXT DD DISP=SHR,DSN=MASTER.EXTRACT

 //*XREPTEXT DD DISP=SHR,DSN=MASTER.EXTENDED.EXTRACT

Figure 123. JCL for Creating an Extract Data Set

332 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Value Language Format Example

A American mm/dd/yyyy 12/15/1994

E European dd/mm/yyyy 15/12/1994

I ISO yyyy/mm/dd 1994/12/15

J Julian yyyy/ddd 1994/349

D Default Installation’s default in

EDGRMMxx

Initially set to Julian

DFSMSrmm provides the format of the records in the extract data set in mapping

macros. See z/OS DFSMSrmm Reporting for layouts of the macros. You can use

DFSORT to sort the extract data set records to create many types of reports.

For example, you could select the extract records that show volumes with

temporary-read errors. Sort the resulting list by descending number of errors. Use

this list to identify the damaged volumes that should be replaced. Then, you could

use the RMM CHANGEVOLUME subcommand with the

RELEASEACTION(REPLACE) operand to update DFSMSrmm with the required

action.

JCL for EDGHSKP

Figure 124 shows example JCL for EDGHSKP.

EXEC Parameters for EDGHSKP

Figure 125 on page 334 shows the EXEC parameters for EDGHSKP. DFSMSrmm

uses all the parameters except CATSYNCH, DATE, and VERIFY if you do not

specify PARM on the EXEC statement.

You can specify the EXEC parameters in any order, but DFSMSrmm processes

them in this sequence:

1. CATSYNCH processing

2. VRSEL vital record processing

3. DSTORE storage location management processing

4. EXPROC expiration processing

5. RPTEXT extract data set creation

6. BACKUP control data set and journal back up processing

 //HSKP EXEC PGM=EDGHSKP,

 // PARM=’VRSEL,EXPROC,DSTORE,BACKUP(DSS),RPTEXT,DATEFORM(E)’

 //SYSPRINT DD SYSOUT=A

 //DSSOPT DD *

 CONCURRENT OPTIMIZE(1) VALIDATE

 /*

 //BACKUP DD DSN=BACKUP.FILE.NAME,DISP=(NEW,CATLG),

 // UNIT=SYSALLDA,AVGREC=U,SPACE=(4096,(1000,500)),

 // LRECL=9216,BLKSIZE=0,RECFM=U

 //JRNLBKUP DD DSN=JOURNAL.BACKUP.FILE.NAME,DISP=(NEW,CATLG),

 // UNIT=SYSALLDA,AVGREC=U,SPACE=(4096,(1000,500)),

 // LRECL=9248,BLKSIZE=0,RECFM=VB

 //MESSAGE DD DSN=MESSAGE.FILE.NAME,DISP=SHR

 //REPORT DD DSN=REPORT.FILE.NAME,DISP=SHR

 //ACTIVITY DD DSN=ACTIVITY.FILE.NAME,DISP=SHR

 //*REPTEXT DD DSN=REPORT.EXTRACT.FILE.NAME,DISP=SHR

 //XREPTEXT DD DSN=REPORT.EXTENDED.EXTRACT.FILE.NAME,DISP=SHR

 //EDGSPLCS DD DSN=EDGSPLCS.FILE.NAME,DISP=SHR

Figure 124. Example of JCL for EDGHSKP

Chapter 16. Performing Inventory Management 333

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

The parameters on the EXEC statement are:

BACKUP(AMS|DSS)

Specify BACKUP to back up the control data set, to back up the journal or to

back up both the control data set and the journal. When you specify BACKUP

on the EXEC statement, you must also specify a DD statement. Specify

BACKUP DD when you back up the control data set and JRNLBKUP DD when

you back up the journal. You can also specify both DD statements in your

EDGHSKP JCL.

��

�

,

AMS

BACKUP(

DSS

)

RPTEXT

D

DATEFORM(

E

)

A

I

J

production_run_parameters

trial_run_parameters

 ��

production_run_parameters:

�

 ,

CATSYNCH

DSTORE(

dstore_parameters

)

EXPROC

VRSEL

dstore_parameters:

�

 ,

location_parameters

INSEQUENCE

REASSIGN

location_parameters:

 :*

LOCATION(

from_location

)

:to_location

trial_run_parameters:

 ,VRSEL

VERIFY

,CATSYNCH

,DATE(

date

)

+nnnn

Figure 125. EDGHSKP EXEC Parameters

334 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

BACKUP(AMS) is the default. DFSMSrmm uses the access method services

REPRO command to perform backup processing. Specify BACKUP(AMS) to

prevent DFSMSrmm from updating the control data set during control data set

backup processing. Backup cannot be directly to tape.

 Specify BACKUP(DSS) with the DFSMSdss concurrent copy environment set

up to permit the update of the DFSMSrmm control data set during backup

processing. This ensures that all tape activities can continue during backup

processing. You can specify BACKUP(DSS) without setting up the concurrent

copy environment. If you specify BACKUP(DSS), backup can be direct to tape.

 For journal backup, DFSMSrmm uses IDCAMS to back up the journal even

when BACKUP(DSS) is specified. When using EDGHSKP to perform back up,

the journal can be cleared. Refer to “Steps for Automating Control Data Set

Backup and Journal Clearing” on page 369 for information.

CATSYNCH

Specify CATSYNCH to update the DFSMSrmm control data set with information

from available user catalogs. Synchronizing the DFSMSrmm control data set

with the catalogs is normally a one-time setup exercise. See “Running

DFSMSrmm Catalog Synchronization” on page 359 for implementation details.

Before you can synchronize the DFSMSrmm control data set with user

catalogs, define system IDs by using the EDGRMMxx parmlib OPTION

CATSYSID operand as described in “Defining System Options: OPTION” on

page 175.

 Specify the EDGRMMxx parmlib OPTION CATSYSID(*) to indicate that catalogs

are fully shared and that any data set can be processed by DFSMSrmm on any

DFSMSrmm system. DFSMSrmm checks that the control data set has been

synchronized prior to performing vital record processing or expiration

processing. DFSMSrmm dynamically adds the CATSYNCH execution option

when the control data set and catalogs are not synchronized and the

EDGHSKP VRSEL or EXPROC parameters are specified.

 If CATSYSID is specified with specific system IDs, you cannot run vital record

processing until the control data set is synchronized with all user catalogs and

you have run EDGUTIL with the SYSIN statement CONTROL

CATSYNCH(YES). See “Creating or Updating the Control Data Set Control

Record” on page 400 for information about marking the control data set for

synchronization.

 Prior to synchronizing the DFSMSrmm control data set with available user

catalogs, you can specify the VERIFY parameter with the CATSYNCH

parameter to find differences between the DFSMSrmm control data set and the

user catalogs. When you run CATSYNCH with VERIFY prior to implementation,

you do not need to add the CATSYSID operand to parmlib. DFSMSrmm reports

all the differences so you can make updates, if required, to catalog information

before running CATSYNCH without the VERIFY parameter.

 When you run the CATSYNCH parameter with the VERIFY parameter on a

DFSMSrmm control data set that is already synchronized, and there are

differences found between the catalog and the DFSMSrmm information, the

differences are reported, but the DFSMSrmm control data set synchronization is

unchanged. You should review the differences and make any changes to the

catalogs as required and then use EDGUTIL UPDATE to mark the DFSMSrmm

control data set as not synchronized. The next time you run the CATSYNCH

parameter without the VERIFY parameter or when CATSYNCH is added

automatically by EDGHSKP, the DFSMSrmm control data set and catalogs are

synchronized again.

Chapter 16. Performing Inventory Management 335

DFSMSrmm adds information about the data sets that are synchronized in the

ACTIVITY report. It is expected that CATSYNCH is setup for unshared catalogs

in a client server environment.

DATE(date|+nnnn)

Specify DATE to set the date used for VERIFY processing.

 To specify a date with date, supply the year and day in one of two forms:

v yyddd, where yy is the last two-digit number for the year and ddd is the

three-digit number for the day of the year, such as 93001.

v yyyy/ddd, where yyyy is the four-digit number for the year and ddd is the

three-digit number for the day of the year, such as 1993/001. The slash is

required.

For dates in the year 2000 and or in the 21st century or higher, you can only

use the yyyy/ddd format. If you use the yyddd format, DFSMSrmm defaults to

the 20th century.

 To specify a number of days to add to the current date, supply +nnnn to

determine the actual date to be used for VERIFY processing. You specify the

value as a plus sign and the number of days, for example, to use the date in 7

days time specify DATE(+7).

 The current date is the default.

DATEFORM (A|E|I|J|D)

Specify DATEFORM to set the date format for records that are written to the

extract data set, records written to the ACTIVITY file, and any messages issued

during inventory management.

 Value Language Format Example

A American mm/dd/yyyy 12/15/1994

E European dd/mm/yyyy 15/12/1994

I ISO yyyy/mm/dd 1994/12/15

J Julian yyyy/ddd 1994/349

D Default Installation’s default in

EDGRMMxx

Initially set to Julian

The default date format for all date fields is the value specified in the parmlib

member EDGRMMxx. The value is initially set to J for Julian. To change the

date format for each run of EDGHSKP, use the DATEFORM parameter.

DSTORE

Specify DSTORE for storage location management processing.

LOCATION(from_location:to_location, ...)

Specify this parameter if you want to perform storage location management

processing by location.

 Specify a pair of location names separated by a colon. You can specify 1 to

8 pairs of from_location:to_location names.

 If you omit this parameter, DFSMSrmm performs storage location

management processing for all volumes that are required to move.

 The from_location is the name of the location from which the volume should

move. The to_location is the name of the destination for the volume.

 These location names can be specified in one of these ways:

336 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v Specify a specific location using 1 to 8 character names.

v Specify all locations using a single asterisk (*).

v Specify all locations that begin or end with specific characters, such as

ATL* or *DR.

v Use the percent sign % in the location name to replace a single

character. You can specify up to eight % in a location name mask.

DFSMSrmm does not validate the location names that you specify against

the DFSMSrmm LOCDEF entries or the names of SMS libraries.

INSEQUENCE

Specify INSEQUENCE for volumes that are required to move from a

non-bin-managed location to a bin-managed location.

 Storage location management processing assigns volumes to available bins

in volume sequence and bin sequence, starting with the lowest volume

serial number and the lowest bin number.

 All bins that become available in a single run of storage location

management processing can be reused for other volumes. Bins can

become available during storage location management processing under

these conditions:

v Global confirm move processing.

v Volumes starting a move out of the bin with parmlib option

REUSEBIN(STARTMOVE) specified.

If REASSIGN is also specified, the volumes that restart their move are

merged in sequence with those volumes that have just started their move.

Freed bins are merged with empty bins.

 Bins are best utilized, if INSEQUENCE and REASSIGN are specified and

parmlib option REUSEBIN(STARTMOVE) is also specified. Fewer empty

bins need to be defined.

 When you do not specify INSEQUENCE, the DFSMSrmm DSTORE

processing assigns volumes to bins in the sequence that volumes are

processed. Each time a volume is assigned to a bin, the lowest empty bin

number is used. The exact bin depends on the setting of the REUSEBIN

option.

REASSIGN

Specify REASSIGN for volumes that are already moving from a storage

location that is not bin-managed storage location and the required location

is either a bin-managed storage location or is different from the destination.

When you specify REASSIGN, you are canceling the move for these

volumes and requesting that the move for the volumes is restarted so that

DFSMSrmm could assign these volumes to other locations or bins.

 If the LOCATION parameter is specified, DFSMSrmm reassigns a volume

when at least one of the LOCATION subparameter pairs matches the

volume’s current location name and destination name.

EXPROC

Specify EXPROC for expiration processing. When you specify the EXPROC

execution parameter, you can also optionally specify the EXPROC command in

SYSIN to tailor expiration processing. See “SYSIN File for the EDGHSKP

EXPROC Utility” on page 338 for details.

Chapter 16. Performing Inventory Management 337

|
|
|
|
|

|
|
|
|

RPTEXT

Specify RPTEXT to create an extract data set. When you specify RPTEXT as

the only execution parameter you enable DFSMSrmm to create your extract at

the same time that other RPTEXT or inventory management requests are being

processed. When there are multiple requests, you must provide a MESSAGE

file and a REPTEXT file or an XREPTEXT file for each extract request.

VERIFY

Specify VERIFY to request that DFSMSrmm performs a trial run of selected

processing. You can run a trial run for vital record processing and catalog

synchronization. When you specify VERIFY, DFSMSrmm performs the

requested processing, but does not update the DFSMSrmm control data set as

a result of the processing.

 You could specify VERIFY to perform a trial run to test new vital record

specifications that you define to DFSMSrmm. Run VERIFY to confirm that your

new and changed retention and movement policies achieve the expected

results. If all you want to perform is a trial run of vital record processing, you

can specify VERIFY with or without the VRSEL parameter. You can use the

DATE parameter with VERIFY to set a date to perform VERIFY processing.

When you specify VERIFY, you can use all the inventory management

parameters except DSTORE and EXPROC. The ACTIVITY file is required when

you select the VERIFY option.

 The DFSMSrmm parmlib OPTION VRSCHANGE operand default of VERIFY

prevents inventory management vital record processing when there are policy

changes that have not been tested. You only need one successful run of

VERIFY before you can continue with inventory management processing. If

VERIFY completes successfully, but you do not obtain the vital record

specification results you expected, you must continue to modify policies and run

VERIFY until you obtain acceptable results.

VRSEL

Specify this parameter for vital record processing. To perform a trial run of vital

record processing, you can also specify the VERIFY parameter and optionally

the DATE parameter. Performing a trial run allows you to see how DFSMSrmm

vital record processing changes affect data set and volume information before

the control data set is updated.

SYSIN File for the EDGHSKP EXPROC Utility

When you specify the EXPROC execution parameter, an optional SYSIN file

EXPROC command allows you to select the subset of available locations and

volume entries to be processed during expiration. By default, all volumes in all

eligible locations are processed. You do not need to specify a subset of

system-managed libraries and volumes simply because some libraries or volumes

are not managed on the current system. DFSMSrmm automatically detects the

system-managed libraries that are available and skips volumes that cannot be

successfully returned to scratch on the current system.

The SYSIN file can be any data set including a JCL in-stream data set.

338 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

|
|
|
|
|
|
|
|

|
|

EXPROC

Use this command to specify the selection criteria for EXPROC processing. The

selection criteria you specify selects volumes for processing by EXPROC that

includes these aspects of expiration processing:

v Releasing expired volumes.

v Setting and processing individual release actions.

v Returning volumes to scratch status.

If you specified the EXPROC parameter and SYSIN command EXPROC, but

neither the VRSEL nor the DSTORE parameters were specified, global

confirmed actions and moves are not processed.

 If this run of EDGHSKP includes parameters other than EXPROC:

v DFSMSrmm processes all volumes, but only the selected volumes are

subject to EXPROC.

v Global confirmed actions and moves are completed if the DSTORE or

VRSEL parameters are specified.

By default, all volumes are processed. Only one EXPROC command can be

specified for the parameter EXPROC.

 These optional operands can be specified:

LOCATIONS(location_name)

Specifies a subset of the available volumes based on the volume's

current location for processing. The location names specified should be

a storage location defined via LOCDEF, an available system-managed

library on the current system, or shelf. Volumes to be released can be

in any location, but volumes can only be returned to scratch while not in

transit, and resident in a system managed library, shelf, or their home

location. A location_name is one-to-eight characters and can be a

location name mask. Each location_name can be specified in one of

these ways:

�� EXPROC exproc_parameters

NO

EDGSPLCS

(

YES

)

 ��

exproc_parameters:

�

�

�

�

,

,

LOCATIONS

(

location_name

)

,

VOLUMES

(

volser

)

,

VOLUMERANGES

(

startvolser:endvolser

)

Figure 126. EDGHSKP SYSIN File

Chapter 16. Performing Inventory Management 339

||||||||||||||||||||||||||||

|

|

||

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

v Specify a specific location using one-to-eight character names.

v Specify all locations using a single asterisk (*).

v Specify all locations that begin or end with specific characters, such

as ATL* or *DR, or multiple locations by using * within a location

name.

v Use % (percent sign) in the location name to replace a single

character. You can specify up to eight % in a location name mask.

DFSMSrmm does not validate the specified location names against the

DFSMSrmm LOCDEF entries or the names of the SMS libraries.

You can specify a list of up to eight values.

VOLUMES(volser)

Specifies a list of volumes to be processed. You can specify the

volumes as fully qualified or as a volser prefix ending in *. A fully

qualified volume is one-to-six alphanumeric, national or special

characters, but the first character must not be blank. Quotes are

required for special characters. Any value ending in *, even if it is

enclosed in quotes, is considered to be a volser prefix. You can specify

a list of up to eight values.

VOLUMERANGES(startvolser:endvolser)

Specifies a subset of volumes based on the starting and ending volsers

to be processed. The volsers must be one-to-six alphanumeric,

national, or special characters, but the first character must not be blank.

Quotes are required for each value regardless of the use of special

characters. The end of range must not be lower than the start of the

range. You can specify a list of up to eight values.

EDGSPLCS(YES|NO)

Use this operand to specify whether DFSMSrmm should return

system-managed volumes to scratch during EXPROC processing or to

write volume scratch statements in the EDGSPLCS file to be used with

the EDGSPLCS utility. When you specify EDGSPLCS(YES), EDGHSKP

opens the EDGSPLCS file. If the DD name is missing, EDGHSKP

issues message EDG6101E and ends with return code 12.

 A scratch (S) statement is written to the EDGSPLCS file for each

volume for which DFSMSrmm processing would normally have issued a

CUA request to OAM to return the volume to scratch. When you specify

EDGSPLCS(NO), each system-managed volume to be returned to

scratch is returned to scratch during EXPROC using a CUA request to

OAM.

 The default value is NO.

EDGSPLCS File for the EDGHSKP Utility

The EDGSPLCS file is a pre-allocated and cataloged file written to during

EDGHSKP EXPROC processing when selected via the SYSIN commands.

Figure 127 on page 341 shows JCL for allocating the EDGSPLCS file prior to

EDGHSKP processing:

340 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

|

|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|

|
|
|

Running Vital Record Processing

Vital records processing identifies the volumes that should be retained and how

they should be moved based on the vital record specifications you define. Use the

EDGRMMxx parmlib OPTION VRSMIN operand to specify the minimum number of

vital record specifications that must be defined in order to run inventory

management vital record processing. The default number of vital record

specifications is 1. You can also set other parmlib OPTION operands to control how

DFSMSrmm performs vital record processing as described in “Defining System

Options: OPTION” on page 175. You can retain data sets and volumes in several

ways. For example, you can retain volumes by generic volume serial number, data

sets for as long as they are cataloged, or by the job name that created the data set.

For more information about moving and retaining volumes with vital record

specifications, see z/OS DFSMSrmm Guide and Reference.

DFSMSrmm can create a report describing data sets and volumes being retained

and the location where the data set or volume resides. See Figure 130 on page 343

for an example of this report.

You can also request an ACTIVITY file as described in “Using the Inventory

Management ACTIVITY File” on page 347. DFSMSrmm can write details to the

ACTIVITY file about changes to data set information made during vital record

processing. The ACTIVITY file is optional except when the VERIFY EXEC

parameter is used to request that DFSMSrmm performs a trial run of vital record

processing.

JCL for Vital Record Processing

To request vital record processing, specify the VRSEL parameter. You can submit a

job with JCL as shown in Figure 128:

 To run a trial run of vital record processing, you can submit a job with JCL as

shown in Figure 129.

//EDGSPLCS DD DISP=(,CATLG),UNIT=SYSALLDA,SPACE=(TRK,(1,1)),LRECL=80,RECFM=FB ,

// DSN=MY.SPLCS.DATA(+1)

Figure 127. Sample JCL for Allocating the EDGSPLCS File prior to EDGHSKP Processing

 //HSKP EXEC PGM=EDGHSKP,

 // PARM=’VRSEL’

 //MESSAGE DD DISP=SHR,DSN=HSKP.MESSAGES

 //REPORT DD DISP=SHR,DSN=HSKP.VRS.REPORT

 //ACTIVITY DD DISP=SHR,DSN=HSKP.ACTIVITY

Figure 128. Example of JCL for Vital Record Specification Processing

 //HSKP EXEC PGM=EDGHSKP,

 // PARM=’VRSEL,VERIFY’

 //MESSAGE DD DISP=SHR,DSN=HSKP.MESSAGES

 //REPORT DD DISP=SHR,DSN=HSKP.VRS.REPORT

 //ACTIVITY DD DISP=SHR,DSN=HSKP.ACTIVITY

Figure 129. Example of JCL for Trial Run Vital Record Specification Processing

Chapter 16. Performing Inventory Management 341

|
|
||
|
|

You can request that DFSMSrmm create a REPORT file shown in “Using the Vital

Records Retention Report.” DFSMSrmm creates a report that contains data sets

and volumes being retained, the vital record specification that is retaining the data

set or volume, and the required location for the data set or volume. When you use

VRSEL(NEW), the report also contains lists of the unused vital record specification

chains.

You can specify the LRECL for the REPORT file. The LRECL can be a value from

133 to 255. If you specify an LRECL that is 148 or higher, only a single line is

displayed for a retained data set. If you specify a value less than 148, DFSMSrmm

uses two lines to display data set information. The page, date, and time fields in the

report are right aligned assuming a record length of 133 characters.

The minimum LRECL must include one byte for the ASA print control character. If

you use variable length record format for the REPORT file, then you must add four

bytes to the minimum record length to hold the descriptor word. This means that if

your REPORT file contains variable length records with a data length of 132 bytes,

then you must define the minimum LRECL as 137 bytes.

You can also request an ACTIVITY file as described in “Using the Inventory

Management ACTIVITY File” on page 347. The ACTIVITY file is optional except

when the VERIFY EXEC parameter is used to request that DFSMSrmm performs a

trial run of vital record processing.

Using the Vital Records Retention Report

Use the Vital Records Retention Report to check the vital record specifications that

match to data sets and to see which versions of the data sets are being retained.

The report file lists the required location for each data set and volume. Use the

EDGRPTD movement report to identify the destination selected for each volume

after VRSEL processing is completed and DSTORE and RPTEXT have been run.

Figure 130 on page 343 shows a sample of the report produced by vital record

processing. You can use the information in the Vital Records Retention Report and

the last reference date in the vital record specification extract records to manage

your vital record specifications and delete any that are no longer required.

342 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

REMOVABLE MEDIA MANAGER VITAL RECORDS RETENTION REPORT PAGE 120

 Copyright IBM CORPORATION 1993,2006 ----- ------- --------- ------ TIME 11:21:02 DATE 03/22/2006

JOB MASK DATA SET OR VOLUME MASK (CONTINUED) OWNER TYPE RETN C X DELETE DLY COUNT STNUM LOCATION RLSE LASTREF

__

 .GDG..ICRMT.** X002 DSN CYCLES Y N 12/31/1999 0 99999 99999 LOCAL 03/22/2001

JOB NAME DATA SET NAME (CONTINUED) 2ndVRS 2ndNAME FSEQ DSEQ VOLUME VSEQ OWNER CURRENT REQUIRED PRTY RETDATE RETNAME

__

X015IJIC DT04.GDG.DSNDB06.ICRMT.SYSSTR.G0001V00 12 12 L01699 1 X015 LOCAL LOCAL 300 WHILECATLG *

NUMBER OF DATA SETS RETAINED (GROUP STORE) = 1 1

X015IJIC DT04.GDG.DSNDB06.ICRMT.SYSUSER.G0001V00 11 11 L01699 1 X015 LOCAL LOCAL 300 WHILECATLG *

NUMBER OF DATA SETS RETAINED (GROUP STORE) = 1 1

X015IJIC DT04.GDG.DSNDB06.ICRMT.SYSVIEWS.G0001V00 13 13 L01699 1 X015 LOCAL LOCAL 300 WHILECATLG *

NUMBER OF DATA SETS RETAINED (GROUP STORE) = 1 1

JOB MASK DATA SET OR VOLUME MASK OWNER TYPE RETN C X DELETE DLY COUNT STNUM LOCATION RLSE LASTREF

__

 .GDG..IMGCPY2.** X002 DSN CYCLES Y N 12/31/1999 0 99999 99999 LOCAL 03/22/2001

JOB NAME DATA SET NAME 2ndVRS 2ndNAME FSEQ DSEQ VOLUME VSEQ OWNER CURRENT REQUIRED PRTY RETDATE RETNAME

__

QDP0900D DB2Q1.GDG.DSNDB01.IMGCPY2.DBD01.G0889V00 1 1 L00504 1 OPCESA LIB1 LOCAL 300 WHILECATLG *

QDP0900D DB2Q1.GDG.DSNDB01.IMGCPY2.DBD01.G0888V00 1 1 L00358 1 OPCESA LIB1 LOCAL 300 WHILECATLG *

QDP0900D DB2Q1.GDG.DSNDB01.IMGCPY2.DBD01.G0887V00 1 1 L01761 1 OPCESA LIB1 LOCAL 300 WHILECATLG *

QDP0900D DB2Q1.GDG.DSNDB01.IMGCPY2.DBD01.G0886V00 1 1 L01659 1 OPCESA LIB1 LOCAL 300 WHILECATLG *

NUMBER OF DATA SETS RETAINED (GROUP STORE) = 4 4

Figure 130. Sample Vital Records Retention Report (Part 1 of 2)

REMOVABLE MEDIA MANAGER UNUSED VRS CHAINS REPORT PAGE 121

 Copyright IBM CORPORATION 1993,2006 ------ --- ------ ------ TIME 11:21:02 DATE 03/22/2006

JOB MASK DATA SET OR VOLUME MASK OWNER TYPE RETN C X DELETE DLY COUNT STNUM LOCATION RLSE LASTREF

__

 *.BACKUP.** LIB DSN CYCLES Y N 12/31/1999 0 99999 99999 LOCAL 01/23/1992

 *.IMGCPY.IMSDB.** LIB NAME DAYS N Y 12/31/1999 0 99999 99999 HOME 12/12/2004

 VITAL.** LIB DSN CYCLES Y N 12/31/1999 0 99999 99999 CURRENT IX 05/27/2003

Figure 130. Sample Vital Records Retention Report (Part 2 of 2)

Chapter 16. Performing Inventory Management 343

The data columns in the vital records retention report provide this information:

JOB MASK

The job name mask defined for the vital record specification.

DATA SET OR VOLUME MASK

The data set name mask or generic volume serial number defined for the vital

record specification. In addition to the data set name mask or the volume serial

number, this field can contain descriptive text about a vital record specification

chain.

OWNER

Owner ID of the vital record specification owner.

TYPE

Type of vital record specification: one of AND, DSN, GDG, NEXT, PGDG, or

VOL.

v AND designates a NAME vital record specification which is pointed to by a

vital record specification with the ANDVRS operand.

v DSN for data set vital record specification.

v GDG designates a data set vital record specification with the GDG operand

specified.

v NEXT designates a NAME vital record specification which is pointed to by a

vital record specification with the NEXTVRS operand.

v PGDG designates a data set vital record specification with a

pseudo-generation data set name mask.

v VOL for volume vital record specification.

RETN

Type of retention for data set vital record specifications and name vital record

specifications:

BYDAYC

Retention type is BYDAYSCYCLE.

CYCLES

Retention type is CYCLES.

DAYS

Retention type is DAYS since creation.

LRDAYS

Retention type is LASTREFERENCEDAYS.

XDAYS

Retention type is EXTRADAYS.

C Y if the WHILECATALOG option applies. N if the WHILECATALOG option does

not apply.

X Y if the UNTILEXPIRED option applies. N if the UNTILEXPIRED option does

not apply.

DELETE

The date DFSMSrmm deletes the vital record specification.

DLY

The number of days that DFSMSrmm delays the latest copy of a data set or

volume before sending it to the named location

COUNT

Total number of retention days or cycles for a data set, total number of retention

344 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

days for a single volume, total number of volumes for generic volume. The

number of days, cycles, or volumes is listed for each vital record specification in

the chain that contains retention information. The report lists the total number of

data sets retained in the current group at the end of each group of retained

data sets.

STNUM

Lists the vital record specification store number value. The store number value

is the number of days to retain a data set or volume, the number of data set

cycles to retain, or the number of volumes to retain. STNUM is blank for AND

vital record specifications. The report lists the total number of data sets in the

current group that are requested to be retained outside of their home location.

LOCATION

The location in which the data set or volume should be retained. LOCATION is

blank for AND vital record specifications.

RLSE

Lists the vital record specification release options in the data set vital record

specification. RLSE can be IX SI, IX, or SI. IX is EXPIRYDATEIGNORE and SI

is SCRATCHIMMEDIATE.

LASTREF

Lists the last reference date DFSMSrmm maintains for the vital record

specification. The last reference date is the value from the vital record

specification records at the start of VRSEL processing. DFSMSrmm only

updates the last reference date in a vital record specification after both the

REPORT file and VRSEL processing has completed.

JOB NAME

The job that created the data set.

DATA SET NAME OR VOLUME MASK

Data set name. For data set names that exceed 30 characters and that match

to a primary vital record specification and a secondary vital record specification,

DFSMSrmm splits the output line to display all the data set information.

2ndVRS

Lists the management value vital record specification or management class vital

record specification when a data set matches to both a primary and secondary

vital record specification. If the management class vital record specification or

management value vital record specification is currently retaining the data set,

DFSMSrmm puts the name of the vital record specification that is retaining the

data set in the 2nd NAME field.

2ndNAME

Lists the name of the first vital record specification in the secondary vital record

specification chain that retains the data set. This field is always filled when a

data set is retained by a secondary vital record specification. When vital record

specifications are chained using AND, DFSMSrmm puts the name of the first

vital record specification in this field. This field is blank when a data set is

retained by a primary vital record specification.

FSEQ

Physical file sequence number.

DSEQ

Data set sequence number on the named volume.

VOLUME

Volume serial number.

Chapter 16. Performing Inventory Management 345

VSEQ

Volume sequence number.

OWNER

Owner ID of the volume and data set owner.

CURRENT

Current location of the volume.

REQUIRED

Destination of the volume based on the matching vital record specification.

When there are multiple data sets on a volume, DFSMSrmm displays the

destination for the volume using the priority of each of the required locations

identified for the volume. The volume’s destination is calculated based on the

location priorities described in Table 52 on page 352. If there are multiple data

sets on a volume or the volume is retained using multiple vital record

specifications, the required location listed in the report might be different from

the destination to which DFSMSrmm attempts to move the volume.

 When the RETDATE is CATRETPD, this field contains the volume’s current

location.

PRTY

Defined or defaulted relative priority of the location.

RETDATE

Lists information for individual data sets and volumes. This field contains the

retention date calculated by vital record processing. The meaning of the

retention date depends on the retention type of the vital record specification.

See z/OS DFSMSrmm Guide and Reference for information about how

DFSMSrmm calculates the retention date.

BYDAYSCYCLE

For the BYDAYSCYCLE retention type, RETDATE is displayed

as a special date format CYCL/ccccc. ccccc is the COUNT

value for cycles used in the vital record specification.

CYCLES For the CYCLES retention type, RETDATE is displayed as a

special cycles date format, CYCL/ccccc, where ccccc is the

COUNT value for cycles used in the vital record specification.

DAYS For the DAYS retention type, RETDATE is displayed as the

date calculated by vital record selection processing. This is the

COUNT value added to the data set creation date or the

volume assigned date.

EXTRADAYS For the EXTRADAYS retention type, RETDATE is a date

calculated by inventory management vital record processing.

The RETDATE is the COUNT value in the vital record

specification chain added to the date when the subchain started

to retain the data set.

LASTREFERENCEDAYS

For the LASTREFERENCEDAYS retention type, RETDATE is

displayed as the date calculated by the vital record selection

processing. This is the COUNT value added to the date the

data set or volume was last referenced.

UNTILEXPIRED

For the UNTILEXPIRED retention type, DFSMSrmm calculates

the RETDATE based on the presence of a secondary vital

record specification. When a secondary vital record

346 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

specification retains a data set, the UNTILEXPIRED retention is

based on the retention type in the secondary vital record

specification. The retention type can be any of the date formats

specified for CYCLES, DAYS, LASTRERENCEDAYS,

WHILECATALOG, BYDAYSCYCLE, and EXTRADAYS. If the

secondary vital record specification contains WHILECATALOG,

the retention date is WHILECATLG as long as the data set is

cataloged.

WHILECATALOG

Retention date for WHILECATALOG can be the special catalog

date format, WHILECATLG or CATRETPD. When the

RETDATE is WHILECATLG, the data set is retained by a vital

record specification with the WHILECATALOG retention type

and the data set is cataloged. CATRETPD is used when the

data set is not cataloged and is created within the period

defined by the parmlib OPTION CATRETPD operand.

DFSMSrmm retains the data set for the catalog retention period

if the data set has never been cataloged. DFSMSrmm does not

retain the data set if DFSMSrmm detected that the data set was

cataloged and then uncataloged during the catalog retention

period. DFSMSrmm sets the REQUIRED field to the volume’s

current location and does not include the data set in the cycle

count.

RETNAME

RETNAME displays the name of the current vital record specification in the

primary vital record specification chain that retains the data set as follows:

v The first vital record specification in the subchain for ANDVRS groups

v An * if the retaining vital record specification is a data set name vital record

specification in a primary vital record specification

v A blank for when a secondary vital record specification retains a data set

NUMBER OF DATA SETS RETAINED (GROUP STORE)

Lists two numbers. The first is the number of data sets or volumes retained by

the vital record specification. The second is the number of data sets or volumes

retained in a storage location.

Using the Inventory Management ACTIVITY File

DFSMSrmm provides the VERIFY function to perform a trial run of vital record

processing and synchronize catalog processing so you can see the results of

processing on a production run.

The ACTIVITY file is optional except during VERIFY processing. During VERIFY

processing, the ACTIVITY file is required so that you can analyze processing results

before they are actually performed. The ACTIVITY file is a pre-allocated DASD data

set, like the REPORT file. The ACTIVITY file is a variable blocked file with the

record length set to the largest record created by DFSMSrmm. The block size is

determined by the system.The ACTIVITY file is not intended to be a report, but to

contain detailed information about changes made to data sets during DFSMSrmm

processing. The DFSMSrmm supplied sample EDGJHKPA shows the JCL to

allocate the ACTIVITY file.

DFSMSrmm writes an activity record for data set changes only when a change is

identified in the ACTD_CHANGE section of the record. During processing if an

ACTIVITY file is allocated, DFSMSrmm writes information about changes in the

Chapter 16. Performing Inventory Management 347

data set information, such as matching vital record specification, vital record status,

retention date and catalog status to the ACTIVITY file. If VERIFY processing is

being run, the changes are not actually made.

You can view the ACTIVITY file on-line. To print the ACTIVITY file, use a product

like DFSORT or DFSORT ICETOOL to selectively format and print fields.

DFSMSrmm provides a sample job EDGJACTP in SAMPLIB to print the ACTIVITY

report. See z/OS DFSMSrmm Reporting for information about the reports you can

produce with the sample job.

How Vital Record Processing Works

This topic describes how vital record processing works.

 1. You control how vital record processing works by using the EDGRMMxx

parmlib OPTION command options CATRETPD, MOVEBY, RETAINBY,

VRSJOBNAME, VRSCHANGE, VRSMIN, and VRSEL as described in

“Defining System Options: OPTION” on page 175.

 2. You must run vital record processing when you add or change a vital record

specification for DFSMSrmm to apply the policy defined by the vital record

specification. You should reclaim any volumes that are pending release or

ready to return to scratch to avoid data loss. Use the RMM CHANGEVOLUME

subcommand to change the status of these volumes to reclaim them

 3. As part of vital record processing, DFSMSrmm checks that data set name

masks and job name masks used in vital record specifications are specified

according to DFSMSrmm naming conventions. z/OS DFSMSrmm Guide and

Reference provides information on defining vital record specifications.

DFSMSrmm compares the data set, job name, and volume information

recorded in the control data set with information in the vital record

specifications to determine which data sets and volumes to retain and the

processing required. This includes any volumes with special JCL specified

expiration dates used by your installation. See “Managing Volumes with

Special Dates” on page 112.

 4. DFSMSrmm deletes any vital record specifications that have reached their

automatic deletion date from the control data set. When a vital record

specification is deleted, no data set or volume information is changed.

DFSMSrmm uses only the remaining vital record specifications to apply

policies. If the data set or volume matches to another remaining vital record

specification, DFSMSrmm applies those policies.

 5. DFSMSrmm retains stacked volumes based on how the contained volumes are

retained. The stacked volume is retained by a vital record specification if any

contained volume is retained on a volume basis or data set basis. DFSMSrmm

sets the stacked volume’s retention date to the highest retention date of all

contained volumes. DFSMSrmm sets the required location of the stacked

volume using location priority.

 6. During vital record processing, DFSMSrmm records information about the

matching vital record specification name and retention date that DFSMSrmm

sets for the data set or volume. If the data set or volume does not match to

any vital record specifications, and is no longer retained by a vital record

specification, the data sets are eligible for expiration processing.

 7. DFSMSrmm determines the release options for each data set and sets them at

the volume level. Release options can be determined regardless of whether a

data set is retained as a vital record. When there are multiple data sets on a

volume, the results for release option processing are such that:

348 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v If any data set on a volume is or has been retained by a vital record

specification, the release options for the volume are set only from data sets

that are retained by a vital record specification.

v If no data sets on a volume are vital record specification retained and none

of them have yet been retained by a vital record specification, and the

volume is not yet retained by a volume vital record specification, the release

options are taken from any data sets that match to a vital record

specification. Both primary and secondary vital record specification matches

are considered.

 8. DFSMSrmm saves movement and retention information in each volume record.

DFSMSrmm also saves retention information in each data set record.

v When a data set is retained by a vital record specification, DFSMSrmm sets

the data set retention date to the date calculated during vital record

processing.

v When a data set is no longer retained by a vital record specification,

DFSMSrmm sets the data set retention date to the date vital record

processing started.

v When a volume is pending release or scratch, or is no longer retained by a

vital record specification, DFSMSrmm does not change the retention date

that was already set.

v DFSMSrmm uses the highest data set retention date on the volume to set

the volume retention date.

 9. See “Confirming Global Volume Movement” on page 364 for information about

the global move confirmation processing that takes place during vital record

processing.

10. Any volume no longer retained by a vital record specification is updated to

indicate that it is not retained by a vital record specification and the retention

date is set to the date that inventory management is run.

How DFSMSrmm Processes Vital Record Specification Chains

DFSMSrmm validates vital record specification chains by checking for the existence

of the next link in a vital record specification chain. If the next link in the vital record

specification chain is missing, DFSMSrmm issues message EDG2230I.

Any data sets that match to an incomplete chain are retained by a special broken

vital record specification. The special broken vital record specification uses the

name *broken* and is listed in the REPORT and ACTIVITY files and in the data set

matching vital record specification information. With VRSEL(NEW), the broken vital

record specification uses a permanent retention date. With VRSEL(OLD), the

broken vital record specification ensures the data set is retained to the maximum of

the COUNT value in the first vital record specification.

When the EDGRMMxx parmlib member OPTION VRSEL(NEW) operand is used,

you can define policies using individual vital record specifications and vital record

specification groups or subchains. During inventory management DFSMSrmm

processes vital record specifications based on the parmlib VRSEL operand value

you define. When a data set matches to a vital record specification, DFSMSrmm

uses the retention information to retain the data set. Once the retention criteria has

been met, the next vital record specification in the chain is used, and so on, until

the end of the chain is reached. Each time you run vital record processing,

DFSMSrmm processes from the start of the chain in case any of the earlier

retention criteria apply again.

Chapter 16. Performing Inventory Management 349

How DFSMSrmm Processes Primary and Secondary Vital Record

Specifications

You can define both a primary and secondary vital record specification to retain a

data set. DFSMSrmm matches the data set to the vital record specification based

on data set name, jobname, management class, vital record specification

management value, the ABEND and OPEN reserved names, or the ’**’ data set

name mask. DFSMSrmm matches the data set to the secondary vital record

specification based on management class or vital record specification management

value if the primary match is on data set name, but not ’**’.

When you use the parmlib member EDGRMMxx OPTION VRSEL(NEW) operand,

DFSMSrmm uses this criteria to retain the data set:

v Retained by the primary data set name vital record specification

Location is taken from the primary data set name vital record specification.

Retention date is calculated based on the values set in the current subchain of

the primary vital record specification. Release actions are determined by values

that are set in the primary vital record specification.

v Retained by the primary data set name vital record specification including the

UNTILEXPIRED retention type in the current subchain

Location is taken from the primary data set name vital record specification.

Retention date is calculated based on the values set in both the primary vital

record specification and the secondary vital record specification. The retention

date is the earliest date of the two current vital record specifications. Release

actions are determined by values that are set in the primary vital record

specification.

v Retained by the secondary vital record specification and not the primary vital

record specification

Location is taken from the secondary vital record specification. Retention date is

the calculated based on the value set in the secondary vital record specification.

Release actions are determined by values that are set in the secondary vital

record specification.

v Not retained by any vital record specification

Combining Retention Types

When you use the parmlib OPTION VRSEL(NEW) operand, you can define vital

record specifications so that DFSMSrmm retains the data set or volume by

combining the retention information from two vital record specifications. When the

EDGRMMxx parmlib OPTION VRSEL(NEW) operand is used, DFSMSrmm

processes both primary and secondary vital record specifications to retain a data

set. DFSMSrmm can combine retention information from the two vital record

specifications and apply the combined retention to a data set. Use the

UNTILEXPIRED retention type in the primary vital record specifications to combine

its retention with the retention in the secondary vital record specification. When

UNTILEXPIRED is specified in a primary vital record specification, DFSMSrmm

looks at the secondary vital record specification to determine if UNTILEXPIRED is

true or not. If DFSMSrmm finds no secondary vital record specification that matches

a data set or if UNTILEXPIRED is specified in the secondary vital record

specification, then DFSMSrmm uses the volume expiration date to determine if

UNTILEXPIRED is true or not.

350 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

How DFSMSrmm Selects Retention and Movement Policies

DFSMSrmm retains data sets and volumes using policies you define in vital record

specifications by matching data sets and volumes to vital record specifications.

DFSMSrmm matches data sets with data set names and job names specified in the

vital record specification.

You can define policies for specific data sets and volumes. You can also define

system-wide policies for all data sets not covered by a specific policy.

The data set name masks ** and primary vital record specification *.** match to all

data sets not covered by a more specific vital record specification. DFSMSrmm

matches a vital record specification with the data set name mask *.** to a data set

before matching to a vital record specification with a vital record specification

management value. DFSMSrmm uses the vital record specification with the data set

name mask ** to cover any data sets that do not match to any other vital record

specifications. You can use these data set name masks to define a system-wide

retention policy.

When you specify the parmlib OPTION VRSEL(NEW), DFSMSrmm matches a data

set to a secondary vital record specification when the data set first matches to a

vital record specification with a data set name mask, except **.

You can select how DFSMSrmm uses data set name and job name in matching

with the parmlib OPTION VRSJOBNAME operand described in “Defining System

Options: OPTION” on page 175. z/OS DFSMSrmm Guide and Reference provides

information on defining vital record specifications and how to retain and move data

sets and volumes.

Considerations for Retaining Data Sets and Volumes

Any volumes that are currently open or left open are listed in message EDG2404W.

If you do not want to retain those volumes that are left open from processing errors

or abends, you can use the RMM DELETEVOLUME volser RELEASE command to

release those volumes.

You can also define vital record specifications with the reserved data set name

mask or jobname mask OPEN to manage volumes that are left open. You can use

the reserved data set name mask or jobname mask ABEND in a vital record

specification to specify policies for data sets closed as a result of an abnormal end

in a task. See z/OS DFSMSrmm Guide and Reference for information on defining

vital record specifications.

Data sets and volumes that have reached or passed their expiration date and that

are not to be retained are subject to normal expiration and release processing. You

can control when DFSMSrmm releases volumes by using the parmlib OPTION

VRSEL(NEW) operand. After specifying the VRSEL(NEW) operand, you can define

vital record specifications that ignore the expiration date so that volumes are

released before their expiration date. See “How Expiration Processing Works” on

page 356 for more information.

Moving Volumes

During inventory management, DFSMSrmm identifies the destination for a volume.

DFSMSrmm uses the location priority value to resolve movement conflicts when a

volume is destined for more than one location. Priority values as shown in Table 52

on page 352 are purely relative and do not have any further significance. If more

than one destination is identified, and the locations are not the same, the

DFSMSrmm default priorities are based on these conditions:

Chapter 16. Performing Inventory Management 351

v If none of the locations are storage locations, DFSMSrmm selects the most

automated location that is based on the location priority.

v If one or more storage locations is specified for a single volume, DFSMSrmm

stores the volume in the location based on the DFSMSrmm default location

priority, the priority set in the LOCDEF command for the location, or the priority

specified in a vital record specification. The lower priority numbers take

precedence. For example, a volume would move to a location with a priority

value 100 before moving to a location with a priority value of 200. You can set a

priority value with the PRIORITY operand on the LOCDEF parmlib command to

define the relative importance of locations.

You can define PRIORITY on RMM ADDVRS subcommands to override default

or assigned priorities at the data set level. When you do not set a priority value,

DFSMSrmm uses the priority shown in Table 52.

 Table 52. DFSMSrmm Movement Priority Default Values

Priority Number Location Name or Location Type

100 REMOTE DFSMSrmm built-in storage location name

200 DISTANT DFSMSrmm built-in storage location name

300 LOCAL DFSMSrmm built-in storage location

2000 Installation defined storage locations

4800 AUTO automated tape libraries

4900 MANUAL manual tape libraries

5000 SHELF location name

For stacked volumes, DFSMSrmm determines the required location using the

required location of each of the volumes in the same container that is retained by a

vital record specification. Conflicts in locations are resolved using movement priority.

Volumes requiring movement are identified for storage location management

processing. Storage location management processing sets the destination for the

volume and allocates shelf locations, based on the destination specified in the vital

record specification. See “How Storage Location Management Processing Works”

on page 353 for more information.

You can request that DFSMSrmm retain a volume in its existing location instead of

specifying a storage location or the home location. You define the location in a vital

record specification by using the CURRENT reserved location name. When you run

vital record processing, DFSMSrmm keeps the volume in the current location rather

than scheduling the volume for a move.

Inventory Management Trial Run

You can run a trial run of inventory management vital record processing before

DFSMSrmm makes the changes. The trial run lets you see how the vital record

specifications you defined would be processed in a production run except that

DFSMSrmm does not make any changes to the control data set.

1. Allocate the ACTIVITY file that DFSMSrmm uses to record data set changes

that would result during inventory management vital record processing.

2. Submit an inventory management job using JCL as shown in Figure 129 on

page 341 to request a trial run of vital record processing. Perform step 3, 4, and

5 until you are satisfied that the correct policies are in place.

3. Analyze the ACTIVITY file to see what changes would have occurred based on

the vital record specifications you defined.

352 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

4. Change vital record specifications by deleting and adding vital record

specifications as needed to correct the policies you want in place.

5. Check the EDGRMMxx member OPTION VRSCHANGE operand value. Make

sure VRSCHANGE(VERIFY) is specified so that DFSMSrmm issues message

EDG2308I if any changes are made since the last run of inventory

management.

6. Submit an inventory management job requesting a production run of vital record

processing after you have completed making changes to the vital record

specifications.

Running Storage Location Management Processing

Request storage location management processing when you are using vital record

specifications to identify data sets and volumes to be moved between locations or

using RMM TSO CHANGEVOLUME subcommands to move volumes between

system-managed libraries and between storage locations. Manual moves using the

RMM CHANGEVOLUME subcommand could be used to support dynamic

shelf-management. Vital record processing sets the required location where a

volume should be stored. Storage location management sets the destination for the

volume and optionally assigns the exact shelf location to be used for the volume

while it is in the storage location.

JCL for Storage Location Management Processing

To request storage location management processing, specify the DSTORE

parameter. You can submit a job with JCL similar to Figure 131.

 To move all volumes from one location to another location using the INSEQUENCE

and REASSIGN parameters, you can submit a job with JCL that is similar to

Figure 132.

How Storage Location Management Processing Works

Storage location management processing assigns volume destinations and sets

required volume destinations that are based on the results of other inventory

management functions. Storage location management must be run after vital record

processing because the volume destinations are determined by vital record

processing. See “DFSMSrmm Support for Stacked Volumes When Stacked Volume

Support Is Enabled” on page 133 and “DFSMSrmm Support for Stacked Volumes

When Stacked Volume Support Is Not Enabled” on page 137 for information about

the processing sequence you must use when a VTS is in use. See “Confirming

Global Volume Movement” on page 364 for information about the global move

confirmation processing that takes place during vital record processing.

 //HSKP EXEC PGM=EDGHSKP,

 // PARM=’DSTORE’

 //MESSAGE DD DISP=SHR,DSN=HSKP.MESSAGES

Figure 131. Example of JCL for Storage Location Management Processing

 //HSKP EXEC PGM=EDGHSKP,

 //PARM=’DSTORE(LOCATION(SHELF:VAULT),INSEQUENCE,REASSIGN)

 //MESSAGE DD DISP=SHR,DSN=HSKP.MESSAGES

Figure 132. Example of JCL for Storage Location Management Processing Using the

LOCATION, INSEQUENCE, and REASSIGN Parameters

Chapter 16. Performing Inventory Management 353

Storage location management processing assigns a shelf location, known as the bin

number, to volumes moving to and among shelf-managed storage locations and

sets a destination storage location. If the volume destination is a system-managed

tape library, DFSMSrmm does not assign a bin number.

When you have enabled stacked volume support, storage location management is

performed for stacked volumes, not for contained volumes. For contained volumes,

the location of the stacked volume identifies the contained volume location.

DFSMSrmm sets the required location for the stacked volume based on the

required location defined for all volumes contained in the stacked volume. At the

completion of export processing, the stacked volume has a required location. The

required location is set during export based on the required location and priority of

each exported volume. At the completion of export processing, the required location

is used to set a destination if the location is not a shelf-managed storage location. If

the destination location is shelf-managed, DFSMSrmm sets the destination during

storage location management and assigns a bin number.

When you do not enable stacked volume support, DFSMSrmm does not consider

the stacked volume when performing storage location management.

DFSMSrmm marks volumes that are not residing in a system-managed library as

’intransit’. DFSMSrmm marks volumes that are residing in system-managed libraries

as ’intransit’ only after you eject them.

Recommendation: After successful storage location processing, schedule a job or

job step to eject all volumes to be moved using the bulk output station. To

automatically eject physical volumes, add the job step shown in Figure 133 to the

job that runs EDGHSKP vital record processing and storage location management

processing.

 The job step shown in Figure 133 runs the batch TMP and uses DFSMSrmm TSO

subcommands to produce a list of volumes to be ejected and then uses the list to

initiate the ejects. To eject stacked volumes, you can use the same DFSMSrmm

TSO subcommands that you used for physical volumes to generate a list to be

ejected, but you must use the list to enter the requests at the Library Manager

console.

You can override automatic vital record specification location selection by using the

RMM CHANGEVOLUME subcommand. See “Moving Volumes Manually” on page

161 for more information.

To select a suitable bin number for a volume moving to a storage location,

DFSMSrmm uses the volume media name and the LOCDEF media names. If the

media name is specifically defined on LOCDEF, DFSMSrmm looks for a bin number

which is empty and uses the same media name. If the specific media name is not

found, DFSMSrmm checks if ’*’ is defined on the LOCDEF command. If it is, then

DFSMSrmm looks for a bin with a media name of ’*’. If neither the specific media

 // EXEC PGM=IKJEFT01

 //SYSTSPRT DD SYSOUT=*

 //SYSTSIN DD *

 RMM SEARCHVOLUME VOLUME(*) OWNER(*) LIMIT(*) -

 LOCATION(atlname) DESTINATION(storename) -

 INTRANSIT(N) CLIST(’RMM CHANGEVOLUME ’,’ EJECT(BULK)’)

 EXEC EXEC.RMM.CLIST

 /*

Figure 133. Automatically Ejecting Volumes from System-managed Libraries

354 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

name nor ’*’ is found on the LOCDEF command, then the volume cannot be sent to

that location, and DFSMSrmm issues message EDG2412E.

To determine if a volume move is required, DFSMSrmm uses vital record

processing information. If a move to a shelf-managed storage location is required,

DFSMSrmm selects an empty bin in the target location and assigns it to the volume

based on media name and LOCDEF information.

If there are no empty bin numbers available in a storage location, DFSMSrmm

issues message EDG2403E. Inventory management continues and DFSMSrmm

does not change the status of the volumes destined for a storage location which

has no empty bin numbers. The volumes are moved in subsequent inventory

management runs after more empty bin numbers are added, or when existing bin

numbers are freed by other volumes being moved out of the storage location. After

you have corrected the problem, request storage location management processing

again.

If you move volumes by set, DFSMSrmm sets the same required location for all the

volumes in the set that are retained by vital record specifications. DFSMSrmm sets

the location based on the priority of each volume’s required location. See “Defining

System Options: OPTION” on page 175 for information about implementing volume

movement by set by using the DFSMSrmm EDGRMMxx parmlib OPTION command

MOVEBY(SET) operand.

 When you run storage location management processing without specifying a

location, DFSMSrmm processes all volumes. You can request that DFSMSrmm only

process volumes in specific locations when you run the EDGHSKP exec using the

LOCATION parameter to specify from and to locations. See “EXEC Parameters for

EDGHSKP” on page 333 for a detailed description. If you use the INSEQUENCE

parameter, DFSMSrmm assigns volumes to bins in sequential volume serial number

order and bin number order. If you use the REASSIGN parameter, DFSMSrmm

reassigns volumes to bins during processing. To maximize reuse of bins, use both

the INSEQUENCE and REASSIGN parameters and specify the DFSMSrmm

parmlib OPTION command REUSEBIN(STARTMOVE) operand.

Running Expiration Processing

During expiration processing, DFSMSrmm performs these functions:

v Identifies volumes not required for vital records that are ready to expire by

checking the expiration date.

v Determines the type of release action, if any, needed for the volumes that have

reached their expiration date.

v Manages the release actions for each volume in preparation for return to scratch.

v Handles return to the scratch pool for all volumes. For system managed, this can

either be by synchronous processing or via EDGSPLCS.

v Uncatalogs all data sets for volumes returning to scratch status if you have

specified UNCATALOG(Y or S) in parmlib member EDGRMMxx.

v Updates the catalog entry to remove the volume for the part of the DFSMSrmm

control data set on the volume returning to scratch for a multivolume data set.

v Optionally, updates RACF tape security profiles for volumes returning to scratch

status.

v Ensures all volumes in a set are not expired if any one volume does not expire

when the EDGRMMxx parmlib option RETAINBY(SET) is in use.

Chapter 16. Performing Inventory Management 355

|

|
|

JCL for Expiration Processing

To request expiration processing, specify the EXPROC parameter. You can submit a

job with JCL similar to Figure 134.

 To request expiration processing on a subset of volumes or to request

asynchronous return to scratch of system-managed volumes, specify the EXPROC

parameter, and use the EXPROC command in SYSIN. You can submit a job with

JCL similar to Figure 135.

 Figure 135 requests that scratch (S) statements are generated for the EDGSPLCS

utility and that only the volumes in the subsets RFA01*, RFA11*, and A035* are

processed.

How Expiration Processing Works

Expiration processing can be either on all volumes or a subset based on the

EXPROC command in the SYSIN file. DFSMSrmm checks the expiration date for

volumes not retained by a vital record specification. If the expiration date has been

reached, DFSMSrmm changes the volume status to ‘pending release’. DFSMSrmm

checks for any actions that should be taken before the volume can be released.

DFSMSrmm defers most release actions for later processing. However, DFSMSrmm

processes the ‘notify owner’ release action immediately if an electronic address is

provided for the owner and the DFSMSrmm system option NOTIFY is in use.

When a data set is no longer retained by a vital record specification, DFSMSrmm

releases the volume on which the data set resides only if no data set on the volume

is retained by a vital record specification. If you use the DFSMSrmm EDGRMMxx

parmlib OPTION command VRSEL(NEW) option and the RMM ADDVRS

RELEASE(EXPIRYDATEIGNORE) operand, DFSMSrmm ignores the volume

expiration date and uses information in a vital record specification to control

retention.

DFSMSrmm does not immediately return a volume to scratch status or to its owner

when a volume reaches its expiration date and is not retained by a vital record

specification. You must run expiration processing two times to return a volume to

scratch status or to its owner. The first run of expiration processing sets the volume

status to pending release. The second run of expiration processing completes the

return. DFSMSrmm does not change the volume status during the first run of

expiration processing. DFSMSrmm marks the volume as pending release during the

first run of expiration processing in case you want to reclaim the volume. Running

expiration processing two times give you time to make changes to the volume

status before the volume is released.

 //HSKP EXEC PGM=EDGHSKP,

 // PARM=’EXPROC’

 //MESSAGE DD DISP=SHR,DSN=HSKP.MESSAGES

Figure 134. Example of JCL for Expiration Processing

 //HSKP EXEC PGM=EDGHSKP,

 // PARM=’EXPROC’

 //MESSAGE DD DISP=SHR,DSN=HSKP.MESSAGES

 //EDGSPLCS DD DSN=RMMTST.Z19MTU.SPLCSHSK,DISP=SHR

 //SYSIN DD *

 EXPROC VOLUMES(RFA01*,RFA11*,A035*) EDGSPLCS(YES)

Figure 135. Example of JCL for Expiration Processing

356 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
||
|
|

|
|
|
|
|
|
||
|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|

If you do not need to run expiration processing in two runs, specify the DFSMSrmm

EDGRMMxx parmlib OPTION command VRSEL(NEW) option and the RMM

ADDVRS RELEASE(SCRATCHIMMEDIATE) operand. This enables you to return

volumes to scratch in a single run of expiration processing. Sometimes DFSMSrmm

cannot make the return in a single run, for example there may be other release

actions required. Also, when all catalogs are not fully shared or when TCDBs for

partitioned tape libraries are not shared, you might need to run expiration

processing more than one time to return volumes to scratch status.

See “Confirming Global Volume Movement” on page 364 for information about the

global move confirmation processing that takes place during vital record processing.

If you retain volumes by set, DFSMSrmm retains all the volumes in the set if any

volume in the set is retained. DFSMSrmm sets the retention date for all the

volumes in the set to the highest retention date for the volumes in the set. See

“Defining System Options: OPTION” on page 175 for information about

implementing volume retention by set by using the DFSMSrmm EDGRMMxx

parmlib OPTION command RETAINBY(SET) operand.

Returning Volumes to Scratch Status

DFSMSrmm returns volumes to scratch that are already in ‘pending release’ status,

that can be returned to scratch on the running system, and require no other action

than returning to scratch. These volumes are available to satisfy scratch mount

processing or RMM TSO GETVOLUME subcommand requests.

To determine if a volume can return to scratch on the running system, DFSMSrmm

considers if the scratch action has been manually confirmed, the TCDB, and

catalog sharing. If the scratch action has been manually confirmed, the return to

scratch can be processed on any system; otherwise, these conditions must be

considered: The volume must be in the TCDB and the system-managed library

must be defined. When catalogs are not fully shared, the volume must be returned

to scratch on a system with access to the catalogs where the first file was created.

Return to scratch processing for system-managed volumes can be either

synchronous or asynchronous with EXPROC processing. You use the SYSIN

EXPROC command EDGSPLCS operand to select the type of processing you want.

Asynchronous processing is handled via the EDGSPLCS utility.

When DFSMSrmm returns a volume to scratch status, DFSMSrmm clears this

information from the control data set:

v Volume description.

v Jobname.

v Accounting information.

v Access list.

v Volume owner.

v Owner access.

v Software product details. DFSMSrmm removes the volume from the product’s list

of volumes.

DFSMSrmm updates the volume information to indicate that the volume is no longer

retained by a vital record specification. When a volume has been released manually

using the RMM DELETEVOLUME subcommand, but is still retained by a vital

Chapter 16. Performing Inventory Management 357

|
|
|
|

record specification, DFSMSrmm sets the retention date to the current date and

updates the volume information to indicate that the volume is no longer retained by

a vital record specification.

When a volume returns to scratch status, DFSMSrmm also updates the related rack

number record in the control data set. For volumes where the rack number matches

the volume serial number, you can avoid this processing by removing the rack

numbers. You can use the RMM CV volser NORACK subcommand followed by the

RMM DR volser subcommand to remove the rack numbers from the control data

set.

During inventory management expiration processing, DFSMSrmm calls the

EDGUX200 installation exit. The exit is called every time a volume is identified as

ready to return to scratch. See “Using the DFSMSrmm EDGUX200 Installation Exit”

on page 297 for information on the EDGUX200 installation exit processing.

In addition, DFSMSrmm requests that all data sets recorded in the control data set

for the volume are uncataloged. DFSMSrmm performs RACF processing as

described in Table 33 on page 231.

Tracking Volumes with Permanent Errors

DFSMSrmm keeps track of permanent I/O errors for a volume. During each run of

expiration processing, DFSMSrmm sets the release actions for volumes that are not

pending release. During the run volumes that are marked with the return to scratch

release action, that have permanent I/O errors will be marked for replacement.

DFSMSrmm only identifies those volumes with the ‘return to scratch’ release action,

not those with the ‘return to owner’ action.

Use the RMM SEARCHVOLUME subcommand to obtain information about volumes

that might need replacement. You can use the extract data set or the DFSMSrmm

ISPF dialog to check for volumes with temporary errors. See “JCL for Creating an

Extract Data Set” on page 332 for information about using the extract data set to

identify volumes with temporary errors.

Managing Open Data Sets

DFSMSrmm produces a report in the MESSAGE file as shown in Figure 136 that

lists tape data sets that might be open as well as messages describing expiration

processing.

 These might be valid cases, or jobs that are currently active. However, some data

sets on the list might be produced by a job that failed so the data set was never

EDG2404W VOLUME 111020 FOR JOB STSGGWC1 IS OPEN - VOLUME HAS EXPIRATION DATE 16/03/1993

EDG2404W VOLUME 111023 FOR JOB STSGGWC1 IS OPEN - VOLUME HAS EXPIRATION DATE 16/03/1993

EDG2229I NUMBER OF VRS RECORDS READ IS 14

EDG2420I TOTAL VOLUMES READ = 1970

EDG2421I TOTAL VOLUMES UPDATED = 330

EDG2422I TOTAL VOLUMES, THIS RUN, KEPT FOR VRS = 50

EDG2423I TOTAL VOLUMES, THIS RUN, ASSIGNED TO STORES = 85

EDG2424I TOTAL VOLUMES, THIS RUN, SET PENDING RELEASE = 126

EDG2425I TOTAL VOLUMES RETURNED TO SCRATCH = 55

EDG2426I TOTAL NUMBER OF SCRATCH RECORDS WRITTEN = 0

EDG2429I MAIN INVENTORY MANAGEMENT UPDATES HAVE COMPLETED SUCCESSFULLY

EDG2307I INVENTORY MANAGEMENT TASK VRSEL COMPLETED SUCCESSFULLY

EDG2307I INVENTORY MANAGEMENT TASK DSTORE COMPLETED SUCCESSFULLY

EDG2307I INVENTORY MANAGEMENT TASK EXPROC COMPLETED SUCCESSFULLY

EDG2307I INVENTORY MANAGEMENT TASK RPTEXT COMPLETED SUCCESSFULLY

EDG6401I MASTER FILE BACKUP SUCCESSFUL

Figure 136. Expiration Processing Report

358 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

closed. Review this list and make the necessary corrections. The expiration date in

the message, shows when the volume will be automatically released. During vital

record processing, DFSMSrmm matches open data sets to vital record

specifications using the OPEN reserved data set name mask or to vital record

specifications defined with data set name masks.

Running Multiple Copies of the EDGHSKP EXPROC Utility

The EDGHSKP EXPROC utility can be run in parallel on multiple systems, but only

one copy per system can be run regardless of the volumes that are processed. An

optional EXPROC command in the SYSIN file can be used to:

v Request that only a subset of volumes are processed by EXPROC.

v Request that system-managed volumes are not returned to scratch during

expiration processing. Instead, for each system-managed volume ready to return

to scratch, a control statement is generated for use with the EDGSPLCS utility so

that volumes can be scratched later. The control statements are written to the

EDGSPLCS DD.

Running DFSMSrmm Catalog Synchronization

DFSMSrmm always tracks tape data set catalog activity independently of the

CATSYSID parameter. When you enable catalog synchronization, DFSMSrmm

synchronizes the DFSMSrmm control data set and available user catalogs. Enabling

catalog synchronization is normally a one-time task. Once the catalog status is

synchronized, DFSMSrmm continually tracks and updates the catalog status. You

enable catalog synchronization by specifying the DFSMSrmm EDGRMMxx OPTION

CATSYSID operand described in Defining System Options: OPTION “Defining

System Options: OPTION” on page 175. When you specify the CATSYSID operand,

DFSMSrmm uses the catalog search interface to obtain catalog information used for

DFSMSrmm vital record processing. DFSMSrmm performs checking to determine

that the catalog search interface catalog environment does not have any errors that

might prevent successful processing. DFSMSrmm issues messages EDG2235E,

EDG2236I, or EDG2237E when an error is encountered. If you do not specify the

DFSMSrmm EDGRMMxx OPTION CATSYSID operand, DFSMSrmm vital record

processing uses catalog locates to determine if data sets are still cataloged.

You must re-synchronize the DFSMSrmm control data set and user catalogs under

these conditions:

v You ran EDGHSKP with CATSYNCH and VERIFY, and differences in catalog

status were found that you believe should be corrected. After you have made any

corrections to the catalogs, either run CATSYNCH without VERIFY or use the

EDGUTIL utility with the UPDATE option to reset the catalog synchronization

date. EDGUTIL clears the catalog synchronization date and time to force you to

run CATSYNCH.

v DFSMSrmm is not active when catalog activity for tape data sets is taking place.

DFSMSrmm issues messages EDG8200E and EDG8201E when DFSMSrmm

cannot track catalog updates.

v A DFSMSrmm failure occurs during catalog processing. DFSMSrmm issues

EDG8200E and EDG8201E when an error is detected in processing.

v You connect or disconnect user catalogs, that contain entries for tape data sets,

to the master catalog.

When you use IDCAMS REPRO MERGECAT for catalog maintenance, you do not

need to run a job to re-synchronize the DFSMSrmm control data set and catalogs.

Chapter 16. Performing Inventory Management 359

|
|
|
|

|

|
|
|
|
|

Recommendation: Use EDGUTIL with the UPDATE parameter and with the SYSIN

command CONTROL CATSYNCH(NO) parameter when you think the DFSMSrmm

control data set and the catalogs are no longer synchronized. This prevents

DFSMSrmm from relying on the catalog information in the control data set. Later

you can re-synchronize the information or DFSMSrmm will synchronize the

information automatically at inventory management time when the catalogs are fully

shared.

You can automate the response to the DFSMSrmm messages EDG8200E and

EDG8201E to force re-synchronization before any inventory management functions

dependent on catalog information are run. Run EDGUTIL UPDATE with the SYSIN

command CONTROL CATSYNCH(NO) parameter to set up this automation.

There are some limitations to using DFSMSrmm catalog synchronization. Some of

the limitations include these conditions:

v You must define data sets to DFSMSrmm before you create catalog entries for

them.

v If either of these statements applies to you, do not rely on DFSMSrmm for

maintaining catalog synchronization. However, you can exploit the status tracking

DFSMSrmm performs, by always specifying the EDGHSKP CATSYNCH option

when running expiration processing or vital record processing functions.

– If you use the DFSMSrmm TSO subcommands to add data sets to the

DFSMSrmm control data set, you should do so before cataloging the data

sets. If you have to add cataloged data sets you can run EDGHSKP with

CATSYNCH to synchronize the catalogs with DFSMSrmm.

– If you create cataloged tape data sets by writing to tape volumes but do not

allocate the file using the catalog entry, DFSMSrmm cannot track the catalog

status. DFSMSrmm relies on intercepting the catalog and uncatalog activity

and the data set information being already recorded by DFSMSrmm at the

time of the catalog activity.

Control how DFSMSrmm performs catalog synchronization by using the

EDGRMMxx parmlib OPTION CATSYSID operand. If you specify the CATSYSID(*)

operand, you must ensure that the catalog environment is shared. If you specify

CATSYSID(*) without ensuring that catalogs are shared, you can lose data. If you

specify the CATSYSID operand with system IDS, you cannot run DFSMSrmm

inventory management until the DFSMSrmm control data set and user catalogs are

synchronized.

If catalogs are not fully shared, and you specify the EDGRMMxx parmlib OPTION

UNCATALOG(Y/S) operand, you must run expiration processing on each system.

This ensures that DFSMSrmm uncatalogs data sets in the correct catalogs on

return to scratch. You must run expiration processing on each system to avoid

running low on scratch volumes because DFSMSrmm only returns volumes to

scratch when processing in the correct catalog environment.

To ensure that DFSMSrmm processes the return to scratch, you must also specify

the EDGRMMxx parmlib OPTION CATSYSID operand with the system IDs on

which the volumes were created. DFSMSrmm uses the CATSYSID operand to

determine the systems to which volumes can be returned to scratch status.

DFSMSrmm checks the system creation ID for the first file on the volume with the

list of IDs that are specified for the CATSYSID operand. If there is a match,

DFSMSrmm processes the return to scratch.

360 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm Catalog Processing

When you run DFSMSrmm with user catalogs and the DFSMSrmm control data set

unsynchronized, DFSMSrmm issues catalog locates as required to check if data

sets are cataloged. Catalog locates use the standard catalog search to find if a data

set is cataloged.

When you run DFSMSrmm with user catalogs and the DFSMSrmm control data set

synchronized, DFSMSrmm does not need to issue catalog locates to find if a data

set is cataloged. The catalog status tracked by DFSMSrmm in the control data set

is used to determine if a data set is cataloged. During catalog synchronization

DFSMSrmm uses the Catalog Search Interface (CSI) to retrieve data set catalog

information. CSI returns catalog information for all data sets in all catalogs that are

in or connected to the master catalog. Because of this, DFSMSrmm can detect a

data set is cataloged even if it cannot be found using the standard catalog search.

During CATSYNCH processing, DFSMSrmm matches the retrieved catalog

information for tape data sets with the tape data set information in the DFSMSrmm

control data set. If there is a difference in catalog status between the catalog and

the DFSMSrmm control data set, a message is issued, and the status is corrected

as follows:

v Status is set to YES when a catalog entry is found and the status in the

DFSMSrmm control data set is not YES.

v Status is set to NO when a catalog entry is not found and the status in the

DFSMSrmm control data set is YES.

v The status is unchanged when a catalog entry is not found and the status in the

DFSMSrmm control data set is either NO or UNKNOWN.

Normal processing for catalog status tracking is to initially set catalog status to

UNKNOWN, and then to change status to YES when the catalog entry is created,

and to change status to NO when the catalog entry is deleted. Data sets with

UNKNOWN status have not yet been cataloged and may never become cataloged;

DFSMSrmm applies the CATRETPD value to these data sets.

JCL for Catalog Synchronization

To request catalog synchronization, specify the CATSYNCH parameter. You can

submit a job with JCL similar to Figure 137.

Specify the CATSYNCH and the VERIFY parameter to perform a trial run of catalog

synchronization. You can submit a job with JCL similar to Figure 138.

//HSKP EXEC PGM=EDGHSKP,

// PARM=’CATSYNCH’

//MESSAGE DD DSN=MESSAGE.FILE.NAME,DISP=SHR

//ACTIVITY DD DSN=ACTIVITY.FILE.NAME,DISP=SHR

Figure 137. Example of JCL for Catalog Synchronization Processing

//HSKP EXEC PGM=EDGHSKP,

// PARM=’CATSYNCH,VERIFY’

//MESSAGE DD DSN=MESSAGE.FILE.NAME,DISP=SHR

//ACTIVITY DD DSN=ACTIVITY.FILE.NAME,DISP=SHR

Figure 138. Example of JCL for Trial Run Catalog Synchronization Processing

Chapter 16. Performing Inventory Management 361

IBM recommends that you run CATSYNCH with VERIFY to perform a trial run early

in your implementation so that you can be sure your catalogs are free from errors

before you get started. A trial run prior to implementation does not need the

CATSYSID operand specified in parmlib.

Synchronizing the DFSMSrmm Control Data Set with User Catalogs in

a Fully Shared Catalog Environment

You can use shared user catalogs whether or not the control data set and user

catalogs are synchronized. Synchronize the DFSMSrmm control data set and user

catalogs so that DFSMSrmm does not need to locate catalog information for every

data set that is managed using catalog control. To synchronize the DFSMSrmm

control data set with user catalogs:

1. Install the DFSMSrmm level of code that performs catalog tracking and catalog

synchronization on all systems that are sharing the control data set. When you

have the correct level of DFSMSrmm code installed, DFSMSrmm dynamically

records all catalog updates for tape data sets in the DFSMSrmm control data

set.

2. Run the DFSMSrmm EDGHSKP utility with the PARM=CATSYNCH,VERIFY

parameter as a trial run to find all the differences between the DFSMSrmm

control data set and the catalogs and to ensure that the catalogs can be used

successfully. Before you run CATSYNCH, you should verify that your MESSAGE

data set is large enough to contain all the messages issued during the verify

processing. For example, when you run CATSYNCH for the first time, perhaps

as part of DFSMSrmm implementation, or when you run CATSYNCH with

VERIFY, you should expect messages for each data set where the status is

different between the catalogs and the DFSMSrmm control data set.

3. Specify the DFSMSrmm EDGRMMxx parmlib OPTION CATSYSID(*). When the

CATSYSID operand is specified in the EDGRMMxx parmlib member, you cannot

run VRSEL or EXPROC processing unless the control data set is synchronized

or CATSYNCH is specified in the same processing run. When running

EDGHSKP expiration processing or vital record processing, if CATSYSID(*) is

specified in the EDGRMMxx parmlib member and the control data set is not

synchronized with the catalogs, DFSMSrmm initiates catalog synchronization

even if you have not specified it.

4. Set up automatic synchronization by automating the responses to DFSMSrmm

messages EDG8200E and EDG8201E. Run the EDGUTIL UPDATE with the

SYSIN command CONTROL CATSYNCH(NO).

5. Run the DFSMSrmm EDGHSKP utility with the PARM=CATSYNCH parameter

to synchronize all data set records in the control data set with the status from

the catalog. Before you run CATSYNCH you should verify that your MESSAGE

data set is large enough to contain all the messages issued during the catalog

synchronization process. For example, when you run CATSYNCH for the first

time, perhaps as part of DFSMSrmm implementation, or you run CATSYNCH

with VERIFY you should expect messages for each data set that must be

updated or the status is different between the catalogs and the DFSMSrmm

control data set.

Synchronizing the DFSMSrmm Control Data Set with User Catalogs

When Catalogs Are Not Fully Shared

When catalogs are not fully shared, you can have non-GDG and GDG data sets

with the same name that are cataloged but in different, unshared catalogs. To retain

all copies of all data sets, define a retention policy that uses DAYS with

362 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

COUNT(99999) rather than CYCLES. Using CYCLES can produce unpredictable

results for example, the premature expiration of data sets.

To ensure cycles are grouped together, use the jobname to further qualify the data

sets, using a different jobname for each set of cataloged data sets. For example,

use JOBNAME(xjzA) for data sets created on system A, and JOBNAME(xjzB) for

data sets created on system B so that the cycle retention is based on the scope of

the creation system.

The DFSMSrmm control data set and user catalogs must be synchronized for

DFSMSrmm to support unshared user catalogs. To synchronize the DFSMSrmm

control data set with user catalogs, follow these procedures:

1. Ensure that all systems that share the control data set are running the

DFSMSrmm level of code that supports catalog tracking and catalog

synchronization. When you have the correct level of DFSMSrmm code installed,

DFSMSrmm dynamically records all catalog updates for tape data sets in the

control data set.

2. Run the DFSMSrmm EDGHSKP utility with the PARM=CATSYNCH,VERIFY

parameter as a trial run to find all the differences between the DFSMSrmm

control data set and the catalogs and to ensure that the catalogs can be used

successfully. Before you run CATSYNCH, you should verify that your MESSAGE

data set is large enough to contain all the messages issued during the verify

processing. For example, when you run CATSYNCH for the first time, perhaps

as part of DFSMSrmm implementation, or when you run CATSYNCH with

VERIFY, you should expect messages for each data set where the status is

different between the catalogs and the DFSMSrmm control data set.

3. Specify the DFSMSrmm EDGRMMxx parmlib OPTION CATSYSID operand with

the system IDs that are common to the set of user catalogs on the system.

Specify current IDs and previously used IDs if you are still retaining data sets

from those systems.

4. Set up automatic synchronization by automating the responses to DFSMSrmm

messages EDG8200E and EDG8201E running the EDGUTIL UPDATE with the

SYSIN command CONTROL CATSYNCH(NO).

5. Run the DFSMSrmm EDGHSKP utility with the PARM=CATSYNCH parameter

to partially synchronize all data set records in the control data set with the

status from the accessible catalogs. Run CATSYNCH on other systems that

share the control data set until all the catalogs have been synchronized. Before

you run CATSYNCH you should verify that your MESSAGE data set is large

enough to contain all the messages issued during the catalog synchronization

process. For example, when you run CATSYNCH for the first time, perhaps as

part of DFSMSrmm implementation, or you run CATSYNCH with VERIFY you

should expect messages for each data set that must be updated or the status is

different between the catalogs and the DFSMSrmm control data set.

6. Run EDGUTIL with PARM=UPDATE parameter and CONTROL

CATSYNCH(YES) to set the ’last catalog synchronization date and time’ in the

DFSMSrmm control data set control record.

7. Run inventory management functions on any one system at any time. However,

if you run expiration processing to return volumes to scratch status, DFSMSrmm

only processes a subset of volumes.

8. You must run EDGHSKP expiration processing on multiple systems if you

specify the EDGRMMxx parmlib OPTION UNCATALOG(Y or S). You should run

expiration processing once for each set of user catalogs on a system with

access to those user catalogs.

Chapter 16. Performing Inventory Management 363

Confirming Global Volume Movement

Vital record processing determines the volume movements required and storage

location management processing assigns the volume destinations. You must ensure

that volume movements are completed and confirmed to DFSMSrmm.

You use the RMM subcommands and DFSMSrmm ISPF dialog to confirm that

volume movements have taken place. You use the RMM CHANGEVOLUME *

CONFIRMMOVE subcommand to change the status of a volume move from

PENDING to CONFIRMED. You can perform confirmation for a single volume or for

multiple volumes. Performing confirmation for multiple volumes is called global

confirmation. In DFSMSrmm, confirmation means to issue a command to notify

DFSMSrmm that a volume has moved to a location or that a release action defined

for a volume has been completed. If you perform confirmation for a single volume,

DFSMSrmm processes the confirmation immediately. If you issue a request for a

global confirmation, DFSMSrmm processes the global confirmation during inventory

management processing.

Global move confirmation is performed as part of DFSMSrmm inventory

management. DFSMSrmm performs move confirmation for a volume, prior to

making any other updates to a volume, as part of these inventory management

functions:

v Vital record processing

v Storage location management processing

v Expiration processing. Only if all volumes are processed.

If a volume move is outstanding, and it has been globally confirmed, DFSMSrmm

performs confirmation of the move for that volume. DFSMSrmm confirms moves in

progress prior to starting any new moves that might be set by the current inventory

management run. If each of the inventory management functions is in a separate

job step, then global move confirmation is performed once for each step. If the

inventory management functions are run in a single job step, DFSMSrmm performs

global move confirmation once.

The timing of the inventory management runs is very important. Here are some

things to consider:

v If you requested global move confirmation and want to change it, you can undo

the request prior to the next run of inventory management. You can use the RMM

CHANGEVOLUME subcommand to undo global confirmation of volume moves.

After the next run of inventory management, DFSMSrmm will have confirmed the

volume moves making undoing the confirmation of the moves difficult.

v When you request an extract data set to be used for generating movement or

inventory reports, consider the timing of inventory management functions. An

extract data set produced after a run of vital record processing and storage

location management processing, contains the information of new volume

movement for movement reports. An extract data set produced after a global

confirm move and a run of any of the listed inventory management functions,

contains information about volumes after moves have been confirmed.

v To make scratch volumes available after a move and when you use global move

confirmation, make sure you run expiration processing to complete the global

move confirmation and return the moved volumes to scratch status.

364 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

Confirming Global Release Actions

If the RMM CHANGEVOLUME subcommand with * CONFIRMRELEASE operands

is issued to confirm global release actions, for any volume with the action

outstanding, DFSMSrmm marks the corresponding action complete. Global release

action confirmation takes place during expiration processing, but only if all volumes

are processed, just prior to when DFSMSrmm performs a check for outstanding

global confirmation or if the volume expiration date has been reached.

When you use the NOTIFY release action, the NOTIFY release action must be

confirmed in order for any other release action to be processed. DFSMSrmm can

confirm this automatically by sending a notify message, or you can confirm it

manually. See “OPTION Command Operands” on page 178 for more information

about the NOTIFY parmlib OPTION.

If the ‘return to owner’ action is confirmed, the volume is deleted from the

DFSMSrmm control data set. If the erase or initialize release actions are confirmed,

DFSMSrmm deletes the data set information for those volumes with the actions

outstanding. If erase is confirmed, DFSMSrmm sets the initialize action as

outstanding so that the correct volume labels can be written to the erased volume.

When you use global confirmation for the ERASE release action, you process the

volume outside of DFSMSrmm’s control. Possibly you may have degaussed the

volume or used a bulk degaussing machine. Remember that you should only

degauss certain types of tape volumes. Note: Do not degauss IBM 3592, 3590, or

similar media that are pre-formatted with servo tracks. Use of a degausser renders

the volume unusable.

If the RMM DELETEVOLUME subcommand with the RELEASE operand was

issued, DFSMSrmm changes the volume status to ‘pending release’ during

subcommand processing. Use expiration processing to complete the release

process. These volumes are returned to scratch during the first EDGHSKP run, if no

other release actions are required.

Backing Up the Control Data Set

You can use EDGHSKP or EDGBKUP described in Chapter 17, “Maintaining the

Control Data Set,” on page 371 to back up the control data set and the journal.

Choose the appropriate utility based on your needs. You can start the back up of

the control data set or journal at any time. But you cannot start backup if backup is

already in progress. You need to schedule backing up and clearing of the journal

before it exceeds its threshold using the EDGHSKP utility.

v Use EDGHSKP to back up both the control data set and the journal when the

DFSMSrmm subsystem is active by specifying the BACKUP DD statement and

the JRNLBKUP DD statement.

Use the EDGHSKP utility to back up the control data set and to clear the journal

data set.

v Use EDGBKUP to back up the control data set and journal when the

DFSMSrmm subsystem is not active.

Use the EDGBKUP utility to back up the control data set and journal when

DFSMSrmm is active. EDGBKUP does not clear the journal data set.

Schedule regular backups for both the control data set and journal. Backing up the

DFSMSrmm control data set and the journal as the first step in inventory

management is a way for you to create a restore point for the control data set.

Chapter 16. Performing Inventory Management 365

|
|

Schedule back ups of the journal when it reaches the threshold that you define. Use

the DFSMSrmm parmlib OPTION command JOURNALFULL operand, described in

“Defining System Options: OPTION” on page 175. Clearing out the journal data set

regularly prevents the journal from becoming full, and thus reduces the risk of losing

the updates to the control data set. You can automate the process of backing up

the control data set and clearing the journal as described in “Steps for Automating

Control Data Set Backup and Journal Clearing” on page 369.

You should plan to keep multiple backup copies, so that, should a backup fail, you

still have a previous, successful backup from which to recover. Use the current

journal with the most recent control data set and journal backups to forward recover

to the point of failure.

You can request that DFSMSrmm back up the control data set and the journal,

using the access method services (AMS) REPRO command or DFSMSdss DUMP

command. When you use the access method services REPRO command or

DFSMSdss without concurrent copy for backup, DFSMSrmm does not allow

updates to the control data set during control data set backup. Backup using

DFSMSdss enables output directly to tape. DFSMSrmm resets the journal data set

and discards journal records if the back up completes successfully. It is not

necessary to use DFSMSdss concurrent copy when you specify BACKUP(DSS).

When DFSMSrmm is performing an intrusive backup, some processing might wait

until the backup completes or some command processing can be interrupted.

DFSMSrmm fails RMM TSO subcommand requests that update the DFSMSrmm

control data set. For example, if you start backup using the AMS REPRO backup

method, command processing can be interrupted. DFSMSrmm functions such as

the DFSMSrmm TSO SEARCH subcommands, that only read the control data set,

continue uninterrupted.

Example: Issue the RMM ADDRACK subcommand to add 2000 new shelf

locations.

RMM ADDRACK RK0000 COUNT(2000)

Example: If backup processing starts before the request completes, DFSMSrmm

issues these messages.

EDG3212E REQUEST REJECTED - DFSMSrmm BACKUP

 CURRENTLY IN PROGRESS

EDG3017I THE ERROR OCCURRED WHILE ADDING RACK NUMBER RK0700

EDG3018I 700 RACK NUMBER(S) ADDED

Example: When backup completes, issue the ADDRACK subcommand to add the

remainder of the shelves.

RMM ADDRACK RK0700 COUNT(1300)

When a tape is used during inventory management, DFSMSrmm updates the

control data set. If a job that opens or closes a tape data set tries to update the

control data set during AMS REPRO backup processing, DFSMSrmm waits for up

to five minutes. If backup is still in progress, DFSMSrmm issues a write-to-operator

message EDG4010D that prompts the operator to retry or cancel each job. If the

operator specifies retry, DFSMSrmm retries the job five more times at minute

intervals before again issuing a write-to-operator if backup processing has not been

completed.

When you use the DFSMSdss DUMP command to request a back up, plan to keep

backup copies for both the control data set and the journal. For any backup being

366 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

restored, a journal backup is also required for forward recovery. For the latest

control data set backup, both the latest journal backup and the current journal must

be used for forward recovery.

To use DFSMSdss concurrent copy, you must authorize the DFSMSrmm batch

inventory management backup job to the RACF profile

STGADMIN.ADR.DUMP.CNCURRNT. See z/OS DFSMS Storage Administration

Reference for information about protecting DFSMSdss keywords with RACF.

When you use DFSMSdss to back up the control data set and you use concurrent

copy, DFSMSrmm resets the DFSMSrmm journal only if you also back up the

journal data set. The journal and the journal backup are required to forward recover

to the latest point in time.

When you use DFSMSdss concurrent copy for backup, DFSMSrmm continues to

process commands and update the control data set. As an alternative to use of

concurrent copy capable hardware, you can use snapshot capable hardware. When

you request backup using DFSMSdss, DFSMSdss uses CC-compatible snapshot

instead of concurrent copy.

JCL for Backing Up the Control Data Set and Journal

DFSMSrmm obtains the name of the control data set and journal from the running

DFSMSrmm subsystem.

Rule: Do not specify the data set names in the JCL. If you do, the job fails.

To create a backup copy using EDGHSKP, specify the BACKUP parameter.

1. Submit a job to back up the control data set to tape with JCL as shown in

Figure 139.

2. Specify the JRNLBKUP DD statement only if you want to back up the journal.

The DSSOPT DD statement is optional and allows you to customize the

DFSMSdss DUMP and DFSMSdss RESTORE commands. See “Customizing

the DSSOPT DD Statement” on page 377 for information about changing the

DSSOPT DD statement.

3. Specify BACKUP(DSS) when you want to use DFSMSdss to perform the back

up. You do not need to use concurrent copy to specify BACKUP(DSS). Using

DFSMSdss concurrent copy permits the update of the control data set during

backup processing so that all tape activities can continue during backup

processing. To use DFSMSdss concurrent copy, you must have a concurrent

copy environment set up. If you specify BACKUP(DSS) without concurrent copy,

you can still direct the output to tape. All other updates to the control data set

 //EDGHSKP EXEC PGM=EDGHSKP,PARM=’BACKUP(DSS)’

 //MESSAGE DD DISP=SHR,DSN=RMM.MESSAGE

 //SYSPRINT DD SYSOUT=*

 //BACKUP DD DISP=(,CATLG),UNIT=TAPE,DSN=BACKUP.CDS(+1),

 // LABEL=(,SL)

 // AVGREC=U,LRECL=9216,BLKSIZE=0,RECFM=U

 //JRNLBKUP DD DISP=(,CATLG),UNIT=TAPE,DSN=BACKUP.JRNL(+1),

 // DCB=(RECFM=VB,BLKSIZE=0,LRECL=9248),

 // LABEL=(2,SL),VOL=REF=*.BACKUP

 //DSSOPT DD *

 CONCURRENT OPTIMIZE(1) VALIDATE

 /*

Figure 139. Example of JCL for Backing Up the Control Data Set and the Journal to Tape

Chapter 16. Performing Inventory Management 367

will wait until the control data set backup completes. If you specify

BACKUP(DSS) and you use concurrent copy, DFSMSrmm clears the journal

only if you also back up the journal.

You can submit a job to back up the control data set to DASD with JCL as shown in

Figure 140.

Backing Up the Journal

You can backup and clear the journal without backing up the control data set.

DFSMSrmm allows updates to the control data set during journal backup so that the

impact of journal backup on other tasks is low. Use EDGHSKP when you want to

backup and clear the journal. Use EDGBKUP when you only want to back up the

journal and not clear it. Use the RMM LISTCONTROL TSO subcommand to find the

time of the last journal back up.

When the journal reaches its threshold, schedule a backup of just the journal to

minimize the time needed to clear the journal. When you restore the control data

set, ensure that the correct journal backups are used for forward recovery.

JCL for Backing Up the Journal

DFSMSrmm obtains the name of the control data set and journal from the running

DFSMSrmm subsystem.

Rule: Do not specify the data set names in the JCL. If you do, the job fails.

You can back up and clear the journal without taking a backup of the control data

set. To back up the journal using EDGHSKP, specify the BACKUP parameter as

shown in Figure 141.

 //BACKUP EXEC PGM=EDGHSKP,PARM=’BACKUP(AMS)’

 //SYSPRINT DD SYSOUT=*

 //MESSAGE DD DSN=RMM.MESSAGE(0),

 // DISP=SHR

 //BACKUP DD DSN=RMM.BACKUP(+1),

 // DISP=(,CATLG,DELETE),

 // UNIT=SYSALLDA,

 // AVGREC=U,SPACE=(4096,(1000,500),RLSE),

 // LRECL=9216,BLKSIZE=0,RECFM=VB,

 // BUFNO=30,

 // DCB=RMM.GDGMODEL

 //JRNLBKUP DD DSN=RMM.JRNLBKUP(+1),

 // DISP=(,CATLG,DELETE),

 // UNIT=SYSALLDA,

 // AVGREC=U,SPACE=(4096,(1000,500),RLSE),

 // LRECL=9248,BLKSIZE=0,RECFM=VB,

 // BUFNO=30,

 // DCB=RMM.GDGMODEL

Figure 140. Example of JCL for Backing Up the Control Data Set and Journal to DASD

//EDGBKP EXEC PGM=EDGHSKP,PARM=’BACKUP’

//SYSPRINT DD SYSOUT=*

//MESSAGE DD DISP=SHR,DSN=RMM.MESSAGE

//JRNLBKUP DD DISP=(,CATLG),UNIT=TAPE,DSN=BACKUP.JRNL(+1),

// LRECL=9248,BLKSIZE=0,RECFM=VB,

// BUFNO=30,

// LABEL=(1,SL)

Figure 141. Example of JCL for Backing Up and Clearing the Journal

368 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Steps for Automating Control Data Set Backup and Journal Clearing

You need to ensure that the journal does not fill up because a full journal can

impact tape usage on your system. You can run regular backups as part of

inventory management in order to clear the journal. Automating control data set

backup and clearing the journal help to ensure that the journal does not fill up.

To automate the clearing of the journal, follow these steps:

1. Specify a value for JOURNALFULL operand on the OPTION command in

parmlib as described in “Defining System Options: OPTION” on page 175. If you

do not specify a value, DFSMSrmm uses a value of 75%. Use only a single

system to trigger backup using the journal threshold. If you have multiple

systems and the journal threshold is reached, each system can start the backup

procedure at the same time if you use the same threshold number. To avoid this

situation if you have multiple systems, you can specify a different threshold on

each system. For example, specify a threshold of 75% on the main system

where DFSMSrmm is active and then specify thresholds of 80% and 85% for

your other systems. You can also disable threshold processing on a system by

specifying a zero value. Ensure that the systems you select have DFSMSrmm

active and have a high chance of processing DFSMSrmm requests. A system

that processes no or few DFSMSrmm requests is a bad choice for automatic

backup because DFSMSrmm only checks the journal threshold when a request

is processed.

2. Create a backup procedure in the system procedure library. The backup

procedure that you write should use EDGHSKP to backup the control data set

and journal because EDGHSKP also clears the journal. To automate the

clearing of the journal without backing up the control data set, write your backup

procedure to backup just the journal. See “Automating Backup” on page 454 for

an example of a procedure that runs backup as part of inventory management.

Alternatively, you might want to use the procedure to submit a batch job to

perform the backup or to inform your job scheduler to submit the job.

DFSMSrmm will not start the procedure if backup is already in progress. See

“Event Triggered Tracking” on page 473 for information about using the IBM

Tivoli Workload Scheduler for z/OS.

3. Specify the procedure name for the BACKUPPROC operand of the OPTION

command in parmlib as described in “Defining System Options: OPTION” on

page 175. DFSMSrmm starts this procedure when the journal threshold is

reached. If you do not specify a procedure name, you cannot automate backup

using DFSMSrmm. However, you could still use the EDG2107E message as a

trigger for your site automation processes.

Return Codes for EDGHSKP

EDGHSKP can issue the return codes shown in Table 53.

 Table 53. EDGHSKP Return Codes

Return

Code Explanation

0 All requested functions completed successfully.

4 DFSMSrmm encountered a minor error during processing. It issues a warning

message and processing continues.

8 DFSMSrmm has stopped at least one requested function. Processing continues

with the next requested function.

Chapter 16. Performing Inventory Management 369

Table 53. EDGHSKP Return Codes (continued)

Return

Code Explanation

12 A severe error occurred during processing of one of the requested functions. For

example, the operator has cancelled the inventory management run. DFSMSrmm

stops the utility.

16 A severe error occurred during a required communication with the DFSMSrmm

subsystem. DFSMSrmm stops the utility.

370 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|

Chapter 17. Maintaining the Control Data Set

DFSMSrmm Samples Provided in SAMPLIB

v EDGJBKUP Sample JCL for Using the Backup Program

v EDGJUTIL Sample JCL for Initializing the Control Data Set

v EDGJMFAL Sample JCL for Allocating the Control Data Set

v EDGJNLAL Sample JCL for Allocating the Journal

 Before you begin: DFSMSrmm provides you with the EDGHSKP utility, the

EDGBKUP utility, the EDGUTIL utility, and the EDGSPLCS utility that you can use

to maintain the control data set. EDGHSKP and EDGBKUP provide functions that

you can use to back up the DFSMSrmm control data set. Review these descriptions

to determine which utility you should use for back up.

Use the DFSMSrmm utility EDGHSKP described in “Backing Up the Control Data

Set” on page 365 to perform these tasks:

v Back up the DFSMSrmm control data set and journal when DFSMSrmm is

active.

v Clear the journal data set. Clear the journal only after back up is completed

successfully to avoid losing changes that are made since the last backup.

Without these latest changes, a forward recovery can only recover the control

data set up to the last backup before the journal was cleared.

Use the DFSMSrmm utility EDGBKUP described in “Backing Up the Control Data

Set” on page 378 to perform these tasks:

v Back up the DFSMSrmm control data set and journal when DFSMSrmm is

active.

v Back up or restore the DFSMSrmm control data set when DFSMSrmm is

stopped or quiesced. You can use EDGBKUP independently of DFSMSrmm to

back up, restore, and reorganize the DFSMSrmm control data set and to back up

the journal.

Perform these tasks to maintain the DFSMSrmm control data set:

v Create the control data set control record as described in “Creating or Updating

the Control Data Set Control Record” on page 400.

v Back up the control data set and the journal when DFSMSrmm is active using

either EDGHSKP as described in “Backing Up the Control Data Set” on page 365

or EDGBKUP as described in “Backing Up the Control Data Set” on page 378.

v Back up the control data set and the journal when DFSMSrmm is inactive using

EDGBKUP as described in “Backing Up the Control Data Set” on page 378.

v Back up the journal when DFSMSrmm is active or inactive using either

EDGHSKP as described in “Backing Up the Journal” on page 368 or EDGBKUP

as described in “Backing Up the Control Data Set” on page 378.

v Clear the journal by using EDGHSKP when DFSMSrmm is active as described in

“JCL for Backing Up the Journal” on page 368

v Restore the control data set, and optionally forward recover when DFSMSrmm is

stopped or quiesced using EDGBKUP as described in “Restoring the Control

Data Set with Forward Recovery” on page 380.

© Copyright IBM Corp. 1992, 2007 371

|

v Restore the control data set by using non-DFSMSrmm products such as

IDCAMS and DFSMSdss as described in “Using Non-DFSMSrmm Utilities to

Restore the Control Data Set” on page 383.

v Forward recover the control data set by using EDGBKUP as described in

“Forward Recovering the Control Data Set” on page 381.

v Reorganize the control data set using EDGBKUP as described in “Reorganizing

the Control Data Set” on page 384.

v Move the control data set by using EDGHSKP as described in “Moving the

Control Data Set and Journal to a Different Device” on page 387.

v Move the control data set by using non-DFSMSrmm utilities such as IDCAMS

and products such as DFSMSdss as described in “Steps for Moving the Control

Data Set using Non-DFSMSrmm Utilities” on page 391.

v Move the journal as described in “Moving the Journal using DFSMSrmm Utilities”

on page 390.

v Recover from control data set update failures by using EDGBKUP as described

in “Recovering from Control Data Set Update Failures” on page 385.

v Verify the contents of the control data set by using EDGUTIL as described in

“Verifying the Contents of the Control Data Set” on page 403.

v Repair the control data set by using EDGUTIL as described in “Mending the

Control Data Set” on page 406.

v Share the control data set as described in “Sharing the DFSMSrmm Control Data

Set” on page 414.

v Regularly test any procedures or jobs you create to handle recovery of the

DFSMSrmm control data set. This ensures that they work and that you and

operations are familiar with how they work and what is required.

This topic contains information for using the DFSMSrmm EDGBKUP utility and the

EDGUTIL utility:

v “Using EDGBKUP” on page 373

v “Using EDGUTIL for Tasks Such as Creating and Verifying the Control Data Set”

on page 392

Use the DFSMSrmm utility EDGSPLCS, described in “Using EDGSPLCS to Issue

Commands to OAM for System-Managed Volumes” on page 411, to issue

supported commands to OAM for system-managed volumes.

DFSMSrmm Considerations when Client/Server Support is Enabled

This topic describes utilities that provide restricted functions when run on a client or

server system.

372 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm Utility Considerations Where to Find More Information

EDGUTIL v When you run EDGUTIL on a client

system, the utility can only process

a DFSMSrmm control data set that

is not in use by DFSMSrmm.

Because there is no control data

set for a client system, you cannot

run with the active control data set.

However, you could recover a

backup copy of the DFSMSrmm

control data set to the client

system to run VERIFY(VOLCAT),

VERIFY(SMSTAPE), and

MEND(SMSTAPE).

v When you run EDGUTIL on a

server system, you cannot access

the TCDB or library for tape

libraries that you can only access

from the client system.

v When you run EDGUTIL on a client

system and do not specify the

MASTER DD, DFSMSrmm issues

message EDG6101E and the utility

ends with return code 12.

“Using EDGUTIL for Tasks Such as

Creating and Verifying the Control

Data Set” on page 392

EDGBKUP v You cannot process an active

DFSMSrmm control data set on a

client system. All functions are

available on a client system as

long as you provide the DD

statements for the control data set

and journal. This enables you to

use the BACKUP and RESTORE

options independent of the

DFSMSrmm subsystem. When you

run EDGBKUP on a client system

and do not specify the MASTER

DD or JOURNAL DD, DFSMSrmm

issues message EDG6101E and

the utility ends with return code 12.

“Backing Up the Control Data Set” on

page 365

Using EDGBKUP

This topic describes the JCL, EXEC parameters, DD statements, and return codes

associated with using the EDGBKUP utility. In addition, this topic describes how to

customize the DSSOPT DD statement.

JCL for EDGBKUP

This topic describes the EXEC parameters for EDGBKUP and provides JCL

examples to back up the control data set and journal, restore the control data set,

and reorganize the control data set. Figure 142 on page 374 shows the JCL for

EDGBKUP.

Chapter 17. Maintaining the Control Data Set 373

EXEC Parameters for EDGBKUP

Figure 143 shows the EXEC parameters for EDGBKUP.

BACKUP(DSS|NREORG|REORG)

Specify BACKUP to control the way DFSMSrmm backs up, and optionally

reorganizes the DFSMSrmm control data set.

 Restriction: You cannot RESTORE or REORG an active DFSMSrmm

control data set. You must stop or quiesce DFSMSrmm or ensure that the

control data set is not in use by DFSMSrmm.

DSS

 Specify BACKUP(DSS) to use DFSMSdss to back up the control data

set. DFSMSrmm uses DFSMSdss to back up the control data set and

IDCAMS to back up the journal. To allow updates to the control data set

during backup processing, set up the DFSMSdss concurrent copy

environment or virtual concurrent copy environment. You must have the

hardware and software required to establish a concurrent copy session

or a virtual concurrent copy session.

 Restriction: If you specify BACKUP(DSS) without establishing a

concurrent copy session, DFSMSrmm performs back up processing but

DFSMSrmm does not allow updates to the control data set until the

control data set backup completes. If DFSMSrmm is active and you

specify BACKUP(DSS), DFSMSrmm allows backup directly to tape

when the journal is not full or locked.

 DSSOPT is an optional DD statement that is for use with

BACKUP(DSS). BACKUP allows you to customize the DFSMSdss

options that DFSMSrmm uses. See “Customizing the DSSOPT DD

Statement” on page 377 for additional information.

 You can use the EDGBKUP utility or DFSMSdss to restore backups of

the control data set that are created using DFSMSdss. If you use

DFSMSdss to restore the backup, you must use the EDGBKUP utility to

perform forward recovery to reset the control information in the restored

//EDGBKUP EXEC PGM=EDGBKUP,PARM=’BACKUP(DSS)’

//SYSPRINT DD SYSOUT=*

//MASTER DD DISP=SHR,DSN=RMM.CDS

//JOURNAL DD DISP=SHR,DSN=RMM.JOURNAL

//BACKUP DD DISP=(,CATLG),UNIT=TAPE,DSN=BACKUP.CDS(+1),

// LABEL=(,SL)

//JRNLBKUP DD DISP=(,CATLG),UNIT=TAPE,DSN=BACKUP.JRNL(+1),

// LABEL=(2,SL),VOL=REF=*.BACKUP,LRECL=9248,

// BLKSIZE=0,RECFM=VB

Figure 142. JCL Example for EDGBKUP

�� RESTORE

NREORG

BACKUP(

DSS

)

REORG

 ��

Figure 143. EDGBKUP EXEC Parameters

374 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

control data set. DFSMSrmm issues message EDG0123D when you

start DFSMSrmm and have not reset the control information in the

control data set.

NREORG

 Specify BACKUP(NREORG) to use IDCAMS to back up the control

data set and to back up the journal data set.

 NREORG is the default.

REORG

 Specify BACKUP(REORG) to reorganize the control data set during

backup processing. DFSMSrmm uses IDCAMS to back up the control

data set, to optionally back up the journal, and to restore the control

data set from the backup.

RESTORE

Specify RESTORE to restore the control data set from a backup copy.

When you specify the BACKUP DD statement, DFSMSrmm restores the

control data set. When you specify the JOURNAL DD statement, forward

recovery is begun. You can specify both the BACKUP DD statement and

the JOURNAL DD statement in the same job step to restore and forward

recover the control data set from journal backups and the journal data set.

 RESTORE allows you to customize the DFSMSdss options that

DFSMSrmm uses. See “Customizing the DSSOPT DD Statement” on page

377 for additional information.

DD Statements for EDGBKUP

The data sets that are used by the EDGBKUP utility are described in Table 54.

 Table 54. DFSMSrmm EDGBKUP Data Sets

DD Statement Description

BACKUP Contains the backup copy of the DFSMSrmm control data set. This data set is optional.

When you run backup, specify the BACKUP DD statement, the JRNLBKUP DD

statement, or both statements. You can back up directly to tape when you specify the

BACKUP(DSS) parameter on the EXEC statement even when you have not set up

DFSMSdss concurrent copy when DFSMSrmm is active.

DSSOPT Contains DUMP or RESTORE command options used by DFSMSdss during

processing. This data set is optional. See “Customizing the DSSOPT DD Statement” on

page 377 for information about changing the commands.

JOURNAL Identifies the DFSMSrmm journal to be used during backup processing. Identifies the

journal backups and journal to be used during restore processing.

JRNLBKUP Contains the backup copy of the DFSMSrmm journal. This data set is optional. When

you run backup, specify the BACKUP DD statement, the JRNLBKUP DD statement, or

both statements. DFSMSrmm uses IDCAMS to back up the journal when you specify

the BACKUP(AMS) or BACKUP(DSS) parameter. You can back up the journal directly

to tape when you specify the BACKUP(DSS) parameter when DFSMSrmm is active.

MASTER Identifies the DFSMSrmm control data set. This data set is optional when you code the

BACKUP on the EXEC statement if DFSMSrmm is active. This data set is required for

RESTORE except when DFSMSdss is used for RESTORE. Only specify the MASTER

DD if the target data set already exists.

SYSPRINT Contains the utility program messages that IDCAMS and ADRDSSU issue when

backing up the DFSMSrmm control data set. This data set can be a SYSOUT file.

Chapter 17. Maintaining the Control Data Set 375

Return Codes for EDGBKUP

EDGBKUP can issue the return codes shown in Table 55.

 Table 55. EDGBKUP Return Codes

Return

Code Explanation

0 All requested functions completed successfully.

4 DFSMSrmm encountered a minor error during processing. It issues an

informational message and continues processing.

8 DFSMSrmm encountered errors during the forward recovery or restore process.

DFSMSrmm has updated the control record in the recovered control data set to

show that recovery was not successful.

12 DFSMSrmm encountered a severe error during processing of one of the requested

functions. DFSMSrmm stops the utility. DFSMSrmm has updated the control record

in the recovered control data set to show that recovery was not successful.

16 DFSMSrmm encountered a severe error during a required communication with the

DFSMSrmm subsystem. DFSMSrmm stops the utility.

Additional EDGBKUP Return Code Information

If DFSMSrmm encounters an error during restore processing, DFSMSrmm

completes the restore and sets a return code of 8 under these conditions:

v DFSMSrmm finds that the previous update of the control data set failed and the

error was not corrected.

v DFSMSrmm cannot match the control data set and the journal. Journal copies

used as input to forward recovery are out of sequence with other journal copies.

v DFSMSrmm can match the journal and the control data set, but the last set of

journal records is incomplete. DFSMSrmm issues a message to indicate that

forward recovery is completed to the point of the last complete set of journal

records.

v DFSMSrmm detects discrepancies in the journal records used to perform a

forward recovery.

For either a return code of 8 or 12, you should decide whether the restored control

data set is acceptable, then take corrective actions. You can try to recover again by

using the correct control data set and journal data sets. If you do not have any

other backups or journals from which to restore, you will have to accept the

restored control data set.

DFSMSrmm sets values in the control data set control record to indicate that the

recovery did not complete satisfactorily. Until these values are reset, DFSMSrmm

always prompts the operator at DFSMSrmm startup time to determine if the control

data set can be used or not. To clear the values, run EDGUTIL VERIFY(ALL) to

validate the recovered control data set. If processing completes successfully,

DFSMSrmm resets the control data set control record and accepts the control data

set for use without prompting the operator at future startup times.

If EDGUTIL finds errors in the restored control data set, correct the errors and run

EDGUTIL again. Start DFSMSrmm and use the restored control data set while you

issue RMM TSO subcommands. Correct the errors in the control data set by using

RMM TSO subcommands or the EDGUTIL utility with the MEND parameter as

described in “Mending the Control Data Set” on page 406 to update the information

in the control data set.

376 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Customizing the DSSOPT DD Statement

You can use the DSSOPT DD statement to replace the DFSMSdss DUMP and

RESTORE commands that are used by DFSMSrmm. You might want to customize

the operands based on the media that you used for the backup and the resource

that you have available.

Figure 144 shows examples of the DFSMSdss DUMP command and the

DFSMSdss RESTORE command that DFSMSrmm issues. You can replace the

second line of the DUMP and RESTORE commands that are shown in Figure 144

with one or more DFSMSdss options. If you decide to change the commands,

specify all the operands you want to have processed because DFSMSrmm uses

your input in place of its own.

The DUMP command and RESTORE command operands that you can specify in

the DSSOPT DD statement are controlled and validated by DFSMSdss, not by

DFSMSrmm. If you specify an unsupported command operand, DFSMSdss fails the

dump operation. The REPLACE keyword on the RESTORE command ensures that

when you recover the DFSMSrmm control data set from a backup, any existing

control data set is reused when possible or reallocated if necessary. If you are

increasing the size of the control data set and have preallocated a larger control

data set, specify the REPLACE keyword to restore to the preallocated data set.

The DSSOPT DD statement can be specified for both dump and restore operations.

DFSMSrmm reads all the records and uses them to replace its default command

operands beginning at the second line. You can include comments in the DSSOPT

records by using DFSMSdss conventions.

Example: Ensure that DFSMSdss does not compress the data and that the tape

hardware is used to compress the records. This example uses EDGHSKP to back

up to tape. To use EDGBKUP, the backup data sets must be allocated on DASD.

//EDGBKUP EXEC PGM=EDGHSKP,PARM=’BACKUP(DSS)’

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=(,CATLG),UNIT=TAPE,DSN=BACKUP.CDS(+1),

// LABEL=(,SL)

//JRNLBKUP DD DISP=(,CATLG),UNIT=TAPE,DSN=BACKUP.JRNL(+1),

// LABEL=(2,SL),VOL=REF=*.BACKUP

//DSSOPT DD *

 CONCURRENT OPTIMIZE(4) VALIDATE

/*

Example: Rename the control data set during restore processing. The restored

control data set is renamed when DFSMSdss renames each of the components of

the backup copy of the original DFSMSrmm control data set. The example also

shows how to restore the control data set and forward recover it to a volume

different from the volume on which it was backed up. When the control data set is

renamed during the restore, do not specify the MASTER DD statement unless it

identifies the predefined target data set.

 DUMP DS(INCLUDE(cds_name)) OUTDD(BACKUP) SHARE -

 COMPRESS CONCURRENT VALIDATE OPTIMIZE(1)

 RESTORE DS(INCLUDE(**)) INDD(BACKUP) -

 REPLACE

Figure 144. DFSMSdss Commands that are Issued by DFSMSrmm

Chapter 17. Maintaining the Control Data Set 377

//EDGBKUP EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=SHR,UNIT=TAPE,DSN=BACKUP.CDS(0)

//JOURNAL DD DISP=SHR,DSN=BACKUP.JOURNAL(0)

// DD DISP=SHR,DSN=RMM.JOURNAL

//NEWVOL DD DISP=SHR,VOL=SER=MYVOLX

//DSSOPT DD *

/*RESTORE TO NEW VOLUME,AND

RENAME THE CDS */

OUTDD(NEWVOL)RENAMEU((*.CDS,*.NEWCDS))

Backing Up the Control Data Set

Requirement: To use DFSMSdss for non-intrusive backup, set up the DFSMSdss

concurrent copy environment or the virtual concurrent environment. You must have

the hardware and software required to establish a concurrent copy session or a

virtual concurrent copy session.

Use EDGBKUP to perform these tasks:

v Back up the control data set to a non-VSAM data set or a VSAM cluster that is

described in “Backing Up the DFSMSrmm Control Data Set and Journal.”

v Back up the journal described in “Backing Up the Journal” on page 368.

v Restore the control data set by returning a backup of the control data set and,

optionally, forward recover it described in “Restoring the Control Data Set” on

page 379.

v Reorganize the control data set described in “Reorganizing the Control Data Set”

on page 384.

v Move the control data set and journal to different device types that are described

in “Moving the Control Data Set and Journal to a Different Device” on page 387.

You can back up and restore the control data set using EDGBKUP with the

DFSMSdss DUMP command and the RESTORE command or the access method

services REPRO command. Use the DFSMSdss DUMP command with concurrent

copy and the CONCURRENT option to perform a non-intrusive back up where

DFSMSrmm allows updates to the DFSMSrmm control data set and journal.

EDGBKUP links to IDCAMS or ADRDSSU to restore the control data set or back up

the control data set. EDGBKUP links to IDCAMS to back up the journal data set.

You can see the commands and the messages that DFSMSrmm issues during

processing in the SYSPRINT data set.

You cannot selectively copy, edit, or sort records in the DFSMSrmm journal data set

or in backup copies because the records are in a format that only DFSMSrmm

understands.

Backing Up the DFSMSrmm Control Data Set and Journal

When DFSMSrmm is active, you do not need to specify the MASTER and

JOURNAL DD statements. EDGBKUP obtains the name of the control data set and

the journal from the DFSMSrmm subsystem. When the DFSMSrmm subsystem is

stopped, quiesced, or when you want to back up a control data set that is not in

use by DFSMSrmm, specify the MASTER DD statement and the JOURNAL DD

statement. You decide which data sets are backed up. Specify the BACKUP DD to

request control data set backup. Specify the JRNLBKUP DD to request journal

backup. You can specify either or both of the BACKUP and JRNLBKUP DD

statements. If you do not back up the journal before it is cleared, forward recovery

378 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

from previous control data set backups is limited. EDGBKUP does not reset the

journal after backing up the control data set. Use EDGHSKP to reset the journal

after backing up the control data set.

Example: Back up the control data set by using EDGBKUP.

//EDGBKP EXEC PGM=EDGBKUP,PARM=’BACKUP’

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=(,CATLG),UNIT=SYSALLDA,DSN=BACKUP.CDS(+1),

// SPACE=(TRK,(ppp,sss),RLSE),RECFM=VB,LRECL=9216

// BLKSIZE=0

Example: Back up the journal data set by using EDGBKUP.

//EDGBKP EXEC PGM=EDGBKUP,PARM=’BACKUP’

//SYSPRINT DD SYSOUT=*

//JRNLBKUP DD DISP=(,CATLG),UNIT=SYSALLDA,DSN=BACKUP.JRNL(+1),

// SPACE=(TRK,(ppp,sss),RLSE),RECFM=VB,LRECL=9248

// BLKSIZE=0,BUFNO=30

DFSMSrmm checks that any previous update of the control data set has completed

successfully before backing up the DFSMSrmm control data set. DFSMSrmm does

not back up the control data set when the previous update of the control data set

fails and you are not using BACKUP(REORG). DFSMSrmm issues an informational

message and sets a return code of 12.

To store backup copies of the control data set in a storage location to prepare for

disaster recovery, you can place the backups on tape and define vital record

specifications to move the backups off-site. When BACKUP(DSS) is used, you can

back up directly to tape. When you use BACKUP(NREORG) or BACKUP(REORG),

use a DASD data set for the initial backup copy. Then copy the backup copy to a

tape data set in a subsequent job step or job. For disaster recovery, you can

restore directly from the tape data set with the DFSMSrmm subsystem stopped or

quiesced as long as you use the EDGBKUP utility. For on-site recovery, use a

DASD backup for faster recovery.

Restoring the Control Data Set

This topic includes information about these topics:

v “Controlling the Control Data Set Recovery Point”

v “Restoring the Control Data Set with Forward Recovery” on page 380

v “Restoring the Control Data Set without Forward Recovery” on page 381

v “Forward Recovering the Control Data Set” on page 381

v “Restoring the Control Data Set at a Recovery Site” on page 382

v “Using Non-DFSMSrmm Utilities to Restore the Control Data Set” on page 383

Controlling the Control Data Set Recovery Point

You can restore the DFSMSrmm control data set to any of these recovery points:

v The start time of the selected DFSMSrmm control data set backup.

v The end time of the selected DFSMSrmm control data set backup. Backups

taken with DFSMSdss require the journal backup to have been taken at the

same time as the DFSMSrmm control data set backup, otherwise the end time is

no different than the start time.

v The end time of a journal backup.

Chapter 17. Maintaining the Control Data Set 379

v The current point in time, which can be achieved as long as you have an

appropriate backup of the DFSMSrmm control data set and required backup

copies of both the journal and the active journal. Also, the journal backups used

must not include any time when the journal was disabled. If you have incomplete

journal data because the journal was disabled or a journal backup is damaged or

missing, the restored DFSMSrmm control data set may be inconsistent.

You can determine the DFSMSrmm control data set version that has actually been

recovered by using information from runs of the EDGBKUP utility during forward

recovery and from information in the DFSMSrmm control data set control record.

When you restore a DFSMSrmm control data set with forward recovery, use the

details in message EDG6431I to identify the DFSMSrmm control data set time

stamp and the time stamp of the journal records used for forward recovery. For

example:

EDG6431I THE CONTROL DATA SET TIMESTAMPED 2001/240 06:04:47 WAS FORWARD RECOVERED FROM JOURNAL

 RECORDS BETWEEN 2001/240

EDG6431I CONT:- 06:04:47 AND 2001/241 04:01:12

If you no longer have the EDG6431I message or you did not use forward recovery,

you can use the RMM LISTCONTROL subcommand to find the time stamp. In this

case, restart DFSMSrmm after your recovery, but before you start tape processing

or update records in the DFSMSrmm control data set. Use the RMM

LISTCONTROL CNTL subcommand to display the update date and update time

values which indicate your recovery point time stamp

Restoring the Control Data Set with Forward Recovery

Figure 145 shows the JCL for restoring the DFSMSrmm control data set and for

forward recovering the DFSMSrmm control data set. You can restore the control

data set directly from tape by using the EDGBKUP utility when DFSMSrmm is

stopped or quiesced. You do not need to use the EDGRESET utility or the MODIFY

command to reset DFSMSrmm. EDGBKUP uses either the DFSMSdss RESTORE

command or the AMS REPRO utility to restore the control data set based on the

contents of the control data set backup.

 You must specify the MASTER DD statement to restore from an AMS REPRO

backup and to forward recover an existing control data set.

The MASTER DD is optional when you restore the control data set from a

DFSMSdss backup. In this way, you do not have to pre-allocate the control data

set, and you can optionally restore to a control data set by using a different data set

name. After the DFSMSdss restore is completed, DFSMSrmm dynamically allocates

the MASTER file to the restored data set prior to starting forward recovery. If the

MASTER DD statement is specified, the data set name must match the data set

name that DFSMSdss restores.

//EDGBKUP EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//MASTER DD DISP=SHR,DSN=RMM.CDS

//*

//BACKUP DD DISP=SHR,DSN=BACKUP.CDS(0)

//*

//JOURNAL DD DISP=SHR,DSN=BACKUP.JRNL(0)

// DD DISP=SHR,DSN=RMM.JOURNAL

Figure 145. Restoring the Control Data Set with Forward Recovery

380 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

You can restore the DFSMSrmm control data set and forward recover the restored

control data set with journal records. Use the JOURNAL DD statement to

concatenate multiple journal data sets. If you forward recover using multiple journal

data sets, concatenate the journal data sets in the order in which changes were

originally made. The first journal data set in the concatenation must match the

control data set to be forward recovered. For control data set backups that are

taken with AMS REPRO, DFSMSrmm considers the matching journal to be the one

that contains records that are created after the journal was cleared. For control data

set backups that are taken with DFSMSdss, DFSMSrmm considers the matching

journal to be the journal in use at the time the backup is taken.

Example: The example shows how to restore from the second generation backup.

Concatenate journal data sets for back up using AMS REPRO.

//BACKUP DD DISP=SHR,DSN=BACKUP.CDS(-2)

//JOURNAL DD DISP=SHR,DSN=BACKUP.JOURNAL(-1)

// DD DISP=SHR,DSN=BACKUP.JOURNAL(0)

// DD DISP=SHR,DSN=RMM.JOURNAL

Example: The example shows how to restore from the second generation backup.

Concatenate journal data sets for back up using DFSMSdss.

//BACKUP DD DISP=SHR,DSN=BACKUP.CDS(-2)

//JOURNAL DD DISP=SHR,DSN=BACKUP.JOURNAL(-2)

// DD DISP=SHR,DSN=BACKUP.JOURNAL(-1)

// DD DISP=SHR,DSN=BACKUP.JOURNAL(0)

// DD DISP=SHR,DSN=RMM.JOURNAL

When backup is taken using AMS REPRO and you restore the control data set from

the latest control data set backup, use the active journal to forward recover to the

latest point in time.

When backup is taken using BACKUP(DSS) and you restore from the latest control

data set backup, both the latest journal backup and the active journal must be used

for forward recovery. For information about restoring the control data set at a

recovery site, see “Restoring the Control Data Set at a Recovery Site” on page 382.

Restoring the Control Data Set without Forward Recovery

To restore the control data set without forward recovery, do not specify a JOURNAL

DD statement. EDGBKUP checks the contents of the control data set backup and

calls the correct utility to restore the control data set. The MASTER DD statement is

optional when you have used DFSMSdss in the DFSMSrmm utilities to create the

backup copy and you do not need to change the name of the DFSMSrmm control

data set.

Example: To restore the control data set without forward recovery:

//RESTORE EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=SHR,DSN=RMM.BACKUP.CDS

//MASTER DD DISP=SHR,DSN=RMM.CDS

Forward Recovering the Control Data Set

You can forward recover the control data set after you have restored the control

data set in a previous step.

Chapter 17. Maintaining the Control Data Set 381

Example: To forward recover the control data set by using EDGBKUP:

//FWDRECVR EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//MASTER DD DISP=SHR,DSN=RMM.CDS

//JOURNAL DD DISP=SHR,DSN=RMM.JOURNAL

When you do not provide the BACKUP DD statement, DFSMSrmm does not restore

the control data set. DFSMSrmm assumes that the data set identified by the

MASTER DD statement identifies the correct control data set, and EDGBKUP uses

data from the journal to forward recover the control data set.

You can use the JOURNAL DD statement to concatenate multiple journal data sets.

See “Restoring the Control Data Set with Forward Recovery” on page 380 for

information about concatenating journal data for recovery. You can forward recover

a restored or unrestored control data set. For example, if automatic forward

recovery fails, you could attempt forward recovery by using the active journal. If you

have already restored the control data set but have not used journal data for

forward recovery, run forward recovery as a second step. The DFSMSrmm

subsystem must be stopped or quiesced during forward recovery of the active

control data set.

Restoring the Control Data Set at a Recovery Site

Before you start the DFRMM procedure, use the EDGBKUP utility to restore from

the latest control data set backup. You can restore from either tape or DASD. When

you restore from tape, even though the DFRMM procedure is not started,

DFSMSrmm verifies that you are restoring a backup of the DFSMSrmm control data

set and allows you to use EDGBKUP with DFSMSrmm inactive. Any backup of the

control data set is a backup consistent with the time that you started the backup.

You can restore that backup copy to your selected point in time, or can optionally

forward recover to the end of the DFSMSrmm backup processing or some later

time as long as you have the journal backups and journal data set. Usually you will

not use forward recovery. To restore the control data set at a recovery site, follow

these steps:

1. If you used DFSMSrmm to create the backup by using IDCAMS REPRO,

allocate a new control data set. You can use the DFSMSrmm-supplied sample

job EDGJMFAL to allocate a new control data set.

2. Run EDGBKUP with the RESTORE parameter to restore the control data set

from a backup copy. The MASTER DD statement is optional if you used

DFSMSrmm to create the backup with DFSMSdss.

//RESTORE EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=SHR,DSN=RMM.BACKUP.CDS

//MASTER DD DISP=SHR,DSN=RMM.CDS

3. If you want to forward recover to a later point in time, run EDGBKUP with the

RESTORE parameter and include the JOURNAL DD statement to identify the

journals to be applied.

//RESTORE EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//MASTER DD DISP=SHR,DSN=RMM.CDS

//JOURNAL DD DISP=SHR,DSN=RMM.JOURNAL.BACKUP(0)

382 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

This step can be combined with Step 2 to restore the control data set and

journal at the same time:

//RESTORE EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=SHR,DSN=RMM.BACKUP.CDS

//MASTER DD DISP=SHR,DSN=RMM.CDS

//JOURNAL DD DISP=SHR,DSN=RMM.JOURNAL.BACKUP(0)

The MASTER DD statement is optional if you used DFSMSrmm to create the

backup with DFSMSdss.

4. Allocate an empty journal data set. DFSMSrmm provides sample EDGJNLAL

that you can use to allocate the journal.

5. Start DFRMM with a DFSMSrmm EDGRMMxx parmlib member that names the

restored control data set and the empty journal.

Using Non-DFSMSrmm Utilities to Restore the Control Data Set

Recommendation: Use the DFSMSrmm EDGBKUP utility to restore the control

data set to get the benefits that the DFSMSrmm utility provides and to avoid

replying to operator messages if DFSMSrmm is not active.

You can use IDCAMS REPRO or DFSMSdss RESTORE to recover the

DFSMSrmm control data set from a backup copy taken using those utilities. This

topic contains examples for you to use IDCAMS and DFSMSdss.

If you use IDCAMS or DFSMSdss to restore the control data set from a backup,

you must forward recover the control data set before it can be used by

DFSMSrmm. If you do not perform forward recovery and start DFSMSrmm, you will

have to reply to message EDG0123D. To avoid this, forward recover the control

data set by using the EDGBKUP utility. You can use a dummy journal if you do not

have an existing journal or journal backups. When forward recovery is completed,

you are ready to use the control data set with DFSMSrmm.

Example: Restore the control data set by using IDCAMS.

//RESTORE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=SHR,DSN=RMM.BACKUP.CDS

//MASTER DD DISP=SHR,DSN=RMM.CDS

//SYSIN DD *

 REPRO INFILE(BACKUP) OUTFILE(MASTER)

/*

Example: Restore the control data set using DFSMSdss.

//RESTORE EXEC PGM=ADRDSSU

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=SHR,DSN=RMM.BACKUP.CDS

//SYSIN DD *

 RESTORE DS(INCLUDE(**))INDD(BACKUP) REPLACE

/*

Example: Forward recover the control data set using a dummy journal.

Chapter 17. Maintaining the Control Data Set 383

//FWDRECVR EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//MASTER DD DISP=SHR,DSN=RMM.CDS

//JOURNAL DD DUMMY.

Reorganizing the Control Data Set

Use EDGBKUP to reorganize the control data set. The DFSMSrmm subsystem

must be stopped or quiesced when you reorganize the active control data set.

DFSMSrmm reorganizes the control data set by first backing up the control data set

and optionally the journal. Then DFSMSrmm restores the control data set from the

backup control data set.

Do not use the BACKUP(DSS) parameter to reorganize the control data set. If you

use BACKUP(DSS) to regularly back up for recovery purposes, use the EDGBKUP

utility with the BACKUP(REORG) parameter with care. Although DFSMSrmm can

determine which utility to use for recovery from any backup taken using an

DFSMSrmm utility, any backup taken during BACKUP(REORG) might impact the

cycles that have been maintained of regular backup copies.

Example: Reorganize the control data set without backing up the journal.

//REORG EXEC PGM=EDGBKUP,PARM=’BACKUP(REORG)’

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=(,CATLG),DSN=RMM.BACKUP.CDS(+1),UNIT=SYSALLDA,

// SPACE=(CYL,(ppp,sss),RLSE),RECFM=VB,LRECL=9216,

// BLKSIZE=0

//MASTER DD DISP=OLD,DSN=RMM.CDS

Example: Reorganize the control data set and back up the journal. DFSMSrmm

backs up the journal before attempting to restore the control data set because the

JRNLBKUP DD and the JOURNAL DD statement are specified in this example.

//REORG EXEC PGM=EDGBKUP,PARM=’BACKUP(REORG)’

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=(,CATLG),DSN=RMM.BACKUP.CDS(+1),UNIT=SYSALLDA,

// SPACE=(CYL,(ppp,sss),RLSE),RECFM=VB,LRECL=9216

// BLKSIZE=0

//MASTER DD DISP=OLD,DSN=RMM.CDS

//JRNLBKUP DD DISP=(,CATLG),DSN=RMM.BACKUP.JOURNAL(+1),UNIT=SYSALLDA,

// SPACE=(CYL,(ppp,sss),RLSE),RECFM=VB,LRECL=9248,

// BLKSIZE=0,BUFNO=30

//JOURNAL DD DISP=OLD,DSN=RMM.JOURNAL,BUFNO=30

These examples show how you can reorganize your current, or in use, control data

set. This approach requires that the DFSMSrmm started task is stopped and a

backup and restore operation is to be processed. Another approach to reorganizing

the control data set is to allocate a new control data set and ensure that the control

data set contents are reorganized as part of the copy to the new data set. See

“Steps for Moving the Control Data Set and Journal Using the DFSMSrmm

EDGHSKP Utility with the PARM=’BACKUP’ Parameter” on page 388 for a process

you can follow that also reorganizes the control data set contents. Be sure to

remember that only a control data set backup using EDGHSKP with the BACKUP

or BACKUP(AMS) parameter, or EDGBKUP with the BACKUP,

BACKUP(NREORG), or BACKUP(REORG) parameter, reorganizes the control data

set contents.

384 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|

Monitoring the Space Used by the Control Data Set

See “Step 12: Creating the DFSMSrmm Control Data Set” on page 39 for

information on creating the DFSMSrmm control data set, including information on

how to calculate DASD space for the control data set, placement of the control data

set, and allocating space for the control data set. We recommend that you allocate

the DFSMSrmm control data set with enough secondary space so that the

DFSMSrmm control data set can grow as you add new resources such as volumes

and data sets. Also, allow for enough planned free space in the DFSMSrmm control

data set to allow for growth and any known new-volume requirements. However, at

some time, the allocated space in the DFSMSrmm control data set will fill up and

new extents are allocated and used as long as there is free DASD space available.

The DFSMSrmm control data set can grow in size within the limits imposed by

VSAM and DFSMS.

Use the LISTCAT output from IDCAMS to check the details of the DFSMSrmm

control data set and the RMM LISTCONTROL CNTL subcommand to list the

calculated percentage used for the DFSMSrmm control data set. DFSMSrmm

calculates the percentage of the DFSMSrmm control data set used by checking the

High Used RBA and High Allocated RBA that the LISTCAT output shows. This

percentage does not take into account any available embedded free space, nor

does it take into account the number of used extents or the additional free space

that may be available to extend the DFSMSrmm control data set.

Decide how you will monitor and report on the DFSMSrmm control data set space

used. By using the information available to you, including your predicted tape

usage, decide if the DFSMSrmm control data set is large enough or needs to be

reallocated. Decide on your own thresholds, and check regularly to ensure they are

used to trigger corrective action. Although you can reorganize the DFSMSrmm

control data set to recover free space, do not do this regularly. Ensure your

DFSMSrmm control data set is large enough and can grow as required to avoid the

need to reorganize it regularly.

Changing the Size of the Control Data Set And Journal

To change the size of the DFSMSrmm control data set or journal (either to make

the data sets larger or smaller), use the procedures documented in this chapter.

The basic procedure is to use backup and recovery, but the method selected

depends on whether you have a new volume available for the new control data set.

If you use the existing volume and must delete the existing data set to allocate one

of a new size, follow the procedure documented in “Backing Up the DFSMSrmm

Control Data Set and Journal” on page 378 and “Restoring the Control Data Set

with Forward Recovery” on page 380. If you use a new volume, follow the

procedure documented in “Moving the Control Data Set and Journal to a Different

Device” on page 387. When you allocate the new data sets, make them the

required size by either increasing or decreasing the size based on your

requirements.

Recovering from Control Data Set Update Failures

Information about a volume in the DFSMSrmm control data set is stored in several

records. A change in a volume’s status can require updating several records. Since

an update of multiple records takes a certain amount of time, it is possible that

external events, such as a power outage, could interrupt the updating process. An

interruption can leave some records that reflect the volume’s old status and some

Chapter 17. Maintaining the Control Data Set 385

its new and the control data set is then considered corrupt. It might be impossible to

subsequently change the volume’s status. This situation is referred to as a

multi-record update failure.

DFSMSrmm detects a multi-record update failure at DFSMSrmm address-space

start-up time when the control data set is not shared between systems. When a

control data set is shared between multiple systems, the multi-record update failure

can be detected at any time. A hardware failure on any of the systems could be

detected by another system at the next I/O to the control data set. In this case, a

SYSTEM RESET of the failing system releases the control data set reserve, and

the other systems sharing that control data set, find they had experienced a

multi-record update failure.

Recovery Processing

The first request for I/O to the control data set, following a multi-record update

failure, detects the failure, and recovery processing begins. Other attempts to

access the control data set are queued behind the current request until either

manual recovery is required or automatic recovery is successful.

When a multi-record update failure is first detected, DFSMSrmm attempts automatic

recovery processing which requires no operator intervention. If a journal data set

matching the corrupt control data set is found, DFSMSrmm issues message

EDG2111I to notify the operator that automatic recovery processing is starting.

DFSMSrmm issues message EDG2115I if automatic recovery is not possible and

manual recovery is required. Manual recovery might be needed under these

conditions:

v The journal data set is not defined in the initialization parameters

v The journal and control data sets do not match

v The journal data set has been disabled in response to message EDG2103D

v The journal data set update has been ignored in response to message

EDG2103D

Manual recovery requires operator intervention. See z/OS DFSMSrmm Guide and

Reference for operator procedures for responding to messages DFSMSrmm issues

during recovery processing.

Recommendation: Use EDGHSKP with the CATSYNCH parameter to synchronize

catalogs after recovery.

Handling I/O Requests Following a Failure

After recovery is completed, I/O requests for any tape processing activity and

DFSMShsm tape volume release activity are retried.

Automatic recovery

Once automatic recovery is successful the first request continues as normal, and

the queued requests are processed.

Manual recovery

When manual recovery is required, each subsystem request that results in I/O to

the control data set fails. For requests that can be retried, DFSMSrmm issues

WTOR EDG4001D or EDG8008D.

When you perform manual recovery because the control data set is no longer valid,

restore the control data set using the most recent backup copy of the control data

386 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

set. Forward recover the control data set to the point of failure by using the latest

control data set backup and the applicable journal backups that are concatenated

with the active journal. See “Restoring the Control Data Set with Forward Recovery”

on page 380 for information. If manual recovery is required because the control

data set is full or for some other reason where the control data set information is

valid except for the most recent failed record updates, use the current control data

set for recovery rather than a backup copy. When you use the current control data

set for recovery, you do not need to perform forward recovery because DFSMSrmm

restart performs automatic forward recovery. Also do not run the EDGUTIL utility

against the control data set before you resume DFSMSrmm operation.

Use one of these methods to perform manual recovery by using the current control

data set.

v Run the EDGBKUP utility with PARM=’RESTORE’ to use the active journal to

forward recover the current DFSMSrmm control data set. If processing is

successful, the control data set information is correct. See “Forward Recovering

the Control Data Set” on page 381.

v Run the EDGBKUP utility with PARM=’BACKUP(REORG)’ to reorganize the

current control data set and reclaim enough free space to enable processing to

continue. See “Reorganizing the Control Data Set” on page 384. To correct the

control data set information, refresh the DFSMSrmm started task, and attempt

automatic forward recovery.

v Use IDCAMS REPRO to copy the contents of the current control data set to a

new, larger control data set. Create a new EDGRMMxx parmlib member to define

data set name for the new control data set. To correct the control data set

information, refresh the DFSMSrmm started task, and attempt automatic forward

recovery.

v Run EDGBKUP with PARM=’RESTORE’ to use the latest control data set

backup, and the applicable journal backups that are concatenated with the active

journal to forward recover. If processing is successful, the control data set

information is correct. See “Restoring the Control Data Set with Forward

Recovery” on page 380.

Manual recovery requires operator intervention. See z/OS DFSMSrmm Guide and

Reference for operator procedures for information about stopping, quiescing, and

restarting the DFSMSrmm subsystem. After manual recovery completes, the

operator can reply ’RETRY’ or ’CANCEL’ to the EDG4001D and EDG8008D

WTORs. These requests fail and must be rerun or reissued after manual recovery:

v Inventory management in progress

v DFSMSrmm utilities EDGINERS and EDGUTIL

v RMM TSO subcommands

Moving the Control Data Set and Journal to a Different Device

Before You Begin: See “Step 18: Starting DFSMSrmm” on page 52 for information

about the stopping or quiescing of DFSMSrmm to allow processing for restoring or

reorganizing the control data set.

To move the control data set or journal to a different device, use DFSMSrmm

utilities. For other DFSMSrmm data sets, such as the extract data set, use the

existing storage management techniques that you are familiar with to move them.

These topics provide examples for moving the control data set and journal data set

that use both DFSMSrmm utilities and non-DFSMSrmm techniques. If you want to

move the control data set and not the journal, modify these examples as follows:

Chapter 17. Maintaining the Control Data Set 387

1. Do not allocate a new journal data set.

2. Only alter the control data set name. Do not alter the journal name or change

the journal name in the DFSMSrmm EDGRMMxx parmlib.

Do not change the restore step to ensure that the restore process includes forward

recovery from the journal records.

Steps for Moving the Control Data Set and Journal Using the

DFSMSrmm EDGHSKP Utility with the PARM=’BACKUP’ Parameter

Perform these steps to move your control data set and journal to a different device

by using the EDGHSKP utility with the PARM=’BACKUP’ parameter.

1. Allocate a new control data set and journal. Refer to “Step 12: Creating the

DFSMSrmm Control Data Set” on page 39 for information on allocating the

control data set. Now is a good time to consider whether you should allocate

the control data set as an extended format (EF) data set and to optionally set

the extended addressability (EA) attribute so that the control data set can grow

beyond 4GB in size.

2. Back up the control data set and the journal.

Example: With DFSMSrmm active, run EDGHSKP,PARM=’BACKUP’ ’ to back

up the control data set and the journal and to clear the current journal.

 // EXEC PGM=EDGHSKP,PARM=’BACKUP’

 //MESSAGE DD DISP=SHR,DSN=messages

 //SYSPRINT DD SYSOUT=*

 //BACKUP DD DISP=(,CATLG),DSN=cds backup(+1),UNIT=SYSALLDA

 // RECFM=VB,LRECL=9216,BLKSIZE=0

 //JRNLBKUP DD DISP=(,CATLG),DSN= journal backup(+1),UNIT=SYSALLDA

 // RECFM=VB,LRECL=9248,BLKSIZE=0,BUFNO=30

This clears the current journal data set. Some records might be written to the

journal if any updates are made to the control data set before the DFSMSrmm

procedure is stopped. This is not a problem because the restore operation will

use them in forward recovery.

3. Stop or quiesce the DFSMSrmm procedure to prevent any further updates to

the control data set during recovery.

4. Restore the backup of the control data set to the new control data set allocated

in step 1.

Example: This JCL example puts the latest DFSMSrmm information into the

new control data set and uses the old journal to forward recover the control data

set backup to the point where the you stopped the DFSMSrmm procedure.

 //EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=SHR,DSN=cds backup(0)

//MASTER DD DISP=SHR,DSN=new control data set

//JOURNAL DD DISP=SHR,DSN=old journal

Note: Steps 2, 3, and 4 can be optimized to minimize DFSMSrmm downtime

and to reorganize the control data set in less time. To optimize the

DFSMSrmm downtime, use these steps:

a. Back up the control data set and the journal. For example, with

DFSMSrmm active, run EDGHSKP,PARM=’BACKUP’ to back up the

control data set and the journal and to clear the current journal.

// EXEC PGM=EDGHSKP,PARM=’BACKUP’

//MESSAGE DD DISP=SHR,DSN=messages

//SYSPRINT DD SYSOUT=*

388 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

//BACKUP DD DISP=SHR,DSN=new control data set

//JRNLBKUP DD DISP=(,CATLG),DSN= journal backup(+1),UNIT=SYSALLDA

// RECFM=VB,LRECL=9248,BLKSIZE=0,BUFNO=30

This copies the control data set to the new control data set and

reorganizes the records and clears the current journal data set. Once

the backup is completed, the new control data set is almost ready for

use by DFSMSrmm. Some records might be written to the journal if

any updates are made to the control data set before the DFSMSrmm

procedure is stopped. This is not a problem because the forward

recovery operation will use them.

b. Stop or quiesce the DFSMSrmm procedure to prevent any further

updates to the control data set during recovery.

c. Forward recover the new control data set from step b. For example,

this JCL example uses the old journal to forward recover the new

control data set to the point where you stopped the DFSMSrmm

procedure.

//EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//MASTER DD DISP=SHR,DSN=new control data set

//JOURNAL DD DISP=SHR,DSN=old journal

5. Implement the new data sets by using one of these techniques:

v Use IDCAMS ALTER command to rename the new control data set and new

journal, after renaming the old data sets, or

v Create a new EDGRMMxx parmlib member with the new names, or

v Update the current parmlib member to include the names of the new control

data set and journal.

6. If you stopped DFSMSrmm, start the DFSMSrmm procedure, using the updated

parmlib member or the new parmlib member. If you quiesced DFSMSrmm, use

the MODIFY command to specify the parmlib member suffix to be used.

If you are keeping multiple control data set and journal backups for error

recovery situations, perform step 2 on page 388 again to backup the control

data set and journal.

Recommendation: Back up the new data sets now to avoid keeping the old

journal for recovery. As your backup copies are created in the future, your

requirement for the old journal will be eliminated.

You are done when you have successfully moved the control data set and journal.

Steps for Moving the Control Data Set and Journal Using DFSMSrmm

Utility EDGHSKP Utility with the PARM=’BACKUP(DSS)’ Parameter

Before you begin: Use the BACKUP(DSS) option on a concurrent copy capable

device to enable DFSMSrmm to continue to process requests while the backup is

taken.

Perform these steps to move your control data set and journal to a different device.

1. With DFSMSrmm active, back up both the control data set and the journal.

Example:Run EDGHSKP,PARM=’BACKUP(DSS)’ to back up the control data

set and the journal and to clear the current journal. Use the BACKUP(DSS)

option on a concurrent copy capable device to enable DFSMSrmm to continue

processing requests while the backup is taken. DFSMSrmm might write some

records to the journal if any updates are made to the control data set before the

Chapter 17. Maintaining the Control Data Set 389

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

DFSMSrmm procedure is stopped. This is not a problem as the restore

operation will use them in forward recovery.

//EXEC PGM=EDGHSKP,PARM=’BACKUP (DSS)’

//MESSAGE DD DISP=SHR,DSN=messages

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=(,CATLG),DSN=cds backup(+1),UNIT=SYSALLDA

//JRNLBKUP DD DISP=(,CATLG),DSN=journal backup(+1),UNIT=SYSALLDA

2. Stop or quiesce the DFSMSrmm procedure to prevent any further updates to

the control data set during recovery.

3. Restore the backup of the control data set to the new control data set. If the

BACKUP(DSS) option is used, you can use the DSSOPT DD statement to

specify the new control data set data set name. This puts the latest DFSMSrmm

information into the new control data set and uses the old journal to forward

recover the control data set backup to the point when the you stopped the

DFSMSrmm procedure.

Example: This JCL example restores the back up to a different device using a

new data set name.

//MOVECDS EXEC PGM=EDGBKUP,PARM=’RESTORE’

//SYSPRINT DD SYSOUT=*

//DSSOPT DD *

 RENAMEU(*.CDS,*.NEWCDS) OUTDYNAM(SHRPK2) NULLSTORCLAS BYPASSACS(*)

//BACKUP DD DISP=SHR,DSN=cds_backup(0)

//JOURNAL DD DISP=SHR,DSN=journal_backup(0)

// DD DISP=SHR,DSN=old_journal

4. Implement the new data sets by using one of these techniques:

v Use IDCAMS ALTER command to rename the new control data set and

journal after you rename the old data sets.

v Create a new EDGRMMxx parmlib member with the new journal names and

control data set names.

v Update the current parmlib member to include the names of the new control

data set and journal.

5. If you stopped DFSMSrmm, start the DFSMSrmm procedure, using the updated

parmlib member or the new parmlib member. If you quiesced DFSMSrmm, use

the MODIFY command to specify the parmlib member suffix to be used.

If you are keeping multiple control data set and journal backups for error

recovery situations, perform step 1 on page 389 again to backup the control

data set and journal.

Recommendation: Back up the new data sets now to avoid the requirement to

keep the old journal for recovery. As your backup copies are created in the

future, your requirement for the old journal will be eliminated.

You are done when you have successfully moved the control data set and journal.

Moving the Journal using DFSMSrmm Utilities

The journal cannot, strictly speaking, be moved. You move it by allocating a new

journal data set and later deleting the old one.

To move your journal to a different device, follow this procedure:

1. Allocate a new journal data set.

2. Stop or quiesce the DFSMSrmm procedure to prevent any further updates to

the control data set and journal.

390 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

3. With DFSMSrmm stopped or quiesced, run EDGBKUP,PARM=’BACKUP’ to

backup both the control data set and journal as shown in Figure 146.

This provides you with a valid point-in-time backup of the control data set and

the old journal data set. After this step, if you need to recover the control data

set, you can use this control data set backup, and the new journal data

set.Optionally you can back up just the journal by removing the BACKUP DD

statement. Because you are only moving the journal, you only need to back up

the journal.

4. Implement the journal by using one of these techniques:

v Use IDCAMS ALTER command to rename the new journal, having first

renamed the old data set, or

v Create a new EDGRMMxx parmlib member, or

v Update the current parmlib member to include the name of the new journal.

5. If DFSMSrmm was stopped, start the DFSMSrmm procedure, using the current,

updated, or the new parmlib member. If DFSMSrmm was quiesced, use the

MODIFY command to specify the parmlib member suffix to be used. Doing so,

uses the unmoved control data set and the newly allocated journal.

6. Delete the old journal.

Steps for Moving the Control Data Set using Non-DFSMSrmm Utilities

Perform these steps to move your control data set to a different device by using

non-DFSMSrmm utilities such as AMS REPRO and EXPORT/IMPORT, or

DFSMSdss ADRDSSU.

1. Allocate a new control data set only if you are planning to use AMS REPRO.

2. Stop or quiesce the DFSMSrmm procedure to prevent any further updates to

the control data set during recovery.

3. Copy the old control data set to the new control data set by using one of these

utilities:

v AMS REPRO.

v AMS EXPORT followed by IMPORT.

v DFSMSdss ADRDSSU utility.

Example: Copy the old control data set to the new control data set by using

the DFSMSdss ADRDSSU utility.

//COPYCDS EXEC PGM=ADRDSSU,REGION=8M

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 COPY -

 LOGINDYNAM (SHRPK3) -

 DS(INC(RMM.CDS)) -

 OUTDYNAM(SHRPK2) -

 SPHERE -

 RENAMEU(*.CDS,*.NEWCDS)

 //EXEC PGM=EDGBKUP,PARM=’BACKUP’

 //SYSPRINT DD SYSOUT=*

 //MASTER DD DISP=SHR,DSN=cds name

 //JOURNAL DD DISP=SHR,DSN=journal name

 //BACKUP DD DISP=(,CATLG),DSN=cds backup(+1),UNIT=SYSALLDA

 // SPACE=(CYL,(ppp,sss),RLSE),RECFM=VB,LRECL=9216

 //JRNLBKUP DD DISP=(,CATLG),DSN= journal backup(+1),UNIT=SYSALLDA

 // SPACE=(CYL,(ppp,sss),RLSE),RECFM=VB,LRECL=9248

Figure 146. JCL Example for Backing Up the Control Data Set and Journal

Chapter 17. Maintaining the Control Data Set 391

4. Implement the data sets by using one of these techniques:

v Use IDCAMS ALTER command to rename the new control data set, having

first renamed the old data set, or

v Create a new EDGRMMxx parmlib member, or

v Update the current parmlib member to include the name of the new control

data set.

5. If you stopped DFSMSrmm, start the DFSMSrmm procedure, using the updated

parmlib member or the new parmlib member. If you quiesced DFSMSrmm, use

the MODIFY command to specify the parmlib member suffix to be used. This

will use the moved control data set and the unmoved journal.

Using EDGUTIL for Tasks Such as Creating and Verifying the Control

Data Set

Use EDGUTIL to perform these tasks:

v Create the control data set control record in an empty VSAM data set described

in “Creating or Updating the Control Data Set Control Record” on page 400.

v Update an existing control data set control record described in “Creating or

Updating the Control Data Set Control Record” on page 400.

v Verify control data set information to diagnose errors in the control data set

described in “Verifying the Contents of the Control Data Set” on page 403.

v Check that control data set information about a volume’s status and the library in

which it resides are consistent with the TCDB information, and optionally the

library manager database information described in “Verifying the Control Data Set

and Tape Configuration Database” on page 405. You can optionally generate

control statements to enable mismatches to be synchronized at a later time using

the EDGSPLCS utility.

v Synchronize the TCDB information and library manager information for

system-managed volumes with information in the DFSMSrmm control data set

that is described in “Synchronizing the Contents of the Control Data Set” on page

406

v Detect consistency errors in control data set information created during

conversion activities and fix the errors that were detected. Run the mend function

against a VSAM copy of the control data set as the first step in fixing a

production control data set. The mend function should only be used with

guidance from IBM Support Center to determine the underlying cause of any

errors in the control data set. See “Mending the Control Data Set” on page 406

for restrictions that you should be aware of when you use the mend function.

v Enable selected functions:

– “Setting up DFSMSrmm Stacked Volume Support” on page 407

– “Enabling Extended Bin Support” on page 409

You can run multiple copies of EDGUTIL (on the same system or on different

systems), and each copy can process a different subset of volumes. If you use

each copy to process a different subset of volumes, you can potentially reduce the

time to complete processing of all volumes. See “SYSIN File for VERIFY and

MEND Processing” on page 397 for additional information on running multiple

copies of the EDGUTIL utility.

392 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|

|
|
|
|
|
|

JCL for EDGUTIL

This topic provides JCL for creating the DFSMSrmm control data set, verifying the

contents of the control data set, updating the control data set, and mending the

control data set. The MASTER DD statement is required.

JCL for Creating the Control Data Set

The JCL shown in Figure 147 can be used to create a control data set with the

name MYCDS.

JCL for Updating the Control Data Set

Use the sample JCL in Figure 148 to update the control data set with the name

MYCDS.

JCL for Verifying the Contents of the Control Data Set

Use the sample JCL in Figure 149 to verify the contents of the control data set.

JCL for Mending the Control Data Set

Use the sample JCL in Figure 150 to mend the control data set.

EXEC Parameters for EDGUTIL

Figure 151 on page 394 shows the EXEC parameters for EDGUTIL.

//EDGUTIL EXEC PGM=EDGUTIL,PARM=’CREATE’

//SYSPRINT DD SYSOUT=*

//MASTER DD DSN=RMM.CONTROL.DSET,DISP=SHR

//SYSIN DD *

CONTROL CDSID(MYCDS)

/*

Figure 147. Creating the Control Data Set

//UTIL EXEC PGM=EDGUTIL,PARM=’UPDATE’

//SYSPRINT DD SYSOUT=*

//MASTER DD DISP=SHR,DSN=RMM.CONTROL.DSET

//SYSIN DD *

CONTROL CDSID(MYCDS) RACKFREE(1234)

/*

Figure 148. Updating the Control Data Set

//UTIL EXEC PGM=EDGUTIL,PARM=’VERIFY(ALL)’

//SYSPRINT DD utility message data set

//MASTER DD DSN=RMM.CONTROL.DSET,DISP=SHR

//SYSIN DD DUMMY

Figure 149. Verifying the Contents of the Control Data Set

//UTIL EXEC PGM=EDGUTIL,PARM=’MEND’

//SYSPRINT DD SYSOUT=*

//MASTER DD DSN=RMM.CONTROL.DSET,DISP=SHR

//SYSIN DD DUMMY

Figure 150. Mending the Control Data Set

Chapter 17. Maintaining the Control Data Set 393

|
|
|
|
|
|
||
|
|

|
|
|
|
|
|
||
|
|

|
|
|

|
|
|

CREATE

Use CREATE to create a new control data set control record.

MEND

Use MEND to detect and fix errors in your control data set. If you have

system-managed volumes, DFSMSrmm also uses information from the TCDB

and the library manager database. The errors you encounter might have been

created during conversion activities or as a result of system failures. When you

specify the MEND parameter with no other values, the default processing

performed by DFSMSrmm checks for all errors in your control data set, and in

addition, if you have system managed volumes, DFSMSrmm uses information

from both the TCDB and the library manager data base. Use the MEND

function only with guidance from the IBM Support Center or to update the

control data set once stacked volumes support is enabled. Run MEND on an

unused control data set or with DFSMSrmm inactive. See “Mending the Control

Data Set” on page 406 for more information.

MEND(SMSTAPE)

Use MEND(SMSTAPE) to update the TCDB and the library manager database

using information from the DFSMSrmm control data set. Use MEND to update

the DFSMSrmm control data set based on information from the TCDB and the

library manager database. Before running MEND(SMSTAPE), you should first

use the VERIFY(SMSTAPE) option to find information that is not the same in

the DFSMSrmm control data set, TCDB, and the library manager database.

After running VERIFY(SMSTAPE) and before running MEND(SMSTAPE), you

can update the control data set using DFSMSrmm TSO subcommands to

correct DFSMSrmm information.

��

�

�

 CREATE

MEND

MEND(

SMSTAPE

)

,

MEND(

ALL

)

DSN

OWNER

PP

RACK

STORE

VOLUME

VRS

VOLCAT

UPDATE

ALL, VOLCAT

,

VERIFY(

)

DSN

OWNER

PP

RACK

STORE

VOLUME

VRS

VOLCAT

SMSTAPE

 ��

Figure 151. EDGUTIL EXEC Parameters

394 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

||

|
|
|
|

MEND(ALL,DSN,OWNER,PP,RACK,STORE,VOLUME,VRS,VOLCAT)

Use MEND to correct errors in the control data set. You can correct all the

control data set information or select specific types of information.

 The values you can specify on MEND are:

ALL

DFSMSrmm uses control data set information only and corrects all control

data set information at once. No processing of the TCDB or library manager

is performed.

DSN

DFSMSrmm corrects data set information based on comparing data set

information to volume information.

OWNER

DFSMSrmm corrects owner information based on comparing owner

information to volume information.

PP

DFSMSrmm corrects product information based on comparing software

product information to volume and library shelf location information.

RACK

DFSMSrmm corrects rack number information based on comparing library

shelf location information to volume information.

STORE

DFSMSrmm corrects bin number information based on comparing storage

location shelf information to volume information.

VOLCAT

DFSMSrmm compares volume status and library name information in its

control data set with the same information in the TCDB. If the information is

different, DFSMSrmm corrects the control data set information.

VOLUME

DFSMSrmm corrects volume information based on comparing information

about data sets, software products, owners, and shelf locations in the

library and storage locations.

VRS

When correcting vital record specification errors, DFSMSrmm validates the

next vital record specification information to see if a name vital record

specification exists. If DFSMSrmm does not find a next vital record

specification, DFSMSrmm fixes the information about the next vital record

specification. DFSMSrmm checks for generic data set name, job name, and

volser masks. DFSMSrmm also checks that the location information in each

vital record specification is valid by comparing it to the LOCDEF entries. If

an invalid or an unsupported generic mask is found, DFSMSrmm deletes

the vital record specification. If an incorrect location type is found,

DFSMSrmm corrects it based on the LOCDEF and SMS library definitions.

UPDATE

Use UPDATE to:

v Update an existing control data set control record.

v Mark the DFSMSrmm control data set as synchronized or not synchronized

with the user catalogs so the control data set is synchronized at a later time.

v Enable extended bin support.

Chapter 17. Maintaining the Control Data Set 395

VERIFY(ALL,DSN,OWNER,PP,RACK,SMSTAPE,STORE,VOLUME,VRS,VOLCAT)

Use VERIFY to verify the information in the control data set and identify errors.

You can verify all the information in the control data set at once or select

specific values to verify individual pieces of information. If stacked volume

support is enabled, DFSMSrmm checks the consistency of stacked volumes

and the volumes in the stacked volumes.

 To correct inconsistencies found during VERIFY processing, use the

DFSMSrmm TSO subcommands to correct the inconsistencies. Use

MEND(SMSTAPE) to drive changes to the TCDB and library manager database

from the DFSMSrmm control data set or use access method services

commands to correct errors in the TCDB.

 If both VOLCAT and SMSTAPE are specified with VERIFY, DFSMSrmm does

only the SMSTAPE processing.

 The values you can specify on VERIFY are:

ALL

DFSMSrmm verifies all information at once, except for VOLCAT, which does

consistency checking against the TCDB. ALL is the default.

DSN

DFSMSrmm validates data set information and compares data set

information to volume information.

OWNER

DFSMSrmm validates owner information and compares owner information

to volume information.

PP

DFSMSrmm validates product information and compares software product

information to volume and library shelf location information.

RACK

DFSMSrmm validates rack number information and compares library shelf

location information to volume information.

SMSTAPE

DFSMSrmm performs extra processing with the TCDB and library manager

database when SMSTAPE is specified. DFSMSrmm scans both the

DFSMSrmm control data set and the TCDB sequentially to find DFSMSrmm

volumes that are not in the TCDB and TCDB volumes that are not in the

DFSMSrmm control data set. DFSMSrmm also checks any volume that is

found to be system-managed, either by definition to DFSMSrmm or

retrieved from the TCDB, against the library manager database for an IBM

automated tape library.

STORE

DFSMSrmm validates bin number information and compares storage

location shelf information to volume information.

VOLCAT

DFSMSrmm compares volume status and library name information in its

control data set with the same information in the TCDB. If the information is

different, DFSMSrmm issues an information message, but sets a minimum

return code of 0.

VOLUME

DFSMSrmm compares volume information to information about data sets,

software products, owners, and shelf locations in the library and storage

locations.

396 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

VRS

For vital record specification checking, DFSMSrmm validates the next vital

record specification information to see if a name vital record specification

exists. DFSMSrmm checks for generic data set name, job name, and volser

masks. DFSMSrmm also checks that the location information in each vital

record specification is valid by comparing it to the LOCDEF entries. If

DFSMSrmm does not find a next vital record specification, it issues an

information message, but sets a minimum return code of 0.

SYSIN File for VERIFY and MEND Processing

An optional SYSIN file allows you to select the subset from the available locations,

and volume entries during verification of volumes. Verification of volumes includes

VERIFY/MEND(SMSTAPE/VOLCAT), VERIFY or MEND, VERIFY/MEND(ALL), and

VERIFY/MEND(VOL) processing. By default, all volumes are verified.

The SYSIN commands in Figure 152 can be used to select the subset of volumes.

EXCLUDE

Specifies the exclusion criteria for EDGUTIL processing. You can specify this

command one time only. You can specify INCLUDE and EXCLUDE commands

in any order.

 You can specify one or more of these optional operands:

LOCATIONS(location_name)

Specifies volumes to be excluded based on the volume’s current

location. For 3-way audit and VOLCAT processing, specify the

system-managed library location names. For VOL processing, any

system-managed library, storage location name known to DFSMSrmm,

or SHELF can be specified. A location_name is one-to-eight characters

and can be a location name mask. Each location_name can be

specified in one of these ways:

�� INCLUDE include/exclude_parameters

EXCLUDE
 ��

include/exclude_parameters:

�

�

�

�

,

,

LOCATIONS

(

location_name

)

,

VOLUMES

(

volser

)

,

VOLUMERANGES

(

startvolser:endvolser

)

Figure 152. EDGUTIL SYSIN File

Chapter 17. Maintaining the Control Data Set 397

||||||||||||||||||

|

|

||

|
|
|
|

|

|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

v Specify a specific location using one-to-eight character names.

v Specify all locations using a single asterisk (*).

v Specify all locations that begin or end with specific characters, such

as ATL* or *DR, or multiple locations by using * within a location

name.

v Use % (percent sign) in the location name to replace a single

character. You can specify up to eight % in a location name mask.

DFSMSrmm does not validate the specified location names against the

DFSMSrmm LOCDEF entries or the names of the SMS libraries.

When validation of a location name fails, the EDGUTIL utility stops

processing and ends with the return code of 12.

 Any location_names specified are used to exclude volumes based on

the TCDB volume record library name and the DFSMSrmm volume

record current location. You can specify a list of values.

VOLUMES(volser)

Specifies a list of volumes to be excluded. You can specify the volumes

as fully qualified or as a volser prefix ending in *. A fully qualified

volume is one-to-six alphanumeric, national or special characters, but

the first character must not be blank. Quotes are required for special

characters. Any value ending in *, even if it is enclosed in quotes, is

considered to be a volser prefix. You can specify a list of values.

VOLUMERANGES(startvolser:endvolser)

Specifies a subset of volumes based on the starting and ending volsers

to be excluded. The volsers must be one-to-six alphanumeric, national,

or special characters, but the first character must not be blank. Quotes

are required for each value regardless of the use of special characters.

The end of range must not be lower than the start of the range. You

can specify a list of values.

The default is that no volumes are excluded.

INCLUDE

Specifies the inclusion criteria for EDGUTIL processing. You can specify this

command one time only. You can specify INCLUDE and EXCLUDE commands

in any order.

 You can specify one or more of these optional operands:

LOCATIONS(location_name)

Specifies a subset of the available volumes based on the volume's

current location for processing. For 3-way audit and VOLCAT

processing, specify the system-managed library location names. For

VOL processing, any system-managed library, storage location name

known to DFSMSrmm, or SHELF can be specified. A location_name is

one-to-eight characters and can be a location name mask. Each

location_name can be specified in one of these ways:

v Specify a specific location using one-to-eight character names.

v Specify all locations using a single asterisk (*).

v Specify all locations that begin or end with specific characters, such

as ATL* or *DR, or multiple locations by using * within a location

name.

v Use % (percent sign) in the location name to replace a single

character. You can specify up to eight % in a location name mask.

398 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|

|

|
|
|

|
|

DFSMSrmm does not validate the specified location names against the

DFSMSrmm LOCDEF entries or the names of the SMS libraries.

When validation of a location name fails, the EDGUTIL utility stops

processing and ends with the return code of 12.

 Any location_names specified are used to select volumes based on the

TCDB volume record library name and the DFSMSrmm volume record

current location. You can specify a list of values.

VOLUMES(volser)

Specifies a list of volumes to be processed. You can specify the

volumes as fully qualified or as a volser prefix ending in *. A fully

qualified volume is one-to-six alphanumeric, national or special

characters, but the first character must not be blank. Quotes are

required for special characters. Any value ending in *, even if it is

enclosed in quotes, is considered to be a volser prefix. You can specify

a list of values.

VOLUMERANGES(startvolser:endvolser)

Specifies a subset of volumes based on the starting and ending volsers

to be processed. The volsers must be one-to-six alphanumeric,

national, or special characters, but the first character must not be blank.

Quotes are required for each value regardless of the use of special

characters. The end of range must not be lower than the start of the

range. You can specify a list of values.

Here are some examples of using the SYSIN command to select a subset of

volumes:

//SYSIN DD *

INCLUDE VOLUMES(ABC001,ABC002) LOCATIONS(ATL1)

/*

//SYSIN DD *

INCLUDE VOLUMERANGES(’XYZ001’:’XYZ099’) VOLUMES(001*)

/*

//SYSIN DD *

INCLUDE VOLUMES(Z*,B*,VOL001)

EXCLUDE VOLUMES(B5*)

/*

The default is that all volumes defined in the TCDB (when 3-way audit or

VOLCAT processing is requested) and all volumes defined to DFSMSrmm are

processed.

The EDGUTIL utility processes the SYSIN file to determine if a subset of volumes is

to be processed. EDGUTIL processing is independent of the order of the

commands. As each volume is about to be processed, it is checked first against the

INCLUDE selection and then against the EXCLUDE selection. The volume selection

process applies to all volume processing in EDGUTIL. For 3-way audit processing,

the library names known to the volume catalogs and DFSMSrmm control data set

volume records determine the system-managed libraries volume details to be

retrieved, unless the LOCATIONS operand has restricted the subset to specific

libraries. The library manager volume details are retrieved directly from the

candidate system-managed libraries as needed.

How EDGUTIL Performs VERIFY and MEND Processing for Volumes

The EDGUTIL utility performs this processing:

v For 3-way audit processing:

Chapter 17. Maintaining the Control Data Set 399

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|

– All TCDB volume entries are retrieved from all connected volume catalogs

and compared with DFSMSrmm volume information. TCDB volumes not

defined to DFSMSrmm are reported unless excluded from processing via

SYSIN.

– Any DFSMSrmm-defined volume, unless excluded from processing by volume

or location, known from the TCDB or DFSMSrmm control data set to be in a

system managed library, is checked against library manager data.

– EDGUTIL does not retrieve volumes from the library manager unless

information is needed for a volume known to the TCDB or to DFSMSrmm.

v For 3-way audit, VOLCAT, and VOL processing:

– Each DFSMSrmm-defined volume is processed only if selected for processing

by default or via LOCATIONS, VOLUMES or VOLUMERANGES, and is not

excluded.

v For VOL processing:

– When you select a subset of DFSMSrmm-defined volumes to be processed

using one of these: VERIFY, VERIFY with ALL/VOL, MEND, or MEND with

ALL/VOL:

- Processing includes the previous and next volume regardless of whether

the previous and next volumes are selected to be verified.

- Processing excludes ensuring that stacked volume information is

consistent.

Creating or Updating the Control Data Set Control Record

Create the control data set control record the first time you run EDGUTIL. This

normally occurs during DFSMSrmm implementation or conversion to DFSMSrmm.

The control data set control record contains information about the number of shelf

locations in the library and storage locations. To create or update the control record,

the user of EDGUTIL must have UPDATE or higher RACF access to the

DFSMSrmm control data set.

Once you have created a control record, defined shelf locations to your installation,

and have begun managing these shelves with DFSMSrmm, use the RMM

ADDRACK subcommand to add shelf locations to DFSMSrmm. Do not use

EDGUTIL to change the number of shelf locations.

You should only need to update the control record to correct rack or bin counts.

DFSMSrmm lets you update the control data set and the control record only if

inventory management and backup, restore and reorganize are not in progress.

As part of CREATE processing or UPDATE processing, EDGUTIL ensures that

DFSMSrmm is not active and opens the control data set for load processing. The

information provided on the CONTROL command in SYSIN is used to build a

control record which is written to the control data set.

The SYSIN commands in Figure 153 on page 401 is required to create or update

the control data set control record.

400 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|

|
|
|

|
|

|

|
|
|

|

|
|
|

|
|

|
|

CATSYNCH(NO|YES)

Specifies whether or not the DFSMSrmm control data set and system catalogs

are synchronized or not. When the DFSMSrmm control data set is not

synchronized with the system catalogs, DFSMSrmm always retrieves catalog

information to determine the catalog status of a data set.

 When you indicate that catalogs are fully shared with the EDGRMMxx parmlib

OPTION CATSYSID(*) as described in “Defining System Options: OPTION” on

page 175, DFSMSrmm automatically marks the DFSMSrmm control data set as

synchronized when you run the EDGHSKP utility with the CATSYNCH

parameter as described in “EXEC Parameters for EDGHSKP” on page 333. You

must use CATSYNCH(YES) to indicate to DFSMSrmm that catalogs are

synchronized when you use DFSMSrmm with unshared catalogs. Do not

specify CATSYNCH(YES) if you have not run the EDGHSKP utility with the

CATSYNCH parameter on each system to synchronize the DFSMSrmm control

data set with the user catalogs.

 CATSYNCH(YES) sets the last synchronization date and time to the current

date and time. CATSYNCH(NO) clears the last synchronization date and time.

Specify CATSYNCH(NO) to force synchronization of the DFSMSrmm control

data set and user catalogs the next time inventory management is run.

DFSMSrmm cannot track catalog updates when the DFSMSrmm subsystem is

stopped and issues messages when the updates cannot be made.

CDSID(id)

Specifies one-to-eight alphanumeric characters that identify the control data set

by name. There is no default.

 At DFSMSrmm startup time, DFSMSrmm matches this CDSID value with the

CDSID operand in parmlib member EDGRMMxx. The CDSID value in EDGUTIL

will set or change the control data set ID. EDGUTIL does not validate the

CDSID in the control data set control record; it simply sets the new value into

the control record. When you change the CDSID, any running systems that

shares the control data set detects the change in CDSID and changes the ENQ

name they use for serialization. Ensure that the GRSRNLxx parmlib member is

updated to reflect any CDSID changes you make. See “Step 5: Updating

SYS1.PARMLIB Members” on page 27.

 You must always set a CDSID using the EDGUTIL utility. The CDSID ensures

that only the correct DFSMSrmm systems start up and use the control data set

that you created for them.

 This operand is required.

�� CONTROL

CATSYNCH(

NO

)

YES

 CDSID(id)

EXTENDEDBIN(YES)
 �

�
DBINFREE(count)

DBINNO(count)

LBINFREE(count)
 �

�
LBINNO(count)

RACKFREE(count)

RACKNO(count)
 �

�
RBINFREE(count)

RBINNO(count)

STACKEDVOLUME(YES)

UTC(YES)
 ��

Figure 153. EDGUTIL SYSIN Commands

Chapter 17. Maintaining the Control Data Set 401

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

CONTROL

Specifies to update or create the control record.

DBINFREE(nnnnnn)

Specifies the number of empty bin numbers in the DISTANT storage location in

a range from 0 to 999999.

DBINNO(nnnnnn)

Specifies the number of bin numbers in the DISTANT storage location in a

range from 0 to 999999.

EXTENDEDBIN(YES)

Enables DFSMSrmm extended bin support, which allows the reuse of bins at

the start of a move.

 When extended bin support is enabled, DFSMSrmm records additional

information in the volume and bin record while a volume is moving from or to a

bin-managed storage location.

 Do not enable extended bin support until you have made sure that the same

level of code has been installed for all the DFSMSrmm systems that share a

control data set.

 Once it is enabled, extended bin support cannot be disabled.

 Extended bin support must be enabled, if you want to use DFSMSrmm parmlib

OPTION command REUSEBIN(STARTMOVE) operand to reuse bins when a

volume moves from a bin.

LBINFREE(nnnnnn)

Specifies the number of empty bin numbers in the LOCAL storage location in a

range from 0 to 999999.

LBINNO(nnnnnn)

Specifies the number of bin numbers in the LOCAL storage location in a range

from 0 to 999999.

RACKFREE(nnnnnn)

Specifies the number of empty rack numbers in the library for location SHELF

and for system-managed libraries in a range from 0 to 2147483647.

RACKNO(nnnnnn)

Specifies the number of rack numbers in the library for location SHELF and for

system-managed libraries in a range from 0 to 2147483647.

RBINFREE(nnnnnn)

Specifies the number of empty bin numbers in the REMOTE storage location in

a range from 0 to 999999.

RBINNO(nnnnnn)

Specifies the number of bin numbers in the REMOTE storage location in a

range from 0 to 999999.

STACKEDVOLUME(YES)

Enables DFSMSrmm stacked volume support. Prior to enabling stacked volume

support, ensure all systems using the control data set are at the same release

level.

 When stacked volumes have been defined to DFSMSrmm but you have not

enabled stacked volume support, DFSMSrmm manages the movement of the

volumes that are in containers using the individual volume location. Volume

movement is limited to non-shelf-managed storage locations. When you enable

stacked volume support, DFSMSrmm uses the stacked volume records to

402 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

manage the movement of the volumes contained in the stacked volumes. See

“Setting up DFSMSrmm Stacked Volume Support” on page 407.

 You cannot remove stacked volume support after it is enabled.

UTC(YES)

Enables DFSMSrmm common time support. Prior to enabling this support,

ensure all systems in the RMMplex have toleration maintenance installed or are

at z/OS V1R8 or higher, and all applications dependent on the correct date and

time information from DFSMSrmm are updated to support the new time zone

support if required.

 You must only enable common time support if the time of day clocks of all

systems in the RMMplex are set to GMT.

 Once you enable common time support, DFSMSrmm starts to record the control

data set record dates and times in common time and converts existing values,

as required, from local times to common time. See “Setting up DFSMSrmm

Common Time Support” on page 408 for more information.

 You cannot disable common time support after it is enabled.

Verifying the Contents of the Control Data Set

Specify VERIFY on the EXEC parameter of EDGUTIL to verify the contents of the

control data set. For VERIFY processing, EDGUTIL reads sequentially through the

different record types in the control data set. The record types are identified by the

VERIFY options you specify. For each record DFSMSrmm validates key fields and

checks information with related records in the control data set. DFSMSrmm issues

an informational message to the SYSPRINT file for each discrepancy that is

identified. You can verify all the information in the control data set at once, or select

specific values to verify individual pieces of information.

For example, if you specify the STORE value as shown in Figure 154, DFSMSrmm

reads all the storage location shelf information in the control data set. DFSMSrmm

then reads volume information for only those volumes in the storage locations and

verifies that the volumes include the correct location information.

Note: The SYSIN commands in Figure 152 on page 397 can be used to select a

subset of volumes.

An optional output file, EDGSPLCS, can be specified with VERIFY(SMSTAPE) to

request that control statements are generated that can be used with the

EDGSPLCS utility. If changes to either the TCDB or library manager data are

required, message EDG6846I is issued to SYSPRINT for each change. When

VERIFY(SMSTAPE) processing is completed, you can edit the output data set to

select those for further processing. When you have reviewed the statements and

selected those you wish to process, you can run the EDGSPLCS utility to process

the chosen statements. This process might be quicker than running

MEND(SMSTAPE) once you have run VERIFY(SMSTAPE). See “Using EDGSPLCS

to Issue Commands to OAM for System-Managed Volumes” on page 411 for

//UTIL EXEC PGM=EDGUTIL,PARM=’VERIFY(STORE)’

//SYSPRINT DD SYSOUT=*

//MASTER DD DISP=SHR,DSN=RMM.CONTROL.DSET

Figure 154. Example of JCL for VERIFY(STORE)

Chapter 17. Maintaining the Control Data Set 403

|
|

|
|
|
|
|
|
|
|
|
|

additional information about the EDGSPLCS utility. See “EDGSPLCS File for the

EDGUTIL Utility” on page 410 for information about the EDGSPLCS file for the

EDGUTIL utility.

When you specify VERIFY(ALL), and this completes successfully, DFSMSrmm

resets the error indicator that is set when the control data set recovery processing

was not successful. For VERIFY(VOLCAT), DFSMSrmm compares TCDB

information with information in the DFSMSrmm control data set. For

VERIFY(SMSTAPE), DFSMSrmm also retrieves the library manager information for

each system-managed volume and compares the information to the TCDB and

DFSMSrmm information. The function uses the DFSMSrmm control data set as the

master. Use EDGUTIL MEND(SMSTAPE) to synchronize the TCDB and library

manager database from DFSMSrmm. When you specify MEND, without SMSTAPE,

EDGUTIL checks that DFSMSrmm is not active or that the DFSMSrmm control data

set is not in use. MEND processing is performed the same way as VERIFY(ALL)

and VERIFY(VOLCAT) processing. MEND processing cannot fix all discrepancies

but those that can be fixed automatically are corrected by updating the control data

set.

For some VERIFY functions when EDGUTIL is running, DFSMSrmm uses the

information from the parmlib options of the running DFSMSrmm. For example,

DFSMSrmm checks LOCDEF entries for the types and names of locations defined,

and also checks the access system definitions for system managed libraries. If

DFSMSrmm has never been started on the system where EDGUTIL is run, the

parmlib options cannot be part of the verification. To cause certain parmlib

information to be used, start DFRMM with the chosen parmlib member, and run

EDGUTIL.

During VERIFY, EDGUTIL issues messages to indicate what stage of processing

has been reached. These messages also go in the SYSPRINT file. An example of

the SYSPRINT message file can be seen in Figure 155.

You can correct errors that are found in the control data set by using one of these

methods:

v Restore the control data set to a level where the errors are not present. See

“Restoring the Control Data Set” on page 379 for additional information.

v Correct information in the control data set by using the RMM TSO ADD,

CHANGE, DELETE, and LIST subcommands. See z/OS DFSMSrmm Guide and

Reference for additional information.

v Mend the control data set by specifying MEND on the EXEC parameter of

EDGUTIL. See“Mending the Control Data Set” on page 406 for additional

information.

 EDG6433I STARTING VERIFICATION OF RACK RECORDS

 EDG6433I STARTING VERIFICATION OF VOLUME RECORDS

 EDG6433I STARTING VERIFICATION OF DATA SET RECORDS

 EDG6433I STARTING VERIFICATION OF OWNER RECORDS

 EDG6433I STARTING VERIFICATION OF PRODUCT RECORDS

 EDG6434I NO PRODUCT RECORDS IN CONTROL DATA SET

 EDG6433I STARTING VERIFICATION OF STORE RECORDS

 EDG6434I NO EMPTY BIN RECORDS IN CONTROL DATA SET

 EDG6434I NO INUSE BIN RECORDS IN CONTROL DATA SET

 EDG6433I STARTING VERIFICATION OF VRS RECORDS

 EDG6417I CONTROL DATA SET VERIFY SUCCESSFUL

 EDG6901I UTILITY EDGUTIL COMPLETED WITH RETURN CODE 0

Figure 155. Sample EDGUTIL SYSPRINT Output

404 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|

v Synchronize the TCDB and the library manager database from the DFSMSrmm

control data set by specifying MEND(SMSTAPE) on the EDGUTIL EXEC

parameter. See “Synchronizing the Contents of the Control Data Set” on page

406 for additional information.

v Synchronize the DFSMSrmm control data set from the TCDB by specifying

MEND(VOLCAT) on the EDGUTIL EXEC parameter. See “Synchronizing the

Contents of the Control Data Set” on page 406 for additional information.

Note: The SYSIN commands in Figure 152 on page 397 can be used to select a

subset of volumes.

While verify is running in parallel with DFSMSrmm active, the DFSMSrmm control

data set can be updated by other processing, and as a result, verify can report

inconsistencies for resources that are updated during the verify processing. To

avoid rerunning verify to clean up these inconsistencies; run EDGUTIL when there

is little activity that updates the control data set.

Note: For VERIFY(SMSTAPE), MEND(SMSTAPE), and MEND(VOLCAT) only,

DFSMSrmm obtains the latest information from the TCDB and library

manager before any inconsistency is reported or corrected. This ensures that

concurrent system processing is better tolerated.

DFSMSrmm processes each resource in turn, dependent on the VERIFY

parameter, and validates related information as follows:

v For every shelf location for a scratch volume, the associated volume must have

the correct shelf location and media name and must be recorded as a scratch

volume.

v For every data set, the corresponding volume must be defined and the next and

previous data set names in sequence must also be correctly defined.

v For every defined owner, the corresponding volumes are checked for correct

information.

Verifying the Control Data Set and Tape Configuration Database

You can use EDGUTIL VERIFY(VOLCAT) to check the consistency of information in

the control data set and the tape configuration database (TCDB). EDGUTIL checks

volume status and the library where the volume resides. You can use EDGUTIL

VERIFY(SMSTAPE) to include the library manager database in the consistency

checking. You can use MEND(SMSTAPE) to update the TCDB and library manager

database with information from the DFSMSrmm control data set. You can use the

EDGSPLCS DD name to get the EDGSPLCS statement out during

VERIFY(SMSTAPE) so that errors can be corrected without having to run

MEND(SMSTAPE) as well.

For 3-way audit with system managed libraries, VERIFY(SMSTAPE), MEND, and

MEND(SMSTAPE) processing exploits the use of a host library interface to return

multiple volumes in a single request. In addition, DFSMSrmm allows the selection of

libraries and subsets of volumes. This processing reduces the EDGUTIL elapsed

time. EDGUTIL constructs a series of requests for the libraries containing the

volumes to be verified. The information is retrieved as required and is processed

together with entries from the TCDB and volume information from the DFSMSrmm

control data set. When a mismatch is detected between the TCDB, DFSMSrmm

control data set, and the library manager data, DFSMSrmm uses the CBRXLCS

Chapter 17. Maintaining the Control Data Set 405

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

QVR request so that any timing related change can be detected. Processing of all

volumes, regardless of function, is subject to the subsetting through location and

volume selection.

Figure 156 shows JCL for verifying the control data set and tape configuration

database:

Synchronizing the Contents of the Control Data Set

You can synchronize the contents of the DFSMSrmm control data set, TCDB, and

the library manager database by using the EDGUTIL utility. First, use the verify

function to check for inconsistencies in the contents of the DFSMSrmm control data

set with the TCDB and the Library Then use EDGUTIL to automatically fix the

inconsistencies found between the control data set and the TCDB and Library

Manager.

You can use EDGUTIL VERIFY(SMSTAPE) to check the synchronization of the

DFSMSrmm control data set with the TCDB and Library Manager database. Specify

EDGUTIL MEND(SMSTAPE) to synchronize the TCDB and the library manager

database from the DFSMSrmm control data set. You can run the function against

an active control data set because the function does not update the control data

set. The function uses the DFSMSrmm control data set as the master and makes

changes to the TCDB and library manager database such as status and storage

group information.

Specify EDGUTIL MEND(VOLCAT) with DFSMSrmm inactive to update the

DFSMSrmm control data set from the TCDB with information such as location,

media type, storage group, and intransit status.

Mending the Control Data Set

Recommendations:

v Always run the MEND function on a VSAM copy of the control data set first.

Taking a back up of the control data set is essential because the control data set

is unusable if MEND processing fails for any reason.

v Do not run the MEND function when DFSMSrmm is running on the same system

and is using a control data set with the same name as the control data set that

the MEND function is expected to correct.

v Do not enable stacked volume support until all systems using the control data set

are on a supporting release level.

You can use EDGUTIL VERIFY as described in “Verifying the Contents of the

Control Data Set” on page 403 to find most control data set errors. Obtain guidance

from the IBM Support Center to use EDGUTIL MEND to fix the errors found in the

DFSMSrmm control data set. When you use the EDGUTIL MEND function to fix

errors for system-managed tape volumes, MEND updates the DFSMSrmm control

data set from information from the TCDB and the library manager database.

You can also use the MEND function to enable stacked volume support as

described in “Setting up DFSMSrmm Stacked Volume Support” on page 407.

MEND processing checks to see if you have enabled stacked volume support with

//UTIL EXEC PGM=EDGUTIL,PARM=’VERIFY(VOLCAT)’

//SYSPRINT DD utility message data set

//MASTER DD control data set

Figure 156. Sample JCL for Verifying the Control Data Set and the TCDB

406 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|

the EDGUTIL UPDATE option STACKEDVOLUME(YES). DFSMSrmm then creates

stacked volume information from the existing volume ’In container’ values.

DFSMSrmm marks the control data ready for stacked volume support if processing

is successful.

Note: The SYSIN commands in Figure 152 on page 397 can be used to select a

subset of volumes.

During MEND processing, DFSMSrmm creates stacked volumes in the DFSMSrmm

control data set that are marked as media type HPCT and recording format

128TRACK. DFSMSrmm obtains the media name from pool definitions defined

using the DFSMSrmm parmlib member VLPOOL command. Start DFSMSrmm at

least once with a parmlib member that contains the VLPOOL commands, before

you run EDGUTIL, to ensure that EDGUTIL can use the VLPOOL information.

DFSMSrmm marks the stacked volumes as ’Created during MEND’ and obtains

location information from the last volume in sequence that is found to be in the

container.

After MEND processing completes, you might need to add or change some volume

information. Use the RMM CHANGEVOLUME subcommand to set or change any

information.

Setting up DFSMSrmm Stacked Volume Support

To enable stacked volume support, perform these tasks:

1. Update all systems sharing a control data set to the level of code that contains

stacked volume support.

2. Correct any information about stacked volumes that you have defined to

DFSMSrmm before running the DFSMSrmm EDGUTIL utility. EDGUTIL changes

the volume type to stacked but does not set the correct location information for

the volume. You can set the correct volume type and location information prior

to running EDGUTIL MEND using the RMM CHANGEVOLUME subcommand.

Figure 157 shows an example of how you can use the RMM SEARCHVOLUME

subcommand to build a CLIST that can be used to change volume information.

Specify operands that are based on the way that you have defined volumes to

DFSMSrmm. Then run the CLIST produced by the command to make changes

to the volumes.

3. Run the EDGUTIL utility with UPDATE with the STACKEDVOLUME(YES)

operand on the CONTROL statement of the SYSIN file to enable stacked

volume support.

4. To check the stacked volume information, you can use EDGUTIL with

VERIFY(VOLUME) to check whether the container information is correct. Use

the RMM LISTCONTROL CNTL subcommand to display the status of support.

DFSMSrmm marks the support status as MIXED if there is any container

information in the control data set volume records. If the support status shows

MIXED, you can run EDGUTIL MEND as described in “Mending the Control

Data Set” on page 406 to make the container information consistent. During

MEND processing, DFSMSrmm creates the necessary stacked volumes if you

have not previously defined them using the DFSMSrmm subcommands.

RMM SEARCHVOLUME VOLUME(ST*) OWNER(*) LIMIT(*) -

 CLIST(’RMM CHANGEVOLUME ’,’TYPE(STACKED) LOCATION(vts_name) NORACK’)

Figure 157. Changing Volume Type and Volume Location

Chapter 17. Maintaining the Control Data Set 407

|
|

5. Run EDGHSKP storage location management processing to clean up location

and bin number information in volumes that are in a container.

Setting up DFSMSrmm Common Time Support

Before DFSMSrmm common time support (UTC), also known as GMT, is enabled,

all dates and times are stored in the DFSMSrmm control data set in local time.

When the control data set is shared, and the sharing systems are set to run in

different time zones, the local dates and times in the control data set may be from

any of your systems. When you display information or extract records, you need to

be aware of how the records were created, on which system, and where they may

have been updated in order to interpret the dates and times shown. The same

consideration also applies for records created or updated prior to enabling common

time support because DFSMSrmm assumes they are times local to the system

running the DFSMSrmm subsystem and converts the values based on that

assumption.

When you enable common time support, DFSMSrmm maintains the records in the

control data set in common time. Most date and time fields are paired together to

enable an accurate conversion to and from common time and between different

time zones. In some cases, DFSMSrmm has date fields in control data set records,

and there is no associated time field. For these date fields, DFSMSrmm uses an

internal algorithm that approximates conversion between time zones based on the

time zone offsets involved.

Warning: Using the SET system command with either the DATE or the TIME

keyword, or both, or replying to message IEA888A to run the system on future

or past dates can affect the way that DFSMSrmm calculates local times. In

order to get the correct results from DFSMSrmm processing when you need

to test with future or past dates, you should alter the TOD clock and keep the

time zone offset as before.

To enable common time support, perform these tasks:

1. Ensure all systems in the RMMplex have toleration maintenance installed or are

at z/OS V1R8 or higher, and all applications dependent on the correct date and

time information from DFSMSrmm are updated to support the new time zone

support if required. DFSMSrmm subcommand output remains in local time, so

most applications do not need to change unless they are to exploit the

availability of the time zone offset.

2. Ensure the system time of day (TOD) clock is set to GMT on all systems in the

RMMplex. It is common practice for the system to use local time based either

on the TIMEZONE value in the CLOCKxx member of parmlib or from an

external time source.

3. Run the EDGUTIL utility with UPDATE with the UTC(YES) operand on the

CONTROL statement of the SYSIN file to enable common time support. See

“Creating or Updating the Control Data Set Control Record” on page 400.

When common time support is enabled, any newly recorded dates and times are

stored in common time and any existing records are converted to common time as

they are updated by DFSMSrmm processing. Note: You will continue to see dates

and times in local time because DFSMSrmm converts from common time to your

local time.

When you use TSO subcommands in batch TMP or in native TSO, the TSO

subcommands return data in your local time. It is important to specify dates and

times as local time values when using subcommands in this environment.

408 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

For REXX variables and the DFSMSrmm ISPF dialog, you have the option of

returning the date in any selected time zone so that you can, when needed, view

data in times local to other systems managed by DFSMSrmm.

v For the REXX environment, you can optionally set SYSAUTH.EDGTZ to your

selected time zone offset so that subcommands return dates and times in your

selected time zone. You can also include the TZ operand on ADD and CHANGE

subcommands, when required, to indicate the time zone for dates and times

specified on the subcommand.

v For ISPF, the DFSMSrmm dialog has the ability for each user to select their own

time zone value or run using the existing systems local time. The dialog exploits

the SYSAUTH.EDGTZ setting and the TZ subcommand operand to make use of

different time zones simple and straightforward for the user. The user operates

completely in their selected time zone when reading returned data and when

making changes to DFSMSrmm information. You can also change the setting

during an ISPF session to select a new value for the next dialog interactions.

The DFSMSrmm application programming interface always returns values in local

time. In addition, a SFI indicates the time zone offset used so that any application

dependent either on the SFI or XML values can make its own time conversions

based on the time zone offset.

The report extract data set contains date and time values in the local time of the

running system. The extract header record includes a field that lists the time zone

offset.

Use the RMM LISTCONTROL CNTL subcommand or the CONTROL dialog to see

whether DFSMSrmm common time support is enabled.

Daylight Savings Time Considerations

It is recommended that you QUIESCE DFSMSrmm when you make your daylight

savings time changes on the system. This ensures that date and time fields in

DFSMSrmm control data set records are handled consistently.

When you switch from daylight savings time, there are dates and times in the

system that are repeated. DFSMSrmm journal records are time-stamped with local

time values, so either:

1. QUIESCE DFSMSrmm until there is no chance of repeated times, or

2. Accept that during forward recovery with journal records from this time change

period, you will get message EDG6429W.

IBM recommends that you take the second approach.

Enabling Extended Bin Support

To enable extended bin support, create or update the control data set control record

using the EDGUTIL utility with the EXTENDEDBIN(YES) option. See “Creating or

Updating the Control Data Set Control Record” on page 400 for a detailed

description of the EXTENDEDBIN parameter.

When extended bin support is enabled, DFSMSrmm records additional volume

information and bin information to keep track of the volume’s location when a

volume is moving from a bin-managed storage location or to a bin-managed storage

location.

DFSMSrmm keeps track of this information for a volume: Destination bin number,

Destination bin media name for a volume, current bin number, current bin media

Chapter 17. Maintaining the Control Data Set 409

name, Old bin number, and Old bin media name When a volume starts moving to a

bin-managed storage location, DFSMSrmm updates the destination bin fields with

the bin number and the bin media name. When the move has been confirmed,

DFSMSrmm updates the current bin fields with the destination bin fields.

If a volume moves from a bin-managed storage location, DFSMSrmm does not

change the current bin fields until the move has been confirmed. DFSMSrmm

changes the old bin number to the current bin number and clears the current bin

number when a move is confirmed. When extended bin support is not enabled and

a volume is moving, DFSMSrmm shows the source bin in the old bin fields and the

target bin in the current bin fields.

DFSMSrmm keeps track of additional volume information in the bin record when

extended bin support is enabled: Moving-in volume, Moving-out volume, and Old

volume. When extended bin support is enabled, a volume, for which a move to the

bin has been started, is shown as the ’moving-in volume’ in the bin record. When

the volume move is confirmed, the volume is shown as the current volume in the

bin record. A volume, for which a move from the bin has been started, is shown as

the ’moving-out volume’ in the bin record. When the volume move out of the bin is

confirmed, the volume is shown as the ’old volume’. When extended bin support is

not enabled, DFSMSrmm shows a volume as the ’current volume’ in the bin record

from the time the move to the bin has been started until the time that the move

from this bin has been confirmed.

Before you enable extended bin support, perform these steps:

1. Complete all outstanding volume moves from and to bin-managed storage

locations.

2. Run inventory management vital record processing or inventory management

expiration processing to complete the confirmation of the volume moves.

3. Review user-written programs, REXX EXECs, and reports that contain

information about bins. You might need to modify the programs and reports to

incorporate information provided with extended bin support. In an RMMplex,

your system-managed libraries must be connected to at least one system which

either runs z/OS Version 1 Release 3 or higher or has APAR OW49863

installed.

EDGSPLCS File for the EDGUTIL Utility

The EDGSPLCS file is written to during EDGUTIL VERIFY(SMSTAPE) processing.

If this DD name is allocated, it causes EDGUTIL to create statements to be used

with the EDGSPLCS utility. Figure 158 shows JCL for allocating the EDGSPLCS file

during EDGUTIL processing:

Return Codes for EDGUTIL

EDGUTIL issues these return codes shown in Table 56.

 Table 56. EDGUTIL Return Codes

Return

Code Explanation

0 All requested functions completed successfully.

//EDGSPLCS DD DISP=(,CATLG),UNIT=SYSALLDA,SPACE=(TRK,(1,1)),LRECL=80,RECFM=FB,

// DSN=MY.SPLCS.DATA

Figure 158. Sample JCL for Allocating the EDGSPLCS File during EDGUTIL Processing

410 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 56. EDGUTIL Return Codes (continued)

Return

Code Explanation

4 DFSMSrmm encountered a minor error during processing. It issues a warning

message and continues processing.

8 DFSMSrmm has encountered an error opening the control data set.

12 DFSMSrmm encountered a severe error during processing of one of the requested

functions. DFSMSrmm stops the utility.

16 DFSMSrmm encountered a severe error during a required communication with the

DFSMSrmm subsystem. DFSMSrmm stops the utility.

Using EDGSPLCS to Issue Commands to OAM for System-Managed

Volumes

You can use the EDGSPLCS utility to issue supported commands to OAM for

system-managed volumes. DFSMSrmm builds the input commands for this utility

automatically during EDGUTIL VERIFY(SMSTAPE) processing and EDGHSKP

EXPROC processing when you request them.

You can run multiple copies of EDGSPLCS. Using different parameters,

EDGSPLCS can be processing in parallel for multiple libraries, but this utility does

not ensure that each parameter is different from any other currently running.

You need ALTER authority to the relevant volume catalog in order to use the

EDGSPLCS utility to update the TCDB. For example, if you use just one volume

catalog and use the default volume catalog prefix, you need ALTER access to

SYS1.VOLCAT.VGENERAL

EXEC Parameters for EDGSPLCS

Figure 159 shows the EXEC parameters for EDGSPLCS.

ACTION(ALL|S|P|I|X|M|E)

Specifies that only the specified requests in the input file are processed. You

can optionally provide the name of a library to restrict the processing to only

those requests. You can specify one or more of the possible actions.

S Set to Scratch status.

P Set to Private status.

I Import volume.

��

�

 ACTION(ALL)

,

ACTION

(

S

)

P

I

X

M

E

LOCATION(

library_name

)

��

Figure 159. EDGSPLCS EXEC Parameters

Chapter 17. Maintaining the Control Data Set 411

|||

|
|
|
|

|

|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|
|

||

||

||

X EXport volume.

M Manual cartridge entry.

E Eject volume.

If you do not specify the ACTION parameter, the default value is ALL.

LOCATION(library_name)

Specifies the name the system-managed library for which the EDGSPLCS utility

will process commands during this run. By default, all locations are considered.

However, you can select a subset based on the library name using this

parameter.

INDD Input File

Table 57 displays an existing file of LRECL 80 containing control statements that

direct the processing that EDGSPLCS utility performs.

The control statements take this format:

av volser options library message

12 4 11 27 36

 Table 57. INDD Input File for the EDGSPLCS Utility

Symbol Explanation Values

a Action character One of these values:

v S - set to Scratch status

v P - set to Private status

v I - Import volume

v X - eXport volume

v M - Manual Cartridge

Entry

v E - Eject volume

v Verify request One of these values:

v V - Verify volume is

resident

v blank - Do not verify

volume is resident

volser Volume serial

412 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

||

||

||

|

|
|
|
|
|

|

|
|

|

|
|
|

||

|||

|||
|
|
|
|
|
|
|

|||
|
|
|
|

|||

Table 57. INDD Input File for the EDGSPLCS Utility (continued)

Symbol Explanation Values

options Depends on action character Action specific values starting

in column 11:

v S

v P - Storage group name or

blank followed by optional

owner ID or blank. ’Owner

ID’ starts in column 19.

v I - Cancel request. Specify

C to cancel an existing

import. Distributed library

name to start an import in

a specific library of a PtP

VTS.

v X - Cancel request.

Specify C to cancel an

existing export. Distributed

library name to start an

export in a specific library

of a PtP VTS.

v M - Library name into

which the volume is to be

entered. Column 20;

media type of volume to

be entered - for example;

5.

v E - Eject destination.

Either C (convenience) or

B (high capacity).

library Library name Starting in column 27, this is

an eight character field for

you to specify the library

name. This field is used by

the LOCATION execution

parameter and is only

required if LOCATION

parameter is specified.

message Output area for EDGSPLCS After processing, this area

contains a function specific

message from the

EDGSPLCS utility.

OUTDD Output File

This is the output file that is written by the EDGSPLCS utility. It contains a copy of

each of the input control statements, and each statement contains a completion

message.

Chapter 17. Maintaining the Control Data Set 413

|

|||

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|

|

|
|
|

Return Codes for EDGSPLCS

EDGSPLCS issues these return codes shown in Table 58.

 Table 58. EDGSPLCS Return Codes

Return

Code Explanation

0 All requested functions completed successfully. Refer to OUTDD records for

individual messages from the input actions.

4 DFSMSrmm encountered a minor error during processing. Refer to OUTDD

records for individual messages from the input actions.

8 At least one requested action was not supported. Refer to OUTDD records for

individual messages from the input actions.

12 DFSMSrmm encountered a severe error during processing. DFSMSrmm stops the

utility.

Sharing the DFSMSrmm Control Data Set

When you share a DFSMSrmm control data set where at least one system does not

support system-managed tape libraries, you must consider these conditions:

v Data Facility Removable Media Manager for MVS/DFP Version 3 (DFRMM)

Program Offering provides support for non-system-managed tape libraries. When

you use DFRMM and DFSMSrmm together, or multiple DFSMSrmm systems,

they can share the same control data set. When both DFRMM and DFSMSrmm

share the control data set, you can use the DFRMM ISPF dialog and RMM TSO

subcommands to display all information that has been recorded in the control

data set. There are some restrictions on using the RMM TSO subcommands

from DFRMM, and from DFSMSrmm on a non-system-managed tape system, to

add and change information in the control data set.

v DFRMM has no knowledge of volume residency in an IBM TotalStorage

Enterprise Automated Tape Library (3494) or an IBM TotalStorage Enterprise

Automated Tape Library (3495), other than that which is provided by DFSMSrmm

on a DFSMS system using a shared control data set.

Running DFSMSrmm Inventory Management When Sharing the Control

Data Set

Use the EDGHSKP utility to run inventory management activities that include: vital

record processing, expiration processing, storage location management processing,

backing up the control data set and journal, and creating an extract data set. See

Chapter 16, “Performing Inventory Management,” on page 325 for more information.

When you are using DFRMM or have at least one non-system-managed tape

environment, you should perform inventory management using DFSMSrmm in a

system-managed tape environment. DFSMSrmm ensures that the TCDB is updated

with the correct volume status as volumes are returned to scratch, and that volume

movement is automatically confirmed to IBM TotalStorage Enterprise Automated

Tape Library (3494) or IBM TotalStorage Enterprise Automated Tape Library (3495).

Running EDGINERS When Sharing the Control Data Set

If you are using DFRMM or have at least one non-system-managed tape

environment, run EDGINERS with DFSMSrmm in a system-managed tape

environment so that you can take advantage of the dynamic allocation capability of

EDGINERS.

414 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

|

||

|
||

||
|

||
|

||
|

||
|
|

|

Defining Volume Information When Sharing the Control Data Set

When you use DFRMM or have at least one non-system-managed tape

environment, issue RMM TSO ADDVOLUME, DELETEVOLUME, and

CHANGEVOLUME EJECT subcommands using DFSMSrmm in the

system-managed tape environment so the TCDB is automatically updated.

Confirming Volume Movement When Sharing the Control Data Set

Run inventory management on the DFSMSrmm that is running in the

system-managed tape environment when DFRMM and DFSMSrmm are sharing a

control data set. Use the RMM CHANGEVOLUME subcommand with these

operands to confirm that pending volume movement has taken place:

RMM CHANGEVOLUME * CMOVE(from_location,to_location)

You can specify a system-managed library name as the from_location or to_location

name when using either DFRMM or DFSMSrmm even if system-managed tape is

not in use.

When you run inventory management on the DFSMSrmm system, the volume

information in the control data set is updated to confirm that any volumes pending

movement have been moved. If you run inventory management on the DFRMM

system, your request does not fail but volume information is not updated.

Returning Volumes to Scratch When Sharing the Control Data Set

When volumes that reside in an IBM TotalStorage Enterprise Automated Tape

Library (3494) or IBM TotalStorage Enterprise Automated Tape Library (3495) are

returned to scratch by DFSMSrmm, information needs to be updated in the TCDB.

When you have some systems without system-managed tape active, ensure that

inventory management runs on a system with system-managed tape active so that

system-managed volumes returning to scratch are updated in the TCDB

automatically during inventory management expiration processing.

Chapter 17. Maintaining the Control Data Set 415

416 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 18. Initializing and Erasing Tape Volumes

DFSMSrmm Samples Provided in SAMPLIB

v EDGJINER Sample JCL for Using the EDGINERS Utility for Initializing and

Erasing Tapes

v EDGLABEL Sample Started Procedure for Initializing and Erasing Tapes

 Use EDGINERS to initialize and erase volumes. Run EDGINERS regularly as part

of your inventory management processing.

EDGINERS writes BCD labels on 7-track tape volumes and ASCII (ISO/ANSI

format) labels on tape cartridges or 9-track tape volumes. EDGINERS writes 7-track

tape labels in even parity (translator on, converter off). You can label tape

cartridges, 7-track tape volumes, or 9-track tape volumes with EDGINERS.

EDGINERS provides support for ISO/ANSI version 3 VOL1 and HDR1 labels and

for ISO/ANSI version 4 VOL1 and HDR1 labels.

If you are authorized to change the label type, you can relabel tape volumes by

specifying the label type in your JCL. This is done at the time of volume use to

avoid a separate mount of the volume. When you change the volume label type at

the time of use, you do not need to use either EDGINERS or the INIT action.

DFSMSrmm allows the tape volume label to be created or overwritten at any time,

regardless of the status of the volume, if the user has the required access to a

security resource. See Chapter 11, “Authorizing DFSMSrmm Users and Ensuring

Security,” on page 213 for more information about volume labels.

See z/OS DFSMSrmm Guide and Reference for operator procedures that describe

operator tasks like responding to initialization messages, tape mount messages,

and using the LABEL procedure to request EDGINERS processing. See “Using the

LABEL Procedure” on page 454 for a description of the EDGLABEL procedure

provided by DFSMSrmm.

Before initializing or erasing a volume, DFSMSrmm ensures that the correct volume

is mounted by reading the volume label. For DFSMSrmm-defined volumes, it also

ensures that the requested action is actually required.

When DFSMSrmm reads an existing volume label, the request might fail because

the existing volume requires formatting of the servo tracks. If DFSMSrmm detects

that a mounted volume has a servo track formatting error, DFSMSrmm issues

message EDG6658I and fails the request to initialize or erase the volume.

Note: The recording technology and media associated with IBM new tape

architecture products, for example, 3590, uses servo track. See IBM 3590

High Performance Tape Subsystem Introduction and Planning Guide,

GA32-0330 for details.

DFSMSrmm erases volumes using the hardware security erase feature when it is

available. When erasing volumes, DFSMSrmm also reinitializes them so that the

correct volume labels are written and the volumes are ready for reuse. If the

hardware security erase feature is not available, DFSMSrmm overwrites volumes

with a bit pattern of hex FF.

© Copyright IBM Corp. 1992, 2007 417

Replacing IEHINITT with EDGINERS

You can use the DFSMSrmm EDGINERS utility or the IEHINITT utility to initialize

and erase tape volumes.

Use the IEHINITT utility to initialize tapes you do not want to be defined to

DFSMSrmm. Use the RMM CHANGEVOLUME subcommand to inform DFSMSrmm

that the volume has been initialized. If you use tapes that are initialized using a

utility other than EDGINERS and do not inform DFSMSrmm, DFSMSrmm can issue

message EDG4026I at OPEN time.

EDGINERS, if you decide to use it, performs these tasks:

v Reads and validates volume labels.

v Maintains RACF profiles.

v Uses and updates information in the DFSMSrmm control data set.

v Provides a facility to erase tapes.

v Defines volumes you initialize or erase that are not yet defined in the control data

set.

v Ends processing when two consecutive errors are detected on the same volume

to prevent subsequent volumes from being used incorrectly when a cartridge

loader is in use. For example, if an incorrect volume label is read, the volume is

demounted and a new mount request issued. Processing is dependent on the

operator response to DFSMSrmm message EDG6663D and the WRONGLABEL

processing described in “EXEC Parameters for EDGINERS” on page 421.

v Issues a WTOR to the operator when a mount request is issued. A reply to the

WTOR is not always required as processing continues as soon as the volume is

mounted. The WTOR is issued to allow the operator to skip a volume if the

volume cannot be mounted for some reason.

v Bypasses any IOS000I messages for an ’NCA’ error (tape not capable message)

when reading the label on a volume that has not been initialized.

For information about preventing or limiting the use of IEHINITT, see Chapter 11,

“Authorizing DFSMSrmm Users and Ensuring Security,” on page 213.

Using EDGINERS

You can use EDGINERS in either automatic processing mode and manual

processing mode. Initialize and erase actions that are defined in the control data set

drive automatic processing. With automatic processing, volumes are initialized and

erased without operator intervention. SYSIN within JCL or operator commands drive

manual processing. You might set up a job that initializes new volumes using

automatic processing to minimize librarian intervention. Use manual processing for

initializing volumes when you want to change a known, existing volume serial

number to another volume serial number.

For volumes already defined to DFSMSrmm, the initialize and erase processing is

dependent on the action being set for the volume. You can only erase volumes that

have the ERASE release action pending, and you can only initialize volumes that

have the INIT release action pending. These are some important things to

remember:

v You can set the INIT action for any volume at any time, but be careful not to do

this for the wrong volume.

– To set the INIT action, issue this command: RMM CV volser INIT(Y)

418 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v To set the INIT release action pending, set the INIT release action first and then

when the volume is released, the INIT action is set pending.

– To set the INIT release action pending, issue this command: RMM CV volser

RELEASEACTION(INIT)

v To set the ERASE release action pending, set the ERASE release action first and

then when the volume is released, the ERASE action is set pending.

– To set the ERASE release action pending, issue these two commands:

- RMM CV volser RELEASEACTION(ERASE)

- RMM CV volser RELEASE

– Be careful when you use this way to force the ERASE action. Once the

volume is erased, there is no way to recover the data.

DFSMSrmm also provides these automated ways to set the ERASE release action:

v Via the SECCLS parmlib option. When data sets are created, DFSMSrmm

automatically sets the ERASE action for the volume based on the SECCLS

parmlib option. See “Defining Security Classes: SECCLS” on page 202 for

additional information about the SECCLS parmlib option.

v Via the RACF 'erase on scratch' attributes from the DATASET class profiles. This

way is only available to you when the DEVSUPxx parmlib option

TAPEAUTHDSN=YES is in use. When data sets are created, DFSMSrmm

automatically sets the ERASE action for the volume based on the DATASET

profile 'erase on scratch' attribute.

Initializing and Erasing Volumes Automatically

To initialize and erase volumes without operator intervention, you can set up

automatic processing by specifying any of these EDGINERS EXEC parameters:

COUNT, INITIALIZE, ERASE, LOCATION, MEDIANAME, MEDIATYPE, POOL, or

RECORDINGFORMAT. When you request automatic processing, DFSMSrmm does

not process any SYSIN commands you specify.

During DFSMSrmm expiration processing, DFSMSrmm records the volumes that

need to be initialized or erased when they are released or returned to scratch. If

you use the EXEC parameters in your JCL to set up automatic processing,

DFSMSrmm initializes or erases these volumes without operator intervention.

EDGINERS issues write-to-operator messages and MSGDISP requests to the

operator and the drive to get a volume mounted and demounted. If operators are

unable to mount a volume, DFSMSrmm allows them to skip processing the current

requested volume.

To initialize scratch volumes in a non-system-managed library that you are adding

to DFSMSrmm, use the RMM ADDVOLUME subcommand with the INIT(Y) operand

to mark the volumes you want initialized before they are available as scratch.

Specify the INITIALIZE EXEC parameter in your EDGINERS JCL. DFSMSrmm

initializes all the volumes marked as requiring initialization. See “Initializing Scratch

Volumes in System-Managed Libraries” on page 127 for information on initialization

for volumes in a system-managed library.

Initializing and Erasing Volumes Manually

Recommendation: Use manual processing with automatic cartridge loaders and

volumes with old labels. DFSMSrmm performs manual processing that requires

operator intervention when you do not specify any EXEC parameters that select

automatic processing. These parameters are described in “Initializing and Erasing

Chapter 18. Initializing and Erasing Tape Volumes 419

Volumes Automatically” on page 419. Specify commands in the SYSIN file or reply

to operator messages to when you want operator intervention.

The only required SYSIN command operand is the volume serial number. When

you specify the volume serial number, DFSMSrmm gets the rest of the information

about the volume from the control data set.

If you supply MEDIANAME, POOL, or RACK SYSIN command operands that do

not match the existing volume entry, DFSMSrmm issues an error message and

stops processing the current volume.

Initializing and Erasing Volumes Using Multiple Tape Drives

You can use multiple tape drives when initializing or erasing volumes by running

one copy of EDGINERS for each tape drive that you wish to use. To run multiple

copies of EDGINERS, submit multiple jobs or start multiple procedures. You can

specify the same parameters or different parameters for each EDGINERS job you

run. For example, you can split volumes between jobs by specifying the

MEDIANAME operand, POOL operand, or the LOCATION operand on separate

runs of EDGINERS to initialize different volumes. If you use the same parameters,

each EDGINERS job you run shares the volumes that are to be initialized. During

EDGINERS processing, DFSMSrmm serializes the use of the volume by using a

SYSTEMS ENQ. Serializing the use of the volume ensures that no other invocation

of EDGINERS attempts to initialize the volume. EDGINERS skips those volumes

already processed or that are serialized. When you run multiple copies of

EDGINERS with the same parameters, specify the BATCH(0) parameter to ensure

that EDGINERS processing continues until all volumes are initialized or erased.

Refer to“EXEC Parameters for EDGINERS” on page 421 for information about the

EDGINERS BATCH parameter and the EDGINERS COUNT parameter. Specify the

COUNT(x) parameter if you are using the VERIFY parameter or if you are using

cartridge loaders to control the batch size.

JCL for EDGINERS

Figure 160 shows sample JCL for automatic processing.

 Figure 161 shows sample JCL for manual processing.

 The TAPE DD statement is only required if any of the volumes to be processed are

not in a system-managed tape library.

Figure 162 on page 421 shows sample JCL for initializing volumes with ISO/ANSI

version 4 tape labels. The EXEC JCL statement can be overridden by control

information from SYSIN, operator replies to messages, or information from the

//INIT EXEC PGM=EDGINERS,

// PARM=’MEDIANAME(3480),VERIFY’

//SYSPRINT DD program message data set

//TAPE DD UNIT=(TAPE,,DEFER)

Figure 160. JCL for EDGINERS Automatic Processing

//INIT EXEC PGM=EDGINERS

//SYSPRINT DD program message data set

//TAPE DD UNIT=(TAPE,,DEFER)

//SYSIN DD optional control command input

Figure 161. JCL for EDGINERS Manual Processing

420 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm control data set.

EXEC Parameters for EDGINERS

Figure 163 on page 422 describes the EXEC parameters.

//INIT EXEC PGM=EDGINERS,PARM=’..,ALVER4,...’

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

Figure 162. JCL for Initializing Volumes with ISO/ANSI Version 4 VOL1 and HDR1 Labels

Chapter 18. Initializing and Erasing Tape Volumes 421

ALVER3

Use ALVER3 to set the EDGINERS processing default value for ISO/ANSI label

��

parmlib_DEVSUPxx_member_value

ALVER3

ALVER4

BATCH(number_of_batches)
 �

�
(1)

COUNT(count)

(1)

INITIALIZE

(1)

ERASE

 �

�
parmlib_default_medianame

(1)

MEDIANAME(

medianame

)

(1)

POOL(pool_prefix)

LOCATION(

library_name

)

SHELF

(1)

MEDIATYPE(

*

)

CST

ECCST

EHPCT

HPCT

MEDIA5

ETC

MEDIA6

EWTC

MEDIA7

EETC

MEDIA8

EEWTC

MEDIA9

EXTC

MEDIA10

EXWTC

(1)

RECORDINGFORMAT(

*

)

18TRACK

36TRACK

128TRACK

256TRACK

384TRACK

EFMT1

EFMT2

EEFMT2

 �

�
NOTMASTER

STATUS(

ALL

)

SCRATCH

VERIFY

NOVERIFY

FAIL

WRONGLABEL(

IGNORE

)

PROMPT

RMMPROMPT

 ��

Notes:

1 Specify this parameter for automatic processing.

Figure 163. EDGINERS EXEC Parameters

422 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

tapes to version 3. To understand how the DFSMSrmm assigns the label

version, see “How DFSMSrmm Selects an ISO/ANSI Label Version” on page

433.

ALVER4

Use ALVER4 to set the EDGINERS processing default value for ISO/ANSI label

tapes to version 4. To understand how the DFSMSrmm assigns the label

version, see “How DFSMSrmm Selects an ISO/ANSI Label Version” on page

433.

BATCH(number_of_batches)

Use BATCH to specify the number of batches of volumes to be processed in a

single run of EDGINERS automatic processing. Use the COUNT parameter to

specify the number of volumes in each batch. The COUNT is the number of

volumes that are initialized or erased before DFSMSrmm verifies the volumes.

After DFSMSrmm verifies the volumes in a batch, EDGINERS starts again to

initialize or erase the volumes in the next batch.

 If you specified the NOVERIFY parameter, the number of volumes that are

processed is the BATCH value or its default, multiplied by the value of COUNT

or its default. However, DFSMSrmm does not batch the processing of these

volumes.

 The default for BATCH is BATCH(1). To process all volumes that have actions

pending, specify BATCH(0). DFSMSrmm treats BATCH(0) as

BATCH(X'FFFFFFFF'), which is the upper limit for the number of batches that

DFSMSrmm can process.

COUNT(count)

Use COUNT to specify the number of volumes to initialize or to erase when

DFSMSrmm performs automatic processing. Use COUNT with the BATCH

parameter to specify the number of volumes in each batch of volumes to be

processed. The maximum value that you can specify is 99. If automatic

processing is in effect but COUNT is omitted, then the default value is 10.

When you specify COUNT, DFSMSrmm performs automatic processing.

ERASE

Use ERASE to request that DFSMSrmm selects volumes that have the erase

action pending. If automatic processing is in effect but ERASE is not specified

then DFSMSrmm will only select volumes with the initialize action pending.

When you specify ERASE, DFSMSrmm performs automatic processing.

INITIALIZE

Use INITIALIZE to request that DFSMSrmm selects volumes that have the

initialize action pending. If automatic processing is in effect but neither

INITIALIZE nor ERASE are specified, then INITIALIZE is the default. You can

also specify INITIALISE for INITIALIZE. When you specify INITIALIZE,

DFSMSrmm performs automatic processing.

LOCATION(library_name)

Use LOCATION to specify a subset of volumes for automatic processing. The

library_name must be the name of a system-managed tape library that is on the

running system or SHELF. If you specify LOCATION, you cannot specify

MEDIANAME, MEDIATYPE, POOL, or RECORDINGFORMAT.

 There is no default library_name value. If you do not specify LOCATION,

MEDIANAME, MEDIATYPE, POOL, or RECORDINGFORMAT, DFSMSrmm

uses MEDIANAME as the default parameter for automatic processing. This

means that all volumes defined with the default medianame are selected if they

have the required action pending.

Chapter 18. Initializing and Erasing Tape Volumes 423

MEDIANAME(medianame | parmlib_default_medianame)

Use MEDIANAME to specify a subset of volumes for automatic processing. If

you specify MEDIANAME, you cannot specify LOCATION, MEDIATYPE, POOL,

or RECORDINGFORMAT. If you do not specify LOCATION, MEDIANAME,

MEDIATYPE, POOL, or RECORDINGFORMAT, DFSMSrmm uses

MEDIANAME as the default parameter for automatic processing. This means

that all volumes defined with the default medianame are selected if they have

the required action pending.

 DFSMSrmm does not use MEDIANAME to set a default for the SYSIN INIT and

ERASE commands MEDIANAME operand.

 The default MEDIANAME is the value that you define with the EDGRMMxx

parmlib OPTION MEDIANAME operand described in “Defining System Options:

OPTION” on page 175.

MEDIATYPE(* | CST | ECCST | EHPCT | HPCT | MEDIA5 | MEDIA6 | MEDIA7 |

MEDIA8 | MEDIA9 | MEDIA10)

Use MEDIATYPE to specify a subset of volumes for automatic processing.

Specifies the volume’s physical media type. Use one of these:

* The volume is not a cartridge.

CST Cartridge System Tape

ECCST Enhanced Capacity Cartridge System Tape

EHPCT Extended High Performance Cartridge Tape

HPCT High Performance Cartridge Tape

MEDIA5/ETC IBM TotalStorage Enterprise Tape Cartridge

MEDIA6/EWTC

IBM TotalStorage Enterprise WORM Tape Cartridge 3592

MEDIA7/EETC

IBM TotalStorage Enterprise Economy Tape Cartridge 3592

MEDIA8/EEWTC

IBM TotalStorage Enterprise Economy WORM Tape Cartridge

3592

MEDIA9/EXTC

IBM TotalStorage Enterprise Extended Tape Cartridge 3592

MEDIA10/EXWTC

IBM TotalStorage Enterprise Extended WORM Tape Cartridge

3592

When you specify MEDIATYPE, DFSMSrmm performs automatic processing. If

you specify MEDIATYPE, you cannot specify LOCATION, MEDIANAME, POOL,

or RECORDINGFORMAT.

 There is no default MEDIATYPE value. If you do not specify LOCATION,

MEDIANAME, MEDIATYPE, POOL, or RECORDINGFORMAT, DFSMSrmm

uses MEDIANAME as the default parameter for automatic processing. This

means that all volumes defined with the default medianame are selected if they

have the required action pending.

POOL(pool_prefix)

Use POOL to specify a subset of volumes for automatic processing. A pool

prefix is one-to-five alphanumeric, national, or special characters followed by an

424 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

asterisk (*). The pool must be one that is defined to DFSMSrmm on the running

system. If you specify POOL, you cannot specify LOCATION, MEDIANAME,

MEDIATYPE, or RECORDINGFORMAT.

 There is no default pool_prefix value. If you do not specify LOCATION,

MEDIANAME, MEDIATYPE, POOL, or RECORDINGFORMAT, DFSMSrmm

uses MEDIANAME as the default parameter for automatic processing. This

means that all volumes defined with the default medianame are selected if they

have the required action pending.

RECORDINGFORMAT(*| 18TRACK | 36TRACK | 128TRACK | 256TRACK |

384TRACK | EFMT1 | EFMT2 | EEFMT2)

Use RECORDINGFORMAT to specify a subset of volumes for automatic

processing. RECORDINGFORMAT specifies the basic recording format for tape

volumes.

* An asterisk indicates that the format is unknown or that the volume is

not a tape volume.

18TRACK

Data has been written to the volume in 18-track format. A recording

format of 18TRACK is valid with MEDIATYPE(CST) and

MEDIATYPE(ECCST) only.

36TRACK

Data has been written to the volume in 36-track format. A recording

format of 36TRACK is valid with MEDIATYPE(CST) and

MEDIATYPE(ECCST) only.

128TRACK

Data has been written to the volume in 128-track format. A recording

format of 128TRACK is valid with MEDIATYPE(EHPCT) and

MEDIATYPE(HPCT) only.

256TRACK

Data has been written to the volume in 256-track format. A recording

format of 256TRACK is valid with MEDIATYPE(EHPCT) and

MEDIATYPE(HPCT) only.

384TRACK

Data has been written to the volume in 384-track format. A recording

format of 384TRACK is valid with MEDIATYPE(EHPCT) and

MEDIATYPE(HPCT) only.

EFMT1

Data has been written to the volume in EFMT1 (enterprise format 1)

recording format. A recording format of EFMT1 is valid with

MEDIATYPE(MEDIA5), MEDIATYPE(MEDIA6), MEDIATYPE(MEDIA7),

and MEDIATYPE(MEDIA8) only.

EFMT2

Data has been written to the volume in EFMT2 (enterprise format 2)

recording format. A recording format of EFMT2 is valid with

MEDIATYPE(MEDIA5), MEDIATYPE(MEDIA6), MEDIATYPE(MEDIA7),

MEDIATYPE(MEDIA8), MEDIATYPE(MEDIA9), and

MEDIATYPE(MEDIA10) only.

EEFMT2

Data has been written to the volume in EEFMT2 (enterprise encrypted

format 2) recording format. A recording format of EEFMT2 is valid with

Chapter 18. Initializing and Erasing Tape Volumes 425

|
|

|
|
|

MEDIATYPE(MEDIA5), MEDIATYPE(MEDIA6), MEDIATYPE(MEDIA7),

MEDIATYPE(MEDIA8), MEDIATYPE(MEDIA9), and

MEDIATYPE(MEDIA10) only.

There is no default RECORDINGFORMAT. If you do not specify LOCATION,

MEDIANAME, MEDIATYPE, POOL, or RECORDINGFORMAT, DFSMSrmm

uses MEDIANAME as the default parameter for automatic processing. This

means that all volumes defined with the default medianame are selected if they

have the required action pending.

STATUS

Use STATUS to control the kind of tapes that you want DFSMSrmm to initialize

or erase. The default for STATUS is NOTMASTER. Specifying STATUS

requests automatic processing.

ALL

EDGINERS processes all volumes that have the INITIALIZE or ERASE

action pending.

NOTMASTER

EDGINERS processes all volumes in SCRATCH, USER, INIT, ENTRY or

PENDING RELEASE status that have the INITIALIZE or ERASE action

pending. EDGINERS does not process any volumes in MASTER status.

NOTMASTER is the default.

SCRATCH

EDGINERS processes volumes in SCRATCH, INIT, ENTRY or PENDING

RELEASE status that have the INITIALIZE or ERASE action pending.

EDGINERS does not process any volumes in MASTER or USER status.

VERIFY|NOVERIFY

Use VERIFY to request that DFSMSrmm ask the operator to remount each

volume that has been successfully erased or labeled. The volumes are

requested in reverse order, and the volume labels read to ensure no operator

errors have occurred, for example, a mismatch between the internal label and

the external label.

 For automatic processing VERIFY is the default. For manual processing

NOVERIFY is the default.

WRONGLABEL

Use WRONGLABEL to specify the processing that DFSMSrmm performs when

a wrong volume is mounted. WRONGLABEL processing does not apply to NL

tapes. For NL tapes, DFSMSrmm issues the WTOR EDG6628A to obtain the

volume serial number or rack number for the volume that has been mounted.

You can use WRONGLABEL when you are running EDGINERS in automatic

mode and manual mode.

FAIL

DFSMSrmm does not prompt the operator to accept a mounted volume that

does not match the requested volume. The mount request is rejected, the

volume demounted, and DFSMSrmm issues message EDG6661E or

message EDG6662E.

IGNORE

When the wrong volume is mounted, DFSMSrmm does not issue any

operator prompt. DFSMSrmm issues message EDG6661E or EDG6662E to

log the relabeling and processing proceeds. This is an extremely dangerous

option and should be used with caution because any volume can be

relabeled as long as the requested volume has the INIT action or is not

426 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|

defined to DFSMSrmm. Use of this option requires CONTROL access to

RACF FACILITY class resource STGADMIN.EDG.INERS.WRONGLABEL.

PROMPT

When an incorrect volume label is detected by EDGINERS for the mounted

volume, the operator is always prompted to confirm the processing to be

performed. DFSMSrmm issues message EDG6661E or message

EDG662E, followed by message EDG6663D. Processing continues

according to the response to message EDG6663D. This option should be

used with caution because any volume can be relabeled as long as the

requested volume is either known to DFSMSrmm and has the INIT action,

or is not known to DFSMSrmm. No additional authorization is required,

other than the authorization required for running EDGINERS.

RMMPROMPT

When the volume serial number of the mounted volume that is defined to

DFSMSrmm does not match the volume serial number of the requested

volume, DFSMSrmm issues message EDG6663D to prompt the operator to

confirm processing. If the magnetic volume serial number of the tape is not

known to DFSMSrmm, initialization continues as if the tape had no

magnetic label. If the volume is known to DFSMSrmm, DFSMSrmm issues

messages EDG6662E and EDG6663D to prompt the operator or issues

message EDG6661E to log the relabeling. Use this option when your

installation has defined all its volumes to DFSMSrmm; otherwise caution is

required. Use of this option requires UPDATE access to RACF FACILITY

class resource STGADMIN.EDG.INERS.WRONGLABEL.

SYSIN Commands for EDGINERS

Use the SYSIN commands for manual processing. You must use separate SYSIN

commands for each volume you want initialized or erased. The format of the SYSIN

commands and operator replies are shown in Figure 164.

ACCESS(code)

Specifies the ISO/ANSI volume accessibility code. Specify code as any

�� INIT

ERASE
 VOLUME(volser)

,new_volser
 �

�
SL

LABEL(

AL

ANSI

Label

Parameters

)

NL

 �

�
parmlib_default_medianame

MEDIANAME(

medianame

)

RACK(rack_number)

POOL(pool_prefix)

 �

�
OWNERTEXT(text)

VOL1(volser)
 ��

ANSI Label parameters:

ACCESS(code)

LABELVERSION

(

3

)

VERSION

4

Figure 164. EDGINERS SYSIN Commands

Chapter 18. Initializing and Erasing Tape Volumes 427

character in the ISO/ANSI X3.4–1986 character set. You must specify

LABEL(AL) if you specify an accessibility code.

 You must modify the volume access installation exit routine in z/OS to allow

subsequent use of the volume if you specify ACCESS.

 The default is blank, allowing unlimited access to the volume.

ERASE

Specify ERASE to security erase a volume and write a new label on it.

 You must specify either ERASE or INIT.

INIT

Specify INIT to initialize a volume.

 You must specify either INIT or ERASE.

LABEL(NL|SL|AL)

Use LABEL to specify the type of label to be written on the volume:

AL Specifies an ISO/ANSI Label.

NL Specifies no label.

SL Specifies an IBM standard label.

 If you do not specify the label type and the volume is already defined in

DFSMSrmm, DFSMSrmm uses the label type defined in the DFSMSrmm

control data set.

 If you do not specify the label type and the volume is not already defined in the

control data set, DFSMSrmm uses IBM standard label (SL) as the default.

LABELVERSION(3|4)

Use LABELVERSION to specify the ISO/ANSI volume label version. Specify

LABELVERSION to update the DFSMSrmm control data set with the required

label version for ISO/ANSI output tapes. To understand how DFSMSrmm

assigns a label version if you do not specify the LABELVERSION, see “How

DFSMSrmm Selects an ISO/ANSI Label Version” on page 433.

3 Use 3 to initialize tape volumes with ISO/ANSI version 3 VOL1 and HDR1

labels

4 Use 4 to initialize tape volumes with ISO/ANSI version 4 VOL1 and HDR1

labels.

MEDIANAME(medianame)

Specifies the volume’s media name.

 The media name that you specify must match the media name defined in the

control data set. If the media names do not match, DFSMSrmm fails the

request.

 If the volume is not defined in the DFSMSrmm control data set, DFSMSrmm

uses the value that you specify when you add the volume. If you do not specify

a media name, DFSMSrmm uses the value that you defined for your installation

with the EDGRMMxx parmlib OPTION MEDIANAME operand.

 The default is the EDGRMMxx parmlib OPTION MEDIANAME operand value.

OWNERTEXT(text)

Specifies the owner’s name or similar identification. text is fourteen characters.

Enclose in single quotes if it includes blanks or special characters. The text

must be 10 bytes for SL, 14 bytes for AL.

428 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

The information is specified as character constants up to 10 bytes long for

EBCDIC and BCDIC volume labels and up to 14 bytes long for volume labels

written in ISCII/ASCII.

POOL(pool_prefix)

Specifies a pool prefix for a pool to which you want to assign the volume. If the

volume is not defined to DFSMSrmm, DFSMSrmm selects an available rack

number for the volume in the pool you specify. If the volume is already defined

in the DFSMSrmm control data set, DFSMSrmm changes the volume’s rack

number to move the volume.

 If you do not supply a pool prefix or a rack number for a volume already defined

in the DFSMSrmm control data set, DFSMSrmm uses the volume’s existing

rack number. If the volume is not defined in the control data set and you do not

supply a pool prefix or a rack number, DFSMSrmm assigns the volume a rack

number matching its volume serial number.

RACK(rack_number)

Specifies a shelf location for the volume. If you do not supply a pool ID or a

rack number for a volume already defined in the control data set, DFSMSrmm

uses the volume’s existing rack number. If the volume is not defined in the

DFSMSrmm control data set and you do not supply a pool ID or a rack number,

DFSMSrmm assigns the volume a rack number matching its volume serial

number.

VOLUME(volser,new_volser)

volser specifies the volume serial number of the volume to be initialized or

erased. volser is required. If you are adding volumes with a volume serial

number less than six characters, you must supply a rack number or a pool,

otherwise DFSMSrmm issues an error message.

 If the volume is already defined in the DFSMSrmm control data set,

DFSMSrmm ensures that the requested action is pending for the volume. If this

action is not pending, DFSMSrmm fails the request.

 If the volume mounted is already labeled, DFSMSrmm reads the label to

ensures that the volume serial number matches the one you specify. If the

volume mounted does not have a recognizable volume label but contains data

(no label tapes or nonstandard label tapes), DFSMSrmm issues a WTOR. The

operator must reply to this message before DFSMSrmm can initialize or erase

the volume.

 If the volume is not defined in the DFSMSrmm control data set and you do not

specify a new volume serial number, DFSMSrmm adds the volume to the

control data set.

 The value for the variable new_volser specifies a new volume serial number.

Use it if you want to relabel a volume with a new volume serial number. If this

new volume is already defined in the DFSMSrmm control data set, DFSMSrmm

fails the request.

 DFSMSrmm adds information about the new volume to the DFSMSrmm control

data set, using information recorded for the volume you are replacing, and then

deletes information about the volume you are replacing.

VOL1(volser)

Use the VOL1 operand to specify the VOL1 label volser that is to be written in

the tape label when it is required to be different than the external volser. The

value for the variable volser is 1-to-6 alphanumeric, national, or special

characters.

Chapter 18. Initializing and Erasing Tape Volumes 429

Volumes with a VOL1 value are treated as duplicate volumes by DFSMSrmm. If

you are labeling a duplicate volume, DFSMSrmm uses the previously defined

VOL1 value for the volume when you do not specify a VOL1 value for the

volume. If you specify a VOL1 value, DFSMSrmm uses that VOL1 in place of

the VOL1 value that was previously defined to DFSMSrmm. You can only label

a volume as a duplicate when you are initializing or erasing volumes manually

 For more information about tape label validation or volume access code, see z/OS

DFSMS Using Magnetic Tapes.

Using EDGINERS with System-Managed Tape Libraries

With DFSMS tape support, you can associate tape drives with specific

system-managed tape libraries. As a result, you can mount volumes resident in a

system-managed tape library only on the drives associated with that library.

Checking Volumes in System-Managed Tape Libraries

EDGINERS performs this checking to make sure a volume can be used in a

system-managed tape library:

v EDGINERS determines if a volume in a system-managed tape library can be

mounted on the current system. If the volume cannot be mounted, possibly

because it is defined in a TCDB on another system, DFSMSrmm skips that

volume.

v In order to initialize a volume in a system-managed tape library, a volume must

be in a private category because the automated tape library does not support

specific mounts of scratch volumes. RMM TSO command and release processing

attempts to ensure that the volume is in the correct category so that EDGINERS

does not have to check the volume status. Refer to “Setting Status for a Volume

in a System-Managed Tape Library” on page 432 for more information about

setting the status for a volume.

v You must define a volume in a system-managed tape library to DFSMSrmm

before you can initialize or erase it. Any volume not defined to DFSMSrmm will

be mounted on the drive allocated by the TAPE DD statement in the JCL for

EDGINERS as long as the drive is not in a system-managed library.

Requesting Volume Mounts for System-Managed Tape Libraries

EDGINERS requests volume mounts only on those drives on which the volumes

can be mounted, by testing volume eligibility and using dynamic allocation to obtain

a suitable drive for each volume to be processed.

DFSMSrmm uses the pre-allocated drive if it is available. If the pre-allocated drive

is not available, EDGINERS dynamically allocates a drive using the first volume

obtained from the control data set. Further processing checks that the subsequent

volumes are eligible for use on the same drive. If the pre-allocated drive is not in a

system-managed tape library, DFSMSrmm uses it for all volumes selected that are

not resident in a system-managed tape library.

When dynamic allocation of a tape drive fails, EDGINERS sets return code to 4 and

skips processing of the current volume. Messages describing the failure are issued.

These might include messages prefixed with IKJ and CBR. In most cases you will

see a return and reason code returned from OAM. For example, OAM issues return

code 8 and reason code 51 to indicate that the requested volume is in scratch

status. This error might be the result of a mismatch between the DFSMSrmm

control data set and TCDB volume status. You can correct this by updating the

status in the TCDB to match that known by DFSMSrmm. Refer to z/OS DFSMSdfp

Diagnosis for information about OAM return and reason codes.

430 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Running EDGINERS on Multiple System Complexes

You can run EDGINERS on multiple system complexes to ensure that all required

volumes are erased or initialized. To select a subset of volumes to initialize or

erase, you can specify POOL and LOCATION with the EDGINERS EXEC

parameter.

Running EDGINERS on a 3494 in Manual Mode

DFSMSrmm can determine the status of the vision system and if the library is in

manual mode. EDGINERS can automatically handle some errors when an

automated tape library is fully functional. For example, when the library is fully

functional, DFSMSrmm uses the vision system volume serial number to verify that

the correct volume is mounted.

Mounting and Demounting Volumes

EDGINERS provides a way to direct to an automated tape library the WTOR

messages and MSGDISP requests to the operator and drive to get a volume

mounted and demounted. These messages are issued through the library

automation communication services component of OAM. If a mount on an

automated tape library drive fails, DFSMSrmm uses the return and reason codes

set by the library automation communication services component to test if a volume

should be skipped.

During demount processing, DFSMSrmm ensures that errors detected on volumes

mounted in an automated tape library are reflected in the TCDB. For example,

DFSMSrmm ensures the TCDB contains information about write-protected, wrong

volume, and wrong label type errors. DFSMSrmm skips the volume rather than

having the operator correct the error.

Using DFSMSdfp Processing to Label Volumes

For volumes in an automated tape library, you have the option to use DFSMSdfp

OPEN processing as an alternative to using EDGINERS to label scratch volumes.

If the automated tape library is fully functional (vision system working) and the

VOL1 label for a scratch volume does not match the external label, DFSMSdfp

rewrites the VOL1 label with the correct volume serial number.

DFSMSrmm defers the initialization of the volumes to DFSMSdfp if you request the

initialization prior to entering a scratch volume into the automated tape library.

DFSMSrmm turns off the initialize action.

For example you use the RMM ADDVOLUME subcommand to define scratch

volumes to DFSMSrmm as shown in Figure 165. Specify INIT(Y) to request that the

volume is initialized prior to first use. If you later enter the volumes into an

automated tape library, during entry processing DFSMSrmm turns off the initialize

action to defer the labeling to OPEN processing under DFSMSdfp control.

 If you request that the initialize action is set for a scratch volume that is already

resident in the automated tape library, as shown in Figure 166 on page 432 using

the RMM CHANGEVOLUME subcommand, DFSMSrmm does not defer the

initialization to DFSMSdfp. You must use EDGINERS to label the tape before it can

be used.

RMM ADDVOLUME A12345 INIT(Y) STATUS(SCRATCH)

Figure 165. Defining Scratch Volumes to be Initialized

Chapter 18. Initializing and Erasing Tape Volumes 431

Setting Status for a Volume in a System-Managed Tape Library

DFSMSrmm maintains volume status in the TCDB for volumes that are defined in

the DFSMSrmm control data set. The status is updated using the RMM TSO

commands or when volumes are released. Use the DFSMSrmm EDGRMMxx

parmlib OPTION command SMSTAPE operand to control when the TCDB is

updated. If the TCDB is not updated, the request to initialize or erase a volume in a

system-managed tape library might fail because the volume is in a scratch library

category. If DFSMSrmm is still running in record-only mode, use the AMS ALTER

VOLUMEENTRY command to change the volume status. If DFSMSrmm is running

in any other mode, you can use the RMM TSO commands to correct the volume

status.

To set the correct status for the volume, issue two commands. Issue this command

to complete the failed request.

RMM CHANGEVOLUME A12345 CONFIRMRELEASE(INIT)

Then issue this command to request that the volume be initialized.

RMM CHANGEVOLUME A12345 INIT(Y)

Labeling New Tape Volumes with EDGINERS

When you use the EDGINERS utility to label new tape volumes, EDGINERS reads

the VOL1 tape label header of any volume that is to be initialized. When

DFSMSrmm reads the VOL1 tape label header for new volumes, this can result in

IOS000I messages with NCA (Not Capable). EDGINERS identifies the sense

information and initializes the volume without further checking or intervention.

When IOS returns the message ″Format incompatible″ for volumes that do not have

readable header information, DFSMSrmm cannot determine if the correct volume is

mounted. DFSMSrmm issues message EDG6656E and message EDG6661E. In

message EDG6661E, DFSMSrmm displays *FMTIC which is a dummy volume

serial number used by EDGINERS.

EDG6656E FORMAT OF VOLUME M00021 IS NOT COMPATIBLE WITH CURRENT DEVICE

EDG6661E INCORRECT VOLUME MOUNTED ON DEVICE 0281 - REQUESTED VOLUME M00021

MOUNTED VOLUME *FMTIC.

To ensure that new tape volumes are labeled, you can use the EDGINERS

WRONGLABEL parameter described in “EXEC Parameters for EDGINERS” on

page 421 to specify what DFSMSrmm does when it encounters a new tape volume

with unreadable header information. Use the WRONGLABEL(RMMPROMPT)

parameter if you want DFSMSrmm to prompt the operator for a reply or the

WRONGLABEL(IGNORE) parameter when you want EDGINERS to continue

without intervention.

Using the Automatic Cartridge Loader with EDGINERS

You can use cartridge loaders with the EDGINERS utility to automate the mounting

of volumes that are to be erased or labeled. To use cartridge loaders set to

automatic mode, do not pre-mount volumes. Mount the volumes after EDGINERS

issues the first mount message because DFSMSrmm processing depends on the

mount message which is not issued when the cartridge loader is set to automatic

mode and if a volume is already loaded.

RMM CHANGEVOLUME A12345 INIT(Y)

Figure 166. Changing the Initialization Action for a Volume

432 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

If you use brand new volumes or volumes that might cause I/O errors, Automatic

Volume Recognition (AVR) can reject premounted volumes at allocation time. AVR

processing is not under DFSMSrmm control. AVR dismounts the premounted and

readied volumes when an I/O error is detected and issues message IEF503I.

When you use cartridge loaders with EDGINERS, you can optionally use the

COUNT operand to specify how many volumes you plan to load into the cartridge

loader. When you use the VERIFY operand, specify the COUNT operand to enable

the batch of volumes to be reloaded for verify processing before any other volumes

are processed. Use the BATCH operand to specify how many batches of volumes

you want to process in a single run of EDGINERS

Controlling Access to EDGINERS

You should control access to EDGINERS because it can overwrite previously

labeled tapes regardless of expiration date and security protection. DFSMSrmm

helps you prevent unauthorized users from using EDGINERS by using the RACF

security resource STGADMIN.EDG.OPERATOR. Only users with access to

STGADMIN.EDG.OPERATOR can use EDGINERS.

For more information about using STGADMIN.EDG.OPERATOR, see Chapter 11,

“Authorizing DFSMSrmm Users and Ensuring Security,” on page 213.

How DFSMSrmm Selects an ISO/ANSI Label Version

You can specify an ISO/ANSI label version, or can use the system default to label

tape volumes with ISO/ANSI labels.

You can specify the volume label version in several different ways. EDGINERS

uses this selection order for each volume in order to determine the label version,

then uses the first value that it finds to assign the label version to the volume.

1. The LABELVERSION parameter in SYSIN command of EDGINERS

2. The REQUIREDLABELVERSION in the DFSMSrmm control data set volume

record

3. The EDGINERS EXEC parameter ALVER3 or ALVER4

4. The parameter ALVERSION() in the parmlib DEVSUPxx member

5. The system default is 3

Producing Label Symmetry

If you initialize an ISO/ANSI label using EDGINERS, the labels do not frame an

empty or null data set as required for interchange. To produce a label symmetry

that meets ISO/ANSI standards, at least a minimal open and close sequence must

be performed. For example, a volume previously initialized with EDGINERS results

in label symmetry when you use the data set utility IEBGENER before the volume

leaves the system for interchange, as shown in Figure 167.

 //STEP1 EXEC PGM=IEBGENER

 //SYSUT1 DD DUMMY,DCB=(RECFM=F,BLKSIZE=80,LRECL=80)

 //SYSUT2 DD DSN=DUMMY,UNIT=(tape,,DEFER),LABEL=(,AL),

 DCB=(RECFM=F,BLKSIZE=80,LRECL=80)

 //SYSIN DD DUMMY

Figure 167. Using IEBGENER

Chapter 18. Initializing and Erasing Tape Volumes 433

How EDGINERS Processing Works

Before initializing or erasing a tape volume, DFSMSrmm verifies that the correct

volume is mounted by reading any existing label, obtaining the volume serial

number from the tape library vision system, or prompting the operator to confirm

that the external label is correct. EDGINERS labels tape volumes as follows:

v For standard label volumes, DFSMSrmm creates a standard volume label, an

80-byte dummy header label, and a tape mark.

A standard volume label with a serial number you specify and a blank security

byte. The format of the ISO/ANSI label is constructed either for Version 3 or

Version 4, depending on the options, of the label standard. For a complete

description of IBM standard volume labels and ISO/ANSI Version 3 volume

labels, see z/OS DFSMS Using Magnetic Tapes.

An 80-byte dummy header label. For IBM standard labels, this header consists of

the characters HDR1 followed by zeros. For ISO/ANSI labels, this header

consists of the characters HDR1 followed by zeros, with these exceptions:

– Position 54, which contains an ISCII/ASCII space

– A 1 in the file section, file sequence, and generation number fields

– A leading space in the creation and expiration date fields

– A system code of IBMZLA, followed by 13 spaces, to identify the operating

system creating the label

v For tapes with no label, DFSMSrmm writes an 80-byte record that is not

recognized as any valid label format, however, the DFSMSrmm utility can

recognize it as an unlabeled tape once it is initialized.

The first time a tape that is labeled by EDGINERS is used for output, these

sequence of events occurs:

1. The tape mark that EDGINERS created is overwritten.

2. The dummy header label that EDGINERS created is filled in with operating

system data and device-dependent information.

3. A HDR2 record, containing data set characteristics, is created.

4. User header labels are written if exits to user label routines are provided.

5. A new tape mark is written.

6. Data is placed on the receiving volume.

When relabeling a volume defined to DFSMSrmm, DFSMSrmm uses the

information recorded about the old volume as part of the new volume information

recorded in the control data set.

This information is taken from the old volume record: Expiration Date, Density, Use

Count, Store Id, Bin Number, Old Bin Number, Loan Location, Previous Location,

Last Read and Write dates, Assigned Date and Time, Owner, Status, Label Type,

Release actions, Actions Pending (excluding initialize and erase), Volume access

and accessors, Unit name, Rack number, Temporary / Permanent Read / Write

error counts.

When a volume that resides in an automated system-managed tape library is

rejected at OPEN time because the tape media servo tracks require formatting,

DFSMSrmm updates the volume information in the control data set. DFSMSrmm

sets the volume INIT action to indicate that the volume must be initialized. If

EDGINERS is used to relabel a volume and servo tracks have not been formatted,

DFSMSrmm cannot initialize the volume.

434 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Return Codes for EDGINERS

EDGINERS issues one of the return codes shown in Table 59.

 Table 59. EDGINERS Return Codes

Return

Code Explanation

0 All requested functions completed successfully.

4 DFSMSrmm encountered a minor error during processing. It issues a warning

message and continues processing.

8 DFSMSrmm has stopped at least one requested function. It continues processing

the next requested function.

12 DFSMSrmm encountered a severe error during processing of one of the requested

functions. DFSMSrmm stops the utility.

16 DFSMSrmm encountered a severe error during a required communication with the

DFSMSrmm subsystem. DFSMSrmm stops the utility.

EDGINERS Examples

These examples illustrate some of the uses of EDGINERS. To use the examples,

replace the tape specified in the examples with actual device numbers or esoteric

unit names, unless your installation has the required device numbers defined to the

esoteric name ‘TAPE’. The actual device numbers and esoteric unit names depend

on how your installation has defined the devices to your system. See z/OS DFSMS

Using Magnetic Tapes for devices supported by this utility.

Example 1: Write IBM Standard Labels on Three Tapes

Figure 168 is a manual processing example. Serial numbers 001234, 001235, and

001236 are placed on three tape volumes. The labels are written in EBCDIC at 800

bits per inch. Each volume labeled is mounted, when it is required, on a single

9-track tape unit. You must specify SYSIN commands for each volume you want to

label, as Figure 168 shows.

 Control statement description:

v TAPE DD defines the tape unit used in the labeling operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v INIT specifies that the tapes are to be labeled.

Example 2: Write an ISO/ANSI Label on a Tape

Figure 169 on page 436 is a manual processing example. Serial number 001001 is

placed on one ISO/ANSI tape volume; the label is written at 800 bits per inch. The

volume labeled is mounted, when it is required, on a 9-track tape unit. You must

specify SYSIN commands for each volume you want to label, as Figure 169 on

page 436

 //LABEL1 JOB ...

 //STEP1 EXEC PGM=EDGINERS

 //SYSPRINT DD SYSOUT=A

 //TAPE DD DCB=DEN=2,UNIT=(tape,1,DEFER)

 //SYSIN DD *

 INIT VOLUME(001234) LABEL(SL)

 INIT VOLUME(001235) LABEL(SL)

 INIT VOLUME(001236) LABEL(SL)

 /*

Figure 168. Writing IBM Standard Labels on Three Tapes

Chapter 18. Initializing and Erasing Tape Volumes 435

page 436 shows.

 Control statement description:

v TAPE DD defines the tape unit to be used in the labeling operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v INIT specifies the serial number and label type for the volume that is being

labeled.

Example 3: Place Two Groups of Serial Numbers on Six Tape Volumes

Figure 170 is a manual processing example. Two groups of serial numbers

(001234, 001235, 001236, and 001334, 001335, 001336) are placed on six tape

volumes. The labels are written in EBCDIC at 800 bits per inch. Each volume

labeled is mounted, when it is required, on a single 9-track tape unit. You must

specify SYSIN commands for each volume you want to label, as Figure 169 shows.

 Control statement description:

v TAPE DD defines the tape unit to be used in the labeling operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v INIT specifies that the tapes are to be labeled.

Example 4: Place Serial Numbers on Eight Tape Volumes

Figure 171 on page 437 is a manual processing example. Serial numbers 001234,

001244, 001254, 001264, 001274, and so on in a sequence, are placed on eight

tape volumes. The labels are written in EBCDIC at 800 bits per inch. Each volume

labeled is mounted, when it is required, on a single 9-track tape unit. You must

specify SYSIN commands for each volume you want to label, as Figure 171 on

page 437 shows.

 //LABEL2 JOB ...

 //STEP1 EXEC PGM=EDGINERS

 //SYSPRINT DD SYSOUT=A

 //TAPE DD DCB=DEN=2,UNIT=(tape,1,DEFER)

 //SYSIN DD *

 INIT VOLUME(001001) LABEL(AL)

 /*

Figure 169. Writing an ISO/ANSI Label on a Tape

 //LABEL3 JOB ...

 //STEP1 EXEC PGM=EDGINERS

 //SYSPRINT DD SYSOUT=A

 //TAPE DD DCB=DEN=2,UNIT=(tape,1,DEFER)

 //SYSIN DD *

 INIT VOLUME(001234) LABEL(SL)

 INIT VOLUME(001235) LABEL(SL)

 INIT VOLUME(001236) LABEL(SL)

 INIT VOLUME(001334) LABEL(SL)

 INIT VOLUME(001335) LABEL(SL)

 INIT VOLUME(001336) LABEL(SL)

 /*

Figure 170. Numbering Tape Volumes

436 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Control statement description:

v TAPE DD defines the tape unit used in the labeling operation.

v SYSIN DD defines the control data set, which follows in the input stream.

v The INIT statements specify the tapes to be labeled.

Example 5: Relabel a Volume

Figure 172 is a manual processing example for relabeling a volume. Supply both

the current and the new volume serial number in your SYSIN statement. In the

example the volume that is currently labeled as CURR01 is relabeled to NEW001.

If volume CURR01 is already defined to DFSMSrmm, DFSMSrmm defines a new

volume entry NEW001 to the DFSMSrmm control data set using information from

the existing volume entry CURR01 and deletes the existing volume entry. If volume

CURR01 is not defined to DFSMSrmm, DFSMSrmm defines a new volume entry

NEW001 in the control data set.

 Control statement description:

v TAPE DD defined the tape unit to be used in the labeling operation.

v INIT specifies the current and new tape labels.

Example 6: Automatically Initialize or Erase 3480 Volumes

Figure 173 is an automatic processing example. EDGINERS requests that

DFSMSrmm scan its control data set for the first ten 3480 volumes waiting to be

initialized or erased.

 Control statement description:

v TAPE DD defines the tape unit used in the labeling operation.

 //LABEL4 JOB ...

 //STEP1 EXEC PGM=EDGINERS

 //SYSPRINT DD SYSOUT=A

 //TAPE DD DCB=DEN=2,UNIT=(tape,1,DEFER)

 //SYSIN DD *

 INIT VOLUME(001234) LABEL(SL)

 INIT VOLUME(001244) LABEL(SL)

 INIT VOLUME(001254) LABEL(SL)

 INIT VOLUME(001264) LABEL(SL)

 INIT VOLUME(001274) LABEL(SL)

 INIT VOLUME(001284) LABEL(SL)

 INIT VOLUME(001294) LABEL(SL)

 INIT VOLUME(001304) LABEL(SL)

 /*

Figure 171. Placing Serial Numbers on Eight Tape Volumes

 //INIT EXEC PGM=EDGINERS

 //SYSPRINT DD SYSOUT=*

 //TAPE DD UNIT=(tape,,DEFER)

 //SYSIN DD *

 INIT VOLUME(CURR01,NEW001) LABEL(SL)

Figure 172. Relabeling a Volume

 //LABEL5 JOB ...

 //STEP1 EXEC PGM=EDGINERS,PARM=’INITIALIZE,ERASE,COUNT(10)’

 //SYSPRINT DD SYSOUT=*

 //TAPE DD UNIT=(3480,,DEFER)

Figure 173. Automatically Initialize or Erase 3480 Volumes

Chapter 18. Initializing and Erasing Tape Volumes 437

Example 7: Initialize and Erase Volumes in a System-Managed Library

In Figure 174 an automatic run of EDGINERS is scheduled to find, initialize, and

erase up to 99 volumes residing in an automated tape library called MYATL. All tape

cartridges will be labeled as appropriate for the drive type on which they are

mounted, and for their current media characteristics.

 Control statement description:

v TAPE and SYSIN DD are not required.

v PARM values request automatic processing with the default of VERIFY of all

labeled volumes.

Example 8: Initialize 50 Scratch Enhanced Capacity Cartridges

In Figure 175, an automatic run of EDGINERS is used to initialize 50 scratch

enhanced capacity cartridges defined to DFSMSrmm in the previous job step, and

initialize them for use in a non-system managed tape library. This example assumes

that no other volumes in the pool need to be initialized.

 Control statement description:

v SYSTSIN DD includes commands to define required volumes.

v TAPE DD allocates a drive capable of labeling enhanced capacity cartridges.

Example 9: Erase a Volume

In Figure 176, volume 0A7100 is erased and defined to DFSMSrmm. The volume is

successfully erased and the volume label is written as an ISO/ANSI label.

 Control statement description:

 //LABEL6 JOB

 //STEP1 EXEC PGM=EDGINERS,

 // PARM=’COUNT(99),LOCATION(MYATL),INITIALIZE,ERASE’

 //SYSPRINT DD SYSOUT=A

Figure 174. Initialize and Erase Volumes in a System-Managed Library

 //LABEL7 JOB ...

 //STEP1 EXEC PGM=IKJEFT01

 //SYSTPRINT DD SYSOUT=A

 //SYSTSIN DD *

 RMM ADDVOLUME A00100 STATUS(SCRATCH) INIT(Y) -

 COUNT(50) LOCATION(SHELF) MEDIATYPE(ECCST)

 /*

 //STEP2 EXEC PGM=EDGINERS,

 // PARM=’COUNT(50),POOL(A*),INITIALIZE,NOVERIFY’

 //SYSPRINT DD SYSOUT=A

 //TAPE DD UNIT=(tape,1,DEFER)

Figure 175. Initialize 50 Scratch Enhanced Capacity Cartridges

 //LABEL8 JOB

 //STEP1 EXEC PGM=EDGINERS

 //SYSPRINT DD SYSOUT=A

 //TAPE DD UNIT=(tape,,DEFER)

 //SYSIN DD *

 ERASE VOLUME(0A7100) LABEL(AL)

 /*

Figure 176. Erase a Volume

438 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

v TAPE DD allocates a drive suitable for this volume.

v SYSIN DD includes the command requested to erase the volume.

Example 10: Initialize Volumes Using Multiple Tape Drives

Figure 177 shows how to run multiple copies of EDGINERS to automatically label

volumes driven by initialize actions in the DFSMSrmm control data set. Two jobs

are provided but you can run one for each tape drive that you want to use. Change

the jobname for each copy.

 Control statement description:

v TAPE DD allocates a drive suitable for this volume.

Example 11: Labeling Duplicate Volumes Using EDGINERS

You can label volumes as duplicate volumes using the EDGINERS utility that uses

manual processing, with the VOL1 operand on the command in the SYSIN file, as

shown in the example in Figure 178. The VOL1 value is written to the tape label.

 Control statement description:

v TAPE DD allocates a drive suitable for this volume.

Example 12: Selecting EHPCT Volumes for Processing Automatically

You can select volumes for processing as shown in the example in Figure 179.

 Control statement description:

v MEDIATYPE(EHPCT) is used to select only those volumes that are EHPCT

media. EDGINERS processing is performed without operator intervention by

using the DFSMSrmm control data set as input.

//LABEL10A JOB

 //AUTOINIT EXEC PGM=EDGINERS,PARM=’INITIALIZE,BATCH(0)’,

 // ’NOVERIFY,MEDIANAME(CARTS)’

 //SYSPRINT DD SYSOUT=*

 //TAPE DD UNIT=(tape,,DEFER)

 //

 //LABEL10B JOB

 //AUTOINIT EXEC PGM=EDGINERS,PARM=’INITIALIZE,BATCH(0)’,

 // ’NOVERIFY,MEDIANAME(CARTS)’

 //SYSPRINT DD SYSOUT=*

 //TAPE DD UNIT=(tape,,DEFER)

Figure 177. Initialize Volumes Using Multiple Tape Drives

//MANUAL EXEC PGM=EDGINERS

//SYSPRINT DD SYSOUT=*

//TAPE DD UNIT=(tape,,DEFER)

//SYSIN DD *

INIT VOLUME(D00001) LABEL(SL) VOL1(ABC123)

/*

Figure 178. Labeling Duplicate Volumes Using EDGINERS

//INIT EXEC PGM=EDGINERS,

// PARM=’MEDIATYPE(EHPCT),NOVERIFY,BATCH(0),STATUS(NOTMASTER)’

//SYSPRINT DD SYSOUT=*

//TAPE DD UNIT=(TAPEEH,,DEFER)

Figure 179. Selecting Volumes for Automatic Processing

Chapter 18. Initializing and Erasing Tape Volumes 439

v BATCH(0) ensures that all volumes that need to be processed are processed.

v STATUS(NOTMASTER) is used to select only scratch volumes and volumes that

are pending release.

v TAPE DD uses your installation’s unit names to select a suitable drive on which

to mount EHPCT volumes. Change the TAPEEH value to the value required for

your installation. If all tapes are system-managed, you can remove the TAPE DD

because DFSMSrmm dynamically allocates the drives that are required, and the

TCDB media type ensures the correct drives are allocated.

440 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 19. Customizing DFSMSrmm

This chapter helps you customize DFSMSrmm to best meet your installation’s

needs.

Changing the Initial Entry Point to the DFSMSrmm Dialog

Normally, when you enter the DFSMSrmm ISPF dialog, the first panel you see is

the Primary Option Menu. You can change this initial entry point so tape librarians

always see the Librarian Menu when they enter DFSMSrmm or general users see

the DFSMSrmm User Menu.

To change the initial entry point, use the RMMISPF exec with one of its optional

parameters which changes the panel navigation to go directly to a lower level.

Figure 180 shows the operands you can use with the RMMISPF exec.

 Each of the operands, except for TRACE, represents a specific user or function

menu from which you can request functions. Use the TRACE(option) operand to

diagnose problems in any of the REXX execs supplied in the dialog. For more

information about using TRACE, see z/OS DFSMSrmm Diagnosis Guide.

To start the librarian at the Librarian Menu, add this line to the ISPF selection panel

as shown in Figure 181 on page 442.

% R +DFSMSrmm - Librarian dialog

Although the example shows the ISRUTIL panel, you can use any other selection

panel to make the changes.

�� RMMISPF

ADMIN

COMMAND

CONTROL

DATASET

LIBRARIAN

LOCAL

OWNER

PRODUCT

RACK

REPORT

SUPPORT

USER

VOLUME

VRS

TRACE(option)
 ��

Figure 180. RMMISPF Exec Syntax Diagram

© Copyright IBM Corp. 1992, 2007 441

Adding Local Dialog Extensions

You can add your own local extensions to the DFSMSrmm ISPF dialog.

DFSMSrmm has a dummy panel, EDGP@LCL, that provides easy access to local

dialog extensions. You can use these extensions without having to modify

DFSMSrmm. Use these steps to add your extensions:

1. Create a selection menu, EDGP@LCL, that includes the extensions you want to

add.

2. For each extension, create the required procedures and panels.

3. Make the local menu available to ISPF in a panel library so that it is selected

ahead of the menu DFSMSrmm supplies.

4. Start the DFSMSrmm ISPF dialog.

5. Select Option 6 (LOCAL). You should see the modified local selection menu you

just created.

%------------------------- UTILITY SELECTION MENU ---------------------

%OPTION ===>_ZCMD

%

% 1 +LIBRARY - Compress or print data set. Print index listing.

+ Print, rename, delete, or browse members

% 2 +DATASET - Allocate, rename, delete, catalog, uncatalog, or

+ display information of an entire data set

% 3 +MOVE/COPY - Move, copy, or promote members or data sets

% 4 +DSLIST - Print or display (to process) list of data set names

+ Print or display VTOC information

% 5 +RESET - Reset statistics for members of ISPF library

% 6 +HARDCOPY - Initiate hardcopy output

% 8 +OUTLIST - Display, delete, or print held job output

% 9 +COMMANDS - Create/change an application command table

% 10 +CONVERT - Convert old format menus/messages to new format

% 11 +FORMAT - Format definition for formatted data Edit/Browse

% 12 +SUPERC - Compare data sets (Standard dialog)

% 13 +SUPERCE - Compare data sets (Extended dialog)

% 14 +SEARCH-FOR - Search data sets for strings of data

% R +DFSMSrmm - Librarian dialog

)INIT

 .HELP = ISR30000

)PROC

 &ZSEL = TRANS(TRUNC (&ZCMD,’.’)

 1,’PGM(ISRUDA) PARM(ISRUDA1)’

 2,’PGM(ISRUDA) PARM(ISRUDA2)’

 3,’PGM(ISRUMC)’

 4,’PGM(ISRUDL) PARM(ISRUDLP)’

 5,’PGM(ISRURS)’

 6,’PGM(ISRUHC)’

 8,’PGM(ISRUOLP)’

 9,’PANEL(ISPUCMA)’

 10,’PGM(ISRQCM) PARM(ISRQCMP)’

 11,’PGM(ISRFMT)’

 12,’PGM(ISRSSM)’

 13,’PGM(ISRSEPRM) NOCHECK’

 14,’PGM(ISRSFM)’

 R,’CMD(%RMMISPF LIBRARIAN) NEWAPPL(EDG)’

 ’ ’,’ ’

 *,’?’)

 &ZTRAIL = .TRAIL

)END

Figure 181. Adding DFSMSrmm Librarian Option to ISPF

442 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

You do not have to limit the local extensions to functions that use DFSMSrmm

commands and utilities. Add any function that is useful to DFSMSrmm users, such

as the tape librarian and storage administrator. For example, you could add:

v Service level reporter charts on tape activities

v A link to ISMF or RACF dialogs

v Lists of DFSMShsm volumes to compare with DFSMSrmm definitions

v A volume loan facility that enforces local standards for location names

When including RMM TSO subcommands, use the REXX procedure language

instead of CLIST. RMM TSO subcommands set REXX variables so you do not need

to trap and interpret the command output. Refer to the REXX procedures

DFSMSrmm supplies for examples of using the subcommands and receiving

variables. Do not modify the supplied execs because they can change from one

release to the next.

For more information on using the RMM TSO subcommands within REXX and the

variables each subcommand issues, see z/OS DFSMSrmm Guide and Reference.

Customizing the Local Dialog with ’U’ Line Command

You can customize the dummy panel, EDGP@LCL, to add facilities to the ISPF

dialog. The ’U’ line command allows you locally-provided line command support and

calls the EDGRLCL exec. A set of variables are saved in the variable pool for use

by the EDGRLCL exec. You can use this exec to implement any local extensions to

the search results line commands. If the exec does not exist, for example, the

installation has not provided one, one of these error messages is displayed: U line

command not in use or You must use the EDGRLCL exec to implement the U line

command.

The set of variables saved for use by the EDGRLCL exec depends on the search

results list being processed. Each of the fields in the current row of the table are

available as well as the table name, an indication of what type of search the results

are for, the current row, and other table settings that may be required by the exec.

The exec does not need to process all rows of the table, only the current row. It is

called for each row of the table for which the ’U’ line command has been specified.

Changing the ADD Product Volume Defaults

When you use the DFSMSrmm ISPF dialog to define product volumes to

DFSMSrmm, the dialog issues either the RMM TSO CHANGEVOLUME or

ADDVOLUME subcommand.

When ADDVOLUME is used, the dialog has some hard-coded default values set for

RETPD and RELEASEACTION. You can modify the dialog EXEC EDGRPADV to

change the values to ones that suit your installation.

The EDGRPADV dialog default is:

 command = edgcmd" ADDVOLUME "edg@vol" STATUS(MASTER)" ,

 "NUMBER(’"edgraddq(edg@pnum)"’) LEVEL("edg@ver")",

 "FEAT("edg@fcd")" ,

 "MEDIANAME(’"edgraddq(edg@medn)"’)",

 "LOCATION("edg@loc") RETPD(90) RELEASE(RETURN)"

To modify the values that the EDGRPADV EXEC uses, install your changes using

an SMP/E USERMOD after editing a copy of the EDGRPADV EXEC. The only

Chapter 19. Customizing DFSMSrmm 443

modifications you should make are to either add new operands to the ADDVOLUME

command, or to change the values set for the MASTER, RETPD, and RELEASE

operands.

Customizing DFSMSrmm Messages for Report Titles and User

Notification

DFSMSrmm provides messages for report titles and user notification. You can

customize them by performing these tasks:

1. Updating the text of a message in the DFSMSrmm message table EDGMTAB.

2. Applying changes to EDGMTAB by creating an SMP/E-installable USERMOD.

Customizing DFSMSrmm Report Titles

You can customize the title text on DFSMSrmm reports. For example, you can add

your company’s name to the bottom of each report page.

To customize, update the text of a message in the DFSMSrmm message table

EDGMTAB. The report utilities get the message text from the message table and

use it when creating the report trailer lines. Table 60 shows the message numbers

DFSMSrmm uses for each report utility:

 Table 60. Customizing Report Titles

Utility Message Number Used For

EDGAUD 5839 security report trailer 1

EDGAUD 5840 security report trailer 2

EDGAUD 5846 audit report trailer 1

EDGAUD 5847 audit report trailer 2

EDGHSKP 2203 EDGHSKP REPORT file

header

EDGRPTD 5825 trailer line 1

To customize the message text, edit the message text in the EDGMTAB source,

supplied with the product. You could change trailer 1 for EDGRPTD, as shown in

these examples. Figure 182 shows the text before modification.

 Figure 183 shows the text after modification.

 The report utility centers the text before printing.

EDGMSGB 5825,TYPE=I, X

 ’ ’, X

 MOD=NO

Figure 182. Before Modifying the Trailer 1 for EDGRPTD

EDGMSGB 5825,TYPE=I, X

 ’Warwick Corporation’, X

 MOD=NO

Figure 183. After Modifying the Trailer 1 for EDGRPTD

444 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Customizing Notification Messages and Notes

With DFSMSrmm you can set up automatic notification to owners by setting a

parmlib option and defining owner electronic address to DFSMSrmm. Refer to

Chapter 10, “Using the Parmlib Member EDGRMMxx,” on page 167 for information

on setting up automatic notification and controlling message text case.

DFSMSrmm provides a series of messages in the DFSMSrmm message module,

EDGMTAB. You can modify them to provide specific information to users:

Messages EDG2405 through EDG2409

Notify users that volumes they own are eligible for release.

Messages EDG2700 through EDG2713

Create a note you send to product owners when new volumes for a product are

entered into the library.

When modifying messages, you should:

v Keep message variables in the same order as in the original message.

v Use the same number of substitution characters that is shown in the original

message text.

v Keep the messages in the same order they are displayed.

v Do not delete any messages from EDGMTAB. If you do not want to use a

particular message, leave the message text blank.

Modifying Text for Release Notification

Modify messages 2405-2409 to change the message text to notify users that their

volumes are eligible for release.

You can substitute the message text without restriction for all the messages except

message 2406. For message 2406, you must specify the secondary currency

character X'4A' to represent substitution characters for variables that DFSMSrmm

supplies. The secondary currency character shown in Figure 184 on page 446 is ¢.

You must also keep the variables in the order shown in Figure 184 on page 446.

The &NAM variable shown in message 2405 is replaced with the product name and

need not be specified.

Figure 184 on page 446 shows the messages in EDGMTAB before modification.

Chapter 19. Customizing DFSMSrmm 445

Figure 185 shows the notification text that results from Figure 184.

 Figure 186 shows the same messages after modification.

 Figure 187 on page 447 shows the text that results from Figure 186.

 EDGMSGB 2405,TYPE=I, X

 ’Subject: &NAM volume expiration’, X

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2406,TYPE=I, X

 ’Volume ¢¢¢¢¢¢ assigned to owner ¢¢¢¢¢¢¢¢ on ¢¢¢¢¢¢¢¢¢¢ X

 at ¢¢:¢¢:¢¢’, X

 MOD=YES,MSGID=NO

 SPACE 2

 EDGMSGB 2407,TYPE=I, X

 ’is now pending release.’, X

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2408,TYPE=I, X

 ’If you wish the volume to be retained, please take immeX

 diate action.’, X

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2409,TYPE=I, X

 ’You can use the dialog functions or the RMM CHANGEVOLUMX

 E TSO command.’, X

 MOD=NO,MSGID=NO

Figure 184. Notify Owner Messages

Subject: DFSMSrmm volume expiration

Volume LAUREN assigned to owner KRISTINE on 1998/01/01 at 09:45:11

is now pending release.

If you wish the volume to be retained, please take immediate action.

You can use the dialog functions or the RMM CHANGEVOLUME TSO COMMAND.

Figure 185. Default Notification Text

 EDGMSGB 2405,TYPE=I, X

 ’Subject: Bld 88 Tape Volume Expiration X

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2406,TYPE=I, X

 ’Volume ¢¢¢¢¢¢ assigned to owner ¢¢¢¢¢¢¢¢ on ¢¢¢¢¢¢¢¢¢¢ x

 at ¢¢:¢¢:¢¢’, x

 MOD=YES,MSGID=NO

 SPACE 2

 EDGMSGB 2407,TYPE=I, X

 ’has now expired. Please come to the Computer Room Tapex

 Library Window’, x

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2408,TYPE=I, X

 ’to pick up the tape. Contact the tape librarian at 555x

 -5796 for any’, x

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2409,TYPE=I, X

 ’questions. DO NOT REPLY to this automated system messax

 ge. Thanks. ’, x

 MOD=NO,MSGID=NO

 SPACE 2

Figure 186. Modified Messages

446 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Modifying Text in Notes to Product Owners

DFSMSrmm provides note text for notifying product owners under these conditions:

v A new software product volume is added to DFSMSrmm.

v A change is made to add a volume to a product.

v The software level of a product volume is changed.

You can modify the note by modifying messages EDG2700 through EDG2713.

Figure 188 shows an example of a note produced by modifying EDG2700 through

EDG2713.

 Figure 189 shows the messages you can modify. The messages must be displayed

in sequence to produce the note. Several messages consist of blank lines so you

have flexibility in the note you send. You can also line up the columns in your

message text as shown in message EDG2710.

Subject: Bld 88 Tape Volume Expiration.

Volume LAUREN assigned to owner KRISTINE on 1998/01/01 at 09:45:11

has now expired. Please come to the Computer Room Tape Library Window

to pick up the tape. Contact the tape librarian at 555-5796 for any

questions. DO NOT REPLY to this automated system message. Thanks.

Figure 187. Modified Notification Text

Subject: Volume PP0001 has been added for software product 5647-A01

A volume has been added on 1999/12/27 at 20:19:31 to a DFSMSrmm

software product which you own:

 Product Number = 5694-A01 Level = V01R01M00

 Name = z/OS Version 1.1

 Description = includes rmm

 Volume Rack Feature Code Description

 ------ ------ ------------ ------------------------------

 PP0001 PP1233 5678 z/OS V1.1 (volume 1 of 1)

Figure 188. Notifying Product Owner

 EDGMSGB 2700,TYPE=I, X

 ’Subject: Volume ¢¢¢¢¢¢ has been added for software prodX

 uct ¢¢¢¢¢¢¢¢’, X

 MOD=YES,MSGID=NO

 SPACE 2

 EDGMSGB 2701,TYPE=I, X

 ’A volume has been added on ¢¢¢¢¢¢¢¢¢¢ at ¢¢:¢¢:¢¢ to a X

 &NAM’, X

 MOD=YES,MSGID=NO

 SPACE 2

 EDGMSGB 2702,TYPE=I, X

 ’software product which you own:’, X

 MOD=NO,MSGID=NO

Figure 189. Notify Product Owner Messages (Part 1 of 3)

Chapter 19. Customizing DFSMSrmm 447

Modifying Notify Messages

When you use Internet electronic mail addresses with NOTIFY processing,

DFSMSrmm uses a different set of messages to create the notification message.

This enables you to use a different message format for Internet mail than for

non-Internet mail. For example, you can use HTML tags in the Internet mail

message to select attributes such as color and font of the messages. You can also

select the form of electronic mail used at the individual user level and use the

appropriate message format. When you customize messages, ensure that you do

not exceed a message length of 80 characters. Your individual messages are

merged and flowed subject to the HTML tags once the e-mail message is sent.

 SPACE 2

 EDGMSGB 2703,TYPE=I, X

 ’ X

 ’, X

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2704,TYPE=I, X

 ’ Product Number = ¢¢¢¢¢¢¢¢ Level = V¢¢R¢¢M¢¢’, X

 MOD=YES,MSGID=NO

 SPACE 2

 EDGMSGB 2705,TYPE=I, X

 ’ Name = ¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢’, X

 MOD=YES,MSGID=NO

 SPACE 2

 EDGMSGB 2706,TYPE=I, X

 ’ Description = ¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢’, X

 MOD=YES,MSGID=NO

 SPACE 2

 EDGMSGB 2707,TYPE=I, X

 ’ X

 ’, X

 MOD=NO,MSGID=NO

Figure 189. Notify Product Owner Messages (Part 2 of 3)

 SPACE 2

 EDGMSGB 2708,TYPE=I, X

 ’ Volume Rack Feature Code Description’, X

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2709,TYPE=I, X

 ’ ------ ------ ------------ ---------------------X

 ---------’, X

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2710,TYPE=I, X

 ’ ¢¢¢¢¢¢ ¢¢¢¢¢¢ ¢¢¢¢ ¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢X

 ¢¢¢¢¢¢¢¢¢’,

 MOD=YES,MSGID=NO

 SPACE 2

 EDGMSGB 2711,TYPE=I, X

 ’ X

 ’, X

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2712,TYPE=I, X

 ’ X

 ’, X

 MOD=NO,MSGID=NO

 SPACE 2

 EDGMSGB 2713,TYPE=I, X

 ’ X

 ’, X

 MOD=NO,MSGID=NO

Figure 189. Notify Product Owner Messages (Part 3 of 3)

448 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

See Figure 190 for an example of customizing message numbers 2450-2463 for

release notification.

See Figure 191 on page 450 for an example of this message.

SPACE 2

EDGMSGB 2450,TYPE=I, X

 ’HELO $$$$$$$$’, host name substituted X

 MOD=YES,MSGID=NO

SPACE 2

EDGMSGB 2451,TYPE=I, X

 ’MAIL FROM:<RMM@YOURMVS’), edit in required id X

 MOD=YES,MSGID=NO

SPACE 2

EDGMSGB 2452,TYPE=I, X

 (’RCPT TO:<’,63C’$’,’>’), internet email substituted X

 MOD=YES,MSGID=NO

SPACE 2

EDGMSGB 2453,TYPE=I, X

 ’DATA’, X

 MOD=NO,MSGID=NO

SPACE 2

EDGMSGB 2454,TYPE=I, X

 ’Subject: &NAM volume expiration’, X

 MOD=NO,MSGID=NO

SPACE 2

EDGMSGB 2455,TYPE=I, X

 ’CONTENT-TYPE: TEXT/HTML’, X

 MOD=NO,MSGID=NO

SPACE 2

EDGMSGB 2456,TYPE=I,MOD=YES,MSGID=NO, X

 (’Volume $$$$$$ ’, X

 ’assigned to owner$$$$$$$$ ’)

SPACE 2

EDGMSGB 2457,TYPE=I,MOD=YES,MSGID=NO, X

 ’on $$$$$$$$$$ at $$:$$:$$’

SPACE 2

EDGMSGB 2458,TYPE=I,MOD=NO,MSGID=NO, X

 (’is now pending release.<p>’, X

 ’If you wish the volume to be retained, please ’)

SPACE 2

EDGMSGB 2459,TYPE=I,MOD=NO,MSGID=NO, X

 (’take immediate action ’,X

 ’.
’)

SPACE 2

EDGMSGB 2460,TYPE=I,MOD=NO,MSGID=NO, X

 (’You can use the dialog functions ’, X

 ’or the RMM CHANGEVOLUME’)

SPACE 2

EDGMSGB 2461,TYPE=I,MOD=NO,MSGID=NO, X

 ’ TSO command.’

SPACE 2

EDGMSGB 2462,TYPE=I, X

 ’.’, Period to end the data X

 MOD=NO,MSGID=NO

SPACE 2

EDGMSGB 2463,TYPE=I, X

 ’QUIT’, X

 MOD=NO,MSGID=NO

Figure 190. Customizing Message Numbers 2450-2463 for Release Notification

Chapter 19. Customizing DFSMSrmm 449

Note: ’VOLSER’ would be shown in the color red and ’take immediate action’

would be shown in the color blue.

See Figure 192 on page 451 for an example of customizing message numbers

2720-2739 for product notification.

From: <RMM@YOURMVS>

Date/Time: 02/28/2005 09:18AM

To: Undisclosed-recipients;

cc:

Subject: DFSMSrmm volume expiration

Volume VOLSER assigned to owner OWNER001 on 2004/333 at 07:14:13 is now pending release.

If you wish the volume to be retained, please take immediate action.

You can use the dialog functions or the RMM CHANGEVOLUME TSO command.

Figure 191. Example of Customizing Message Numbers 2450-2463 for Release Notification

450 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

SPACE 2

EDGMSGB 2720,TYPE=I, X

 ’HELO $$$$$$$$’, host name substituted X

 MOD=YES,MSGID=NO

SPACE 2

EDGMSGB 2721,TYPE=I, X

 ’MAIL FROM:<RMM@YOURMVS>’, edit in required id X

 MOD=YES,MSGID=NO

SPACE 2

EDGMSGB 2722,TYPE=I, X

 (’RCPT TO:<’,63C’$’,’>’), internet email substituted X

 MOD=YES,MSGID=NO

SPACE 2

EDGMSGB 2723,TYPE=I, X

 ’DATA’, X

 MOD=NO,MSGID=NO

SPACE 2

EDGMSGB 2724,TYPE=I, X

 ’CONTENT-TYPE: TEXT/HTML ’, X

 MOD=NO,MSGID=NO

SPACE 2

EDGMSGB 2725,TYPE=I,MOD=YES,MSGID=NO, X

 (’Subject: Volume $$$$$$ ’, X

 ’has been added for software product $$$$$$$$’)

SPACE 2

EDGMSGB 2726,TYPE=I,MOD=YES,MSGID=NO, X

 (’’, X

 ’A volume has been added on $$$$$$$$$$ at $$:$$:$$ ’)

SPACE 2

EDGMSGB 2727,TYPE=I,MOD=YES,MSGID=NO, X

 ’to a &NAM software product which you own : <p>’

SPACE 2

EDGMSGB 2728,TYPE=I,MOD=YES,MSGID=NO, X

 (’<table border="0"><tr><td>Product Number</b’, X

 ’</td><td>$$$$$$$$</td></tr>’)

SPACE 2

EDGMSGB 2729,TYPE=I, X

 ’<tr><td>Level</td><td>V$$R$$M$$</td></tr> ’, X

 MOD=YES,MSGID=NO

SPACE 2

EDGMSGB 2730,TYPE=I,MOD=YES,MSGID=NO, X

 (’<tr><td>Name</td>’, X

 ’<td>$$$$$$$$$$$$$$$$$$$$$$$$$$$$$</td></tr> ’)

SPACE 2

EDGMSGB 2731,TYPE=I,MOD=YES,MSGID=NO, X

 (’<tr><td>Description</td>’, X

 ’<td>$$$$$$$$$$$$$$$$$$$$$$$$$$$$$</td></tr> ’)

SPACE 2

EDGMSGB 2732,TYPE=I, X

 ’</table><p>’, X

 MOD=NO,MSGID=NO

SPACE 2

EDGMSGB 2733,TYPE=I, X

 ’ <table border="1"> ’, X

 MOD=NO,MSGID=NO

Figure 192. Customizing Message Numbers 2720-2739 for Product Notification (Part 1 of 2)

Chapter 19. Customizing DFSMSrmm 451

See Figure 193 for an example of this message.

Managing VM Tape Volumes

DFSMSrmm Samples Provided in SAMPLIB

v EDGCLIBQ Sample Exec to Create Reports for VM Tape Volumes

v EDGJVME Sample JCL for Creating Reports for VM Tape Volumes

DFSMSrmm provides SAMPLIB members to help you manage VM tapes. The

sample, EDGJVME, is a batch job that creates a list of volumes that are flagged for

VM use. EDGJVME gets the information from the extract data set. The job sends

this list to the relevant VM system.

SPACE 2

EDGMSGB 2734,TYPE=I,MOD=NO,MSGID=NO, X

 (’<tr><td>Volume</td><td>Rack</td>’, X

 ’<td>’)

SPACE 2

EDGMSGB 2735,TYPE=I,MOD=NO,MSGID=NO, X

 (’Feature Code</td>’, X

 ’<td>Description</td></tr>’)

SPACE 2

EDGMSGB 2736,TYPE=I,MOD=YES,MSGID=NO, X

 (’<tr><td>$$$$$$</td><td>$$$$$$</td>’, X

 ’<td>$$$$</td>’)

SPACE 2

EDGMSGB 2737,TYPE=I,MOD=YES,MSGID=NO, X

 (’<td>$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$</td></tr>’, X

 ’</table>’)

SPACE 2

EDGMSGB 2738,TYPE=I, X

 ’.’, Period to end message X

 MOD=NO,MSGID=NO

SPACE 2

EDGMSGB 2739,TYPE=I, X

 ’QUIT’, X

 MOD=NO,MSGID=NO

Figure 192. Customizing Message Numbers 2720-2739 for Product Notification (Part 2 of 2)

From: <RMM@YOURMVS>

Date/Time: 02/28/2005 01:52PM

To: Undisclosed-recipients;

cc:

Subject: Volume VOLSER has been added for software product PPPPPPPP

A volume has been added on 2004/321 at 08:22:12 to a DFSMSrmm software product that you own:

Product Number $$$$$$$$

Level V$$R$$M$$

Name $$$$$$$$$$$$$$$$

Description $$$$$$$$$$$$$$$$

Figure 193. Example of Customizing Message Numbers 2720-2739 for Product Notification

452 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

When you have received the list on the VM system, you can use the sample,

EDGCLIBQ. EDGCLIBQ is an exec that produces information about the volumes on

the list, including shelf location, owner, and users that are allowed to access the

volumes.

DFSMSrmm provides the LIBQ exec to help you query information about VM

volumes. Use the LIBQ exec to get the location where a volume resides. This

example describes one scenario for using the LIBQ exec:

1. A user requests a volume to be mounted on VM by sending a message to the

operator.

2. The operator issues the LIBQ exec, with the volume serial number requested as

‘LIBQ volser’.

3. The LIBQ exec returns the rack number where the volume resides to the

operator.

4. The operator decides whether to mount the volume as requested by the user.

5. The operator attaches the drive with the volume mounted, as requested.

To use the LIBQ exec to find a scratch volume, modify the exec to search for

scratch volumes in the file it processes. You can tailor the rules you want to use for

‘in use’ or scratch volumes, or modify the exec and use it as part of your VM tape

automation. You might also tailor the process to work with other non-z/OS

platforms.

Replenishing Scratch Volumes in a System-Managed Library

DFSMSrmm Sample Provided in SAMPLIB

v EDGXPROC Sample to Replenish Scratch Volumes in a System-Managed

Library

v EDGSETT Sample that you can use in IBM Tivoli Workload Scheduler for

z/OS in place of EDGXPROC.

When a tape library detects a low-on-scratch condition, where more scratch

volumes are needed, OAM issues a write-to-operator message (CBR3660A).

DFSMSrmm intercepts the message and starts the procedure you define with the

SCRATCHPROC value in parmlib. See “Defining System Options: OPTION” on

page 175 for more information about specifying SCRATCHPROC. You must run

DFSMSrmm with a scratch procedure. You can modify the DFSMSrmm supplied

sample, EDGXPROC, to support your location procedures. You can use the scratch

procedure to take any action you would like. For example, you can code the

procedure to trigger the required inventory management expiration processing job,

to run inventory management, or to take no action.

You can use the DFSMSrmm supplied sample procedure, EDGXPROC, which runs

DFSMSrmm expiration processing to replenish the automated tape library’s scratch

volumes. If you use the DFSMSrmm supplied sample, EDGXPROC, you must

define the procedure in the installation procedure library, SYS1.PROCLIB as

described in “Step 8: Updating the Procedure Library” on page 34.

You can modify this procedure, for example, to alert the operator if scratch volumes

are not replenished. Figure 194 on page 454 shows the EDGXPROC procedure.

Chapter 19. Customizing DFSMSrmm 453

DFSMSrmm keeps track of the time and date the procedure starts and when it last

ran expiration processing to ensure that one procedure completes processing

before a new procedure begins. You can display this information by using the RMM

LISTCONTROL subcommand with the CNTL operand.

Automating Backup

DFSMSrmm Sample Provided in SAMPLIB

EDGBETT sample that you can use in the IBM Tivoli Workload Scheduler for

z/OS for automating backup.

 Create a backup procedure in the system procedure library. Figure 195 shows an

example of a procedure that runs backup as part of inventory management.

Alternatively, you might want to use the procedure to submit a batch job to perform

the backup or to inform your job scheduler to submit the job.

Specify your backup procedure name with the BACKUPPROC value in parmlib. See

“Defining System Options: OPTION” on page 175 for more information about

specifying BACKUPPROC.

Using the LABEL Procedure

You can run the EDGINERS utility as an operator started procedure, so that the

operator or librarian can make requests for tape labeling and erasing.

Figure 196 on page 455 shows a copy of the sample procedure you can use in your

installation. Rename the procedure to LABEL. Specify additional processing options

that suit the needs of your installation.

You must define the LABEL procedure as a RACF started procedure. The LABEL

procedure requires UPDATE access to the STGADMIN.EDG.OPERATOR RACF

facility class profile. See Chapter 11, “Authorizing DFSMSrmm Users and Ensuring

Security,” on page 213 for information about STGADMIN.EDG.OPERATOR.

See z/OS DFSMSrmm Guide and Reference for information on using the LABEL

procedure as part of your operator’s tasks.

//EDGXPROC PROC OPT=EXPROC

//EDGHSKP EXEC PGM=EDGHSKP,

// PARM=’&OPT.’

//SYSPRINT DD SYSOUT=*

//MESSAGE DD DSN=MESSAGE.FILE.NAME,DISP=SHR

Figure 194. EDGXPROC Procedure

//CDSBKUP PROC

//EDGHSKP EXEC PGM=EDGHSKP,PARM=’BACKUP(DSS)’

//MESSAGE DD DISP=SHR,DSN=RMM.MESSAGE

//SYSPRINT DD SYSOUT=*

//BACKUP DD DISP=(,CATLG),UNIT=TAPE,DSN=BACKUP.CDS(+1),

// LABEL=(,SL)

//JRNLBKUP DD DISP=(,CATLG),UNIT=TAPE,DSN=BACKUP.JRNL(+1),

// LABEL=(2,SL),VOL=REF=*.BACKUP

// PEND

Figure 195. Example BACKUPPROC procedure

454 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Processing NL Label Tapes: EDG019VM

The EDG019VM sample exit that DFSMSrmm provides can be used as a

replacement for IFG019VM. The exit uses the tape volume mount exit to obtain

tape label information from the operator when an NL tape is mounted as a scratch

tape on a non-specific NL mount request.

Input

The invocation environment must be identical to the environment that is provided at

entry to the exit IFG019VM.

Output

The parameter list provided as input is updated. R15 is set on exit with one of the

possible values for the return codes:

 0 Accept the volume. The parameter list might have been updated.

4 Continue normal processing. The parameter list has not been updated.

8 Reject the volume.

Processing

EDG019VM returns the rack number as the mounted volume for use by open

processing.

RMMV01D device REPLY WITH RACK NUMBER FOR NL REQUEST — OR REPLY "REJECT"

Environment

See z/OS DFSMS Installation Exits for information about setting up the exit.

//LABEL PROC OPT=NOVERIFY,U=3480,SOUT=DUMMY

//*

//* RMM procedure for volume labelling and erasing

//* See DFSMS/MVS Version 1 Release 2

//* DFSMSrmm Guide and Reference SC26-4931

//* for details of the LABEL utility.

//*

//* &OPT are the options for the EDGINERS utility.

//* See DFSMS/MVS Version 1 Release 2

//* DFSMSrmm Implementation and Customization Guide SC26-4932

//* for details of the EDGINERS utility.

//*

//* &U is the device type or number requested for a tape drive

//*

//* &SOUT Allows you to specify that the message file is

//* printed. For example S LABEL,SOUT=’SYSOUT=A’

//*

//* If either VERIFY OR NOVERIFY is the only option specified

//* in the &OPT parameter, requests are entered via the

//* system console as WTOR replies.

//*

//INIT EXEC PGM=EDGINERS,PARM=’&OPT’

//SYSPRINT DD &SOUT

//TAPE DD UNIT=(&U,,DEFER)

Figure 196. Sample Label Procedure

Chapter 19. Customizing DFSMSrmm 455

456 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 20. Using the Problem Determination Aid Facility

Perform this step once for each z/OS image. You only need to perform this step if

you want an external DASD record of trace data.

The problem determination aid (PDA) facility gathers DFSMSrmm processing

information to enable analysis to pinpoint module flow and resource usage related

to DFSMSrmm problems. The PDA facility is required for IBM service because it

traces module and resource flow. The PDA facility consists of in-storage trace,

optional DASD log data sets, EDGRMMxx parmlib member options, and operator

commands to control tracing.

DFSMSrmm accumulates problem determination information at specific module

points in the form of trace data, and it records this data in main storage. At

predetermined intervals, the trace data is scheduled for output to DASD. The

DFSMSrmm trace recording function receives the trace data scheduled for output

and writes this data to a file on DASD. The PDA facility consists of two separate log

data sets. DFSMSrmm recognizes these log data sets by their DD names,

EDGPDOX and EDGPDOY. Recording takes place in the data set defined by

EDGPDOX. When that data set is filled, the two data set names are swapped, and

recording continues on the newly renamed data set.

When this data set is filled, the names are again swapped, and the output switches

to the other data set, thus overlaying the previously recorded data. The larger the

data sets, the longer the period of time that is represented by the accumulated

data.

Establish a protocol that automatically copies the EDGPDOY data set to tape as a

generation-data-group data set each time DFSMSrmm issues message EDG9117I.

This practice provides a sequential history of trace data over time so that the data

is available when needed for resolving problems.

DFSMSrmm trace data can be formatted with the DFSMShsm ARCPRPDO utility.

You are authorized to use ARCPRPDO even if you are not licensed to use

DFSMShsm. See z/OS DFSMShsm Diagnosis for details about ARCPRPDO. z/OS

DFSMSrmm Diagnosis Guide provides information about using the DFSMSrmm

trace data to determine possible sources of errors. See z/OS MVS System

Messages, Vol 1 (ABA-AOM) and z/OS MVS System Messages, Vol 2 (ARC-ASA)

for the messages issued by the DFSMShsm ARCPRPDO utility.

Roadmap for Using the Problem Determination Aid

This table shows the tasks and associated procedures for using the problem

determination aid.

 Task Associated procedure

Plan to use the PDA Facility. “Planning to Use the PDA Facility” on page

458

Determine how long to keep trace information. “Determining How Long to Keep Trace

Information” on page 458

Determine the size of the PDA log data set. “Determining Problem Determination Aid

(PDA) Log Data Set Size” on page 458

© Copyright IBM Corp. 1992, 2007 457

Task Associated procedure

Enable the PDA facility. “Enabling the Problem Determination Aid

(PDA) Facility” on page 459

Allocate the PDA log data sets. “Allocating the Problem Determination Aid

(PDA) Log Data Sets” on page 459

Archive the PDA log data sets. “Archiving the Problem Determination Aid

(PDA) Log Data Sets” on page 460

Copy the PDA log data sets to tape. “Copying the Problem Determination Aid

(PDA) Log Data Sets to Tape” on page 460

Print the PDA log data sets. “Printing the Problem Determination Aid

(PDA) Log Data Sets” on page 460

Planning to Use the PDA Facility

Before you can use the PDA facility, you need to perform these tasks:

1. Determine how long you want to keep trace information.

2. Optionally allocate storage on DASD for the PDA log data sets, EDGPDOX and

EDGPDOY.

3. Implement the PDA facility based on how long you want to keep trace data.

Determining How Long to Keep Trace Information

How many hours, days, or weeks of trace history does your site want to keep? The

minimum recommended trace history is four hours; however, a longer trace history

gives a greater span both forward and backward in time. Your choice of a trace

history interval falls into one of these categories:

Short-Term Trace History

One to two days is typically considered a short-term trace history interval.

Short-term trace histories can be obtained without using generation data groups

(GDGs).

Long-Term Trace History

Two or more days is typically considered a long-term trace history interval.

Long-term trace histories are best implemented with the use of generation data sets

(GDSs) that are appended sequentially to form a generation data group (GDG).

A long-term trace history is preferred because some DFSMSrmm processing occurs

only on a periodic basis. With a longer trace history, you might be able to see more

patterns to help you perform problem analysis.

Determining Problem Determination Aid (PDA) Log Data Set Size

Allocate storage for your PDA log data sets based on the amount of trace data

activity at your site and on how long you want to keep trace information. If you

choose to keep trace information for two days or less, see Appendix F, “Problem

Determination Aid Log Data Set Size Work Sheet for Short-Term Trace History,” on

page 507. If you choose to keep trace information for longer than two days, see

Appendix E, “Problem Determination Aid Log Data Set Size Work Sheet for

Long-Term Trace History,” on page 505.

458 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Enabling the Problem Determination Aid (PDA) Facility

The PDA facility default operating mode is trace enabled at DFSMSrmm startup.

You should continuously enable PDA tracing when DFSMSrmm is active since the

processing overhead is minimal. If you define the EDGPDOX and EDGPDOY DD

statements in the DFSMSrmm startup procedure, the EDGPDOX and EDGPDOY

data sets are swapped and trace output is logged in the data sets.

You can control PDA tracing by using these z/OS MODIFY command keywords.

You can also enable or disable the PDA facility by using the parmlib OPTION

command PDA operands that are described in “Defining System Options: OPTION”

on page 175.

PDA=ON|OFF Specify to turn PDA tracing on or off.

PDALOG=ON|OFF|SWAP

Specify to control the LOGGING function during PDA tracing.

Example: Use the z/OS MODIFY command to enable PDA tracing.

F DFRMM,PDA=ON

The PDA log data sets are automatically swapped at DFSMSrmm startup. After

startup, use the z/OS MODIFY command PDALOG=SWAP to manually swap the

data sets as required. For information on how to manually swap the PDA log data

sets, see z/OS DFSMSrmm Diagnosis Guide manual for details.

Allocating the Problem Determination Aid (PDA) Log Data Sets

Example: To allocate and catalog the problem determination log data sets:

/***/

/* SAMPLE JOB THAT ALLOCATES AND CATALOGS THE PDA LOG DATA SETS. */

/***/

//ALLOPDO JOB MSGLEVEL=1

//STEP1 EXEC PGM=IEFBR14

//DD1 DD DSN=?UID..?HOSTID..RMMPDOX,DISP=(,CATLG),

// UNIT=?TRACEUNIT.,

// VOL=SER=?TRACEVOL.,SPACE=(CYL,(20))

//DD2 DD DSN=?UID..?HOSTID..RMMPDOY,DISP=(,CATLG),

// UNIT=?TRACEUNIT.,

// VOL=SER=?TRACEVOL.,SPACE=(CYL,(20))

Change the User ID (?UID.), z/OS system image ID (?HOSTID.), the trace unit

(?TRACEUNIT.), and the volume serial number (?TRACEVOL.) parameters to

names that are valid for your environment. The LRECL and RECFM fields will be

set by DFSMSrmm when the data set is opened and are not required in the JCL.

Do not add the RLSE parameter to the DD statement.

The EDGPDOX and EDGPDOY data sets must be allocated to the same volume.

The EDGPDOX and EDGPDOY data sets must be cataloged, variable blocked

physical sequential and must not be striped. The data sets are required only if you

want to keep a permanent history of the trace data on DASD. Begin with an initial

data set size of 20 cylinders. You can adjust the size as you gain more experience

with the amount of activity that is traced in your installation. If you allocate them as

SMS-managed data sets they must be associated with a storage class having the

GUARANTEED SPACE attribute. They should not be associated with a storage

class that will conflict with the required data set attributes.

Chapter 20. Using the Problem Determination Aid Facility 459

You must define a pair of trace output data sets for each z/OS image. Do not share

the trace data sets with multiple DFSMSrmm systems or with other system

components.

Archiving the Problem Determination Aid (PDA) Log Data Sets

DFSMSrmm writes trace data to the data set name defined by the EDGPDOX DD

statement. When DFSMSrmm swaps the output data sets, trace data recorded prior

to the swap is available in the data set name defined by the EDGPDOY DD

statement. If you want to archive trace data, you should copy the EDGPDOY data

set at the time DFSMSrmm issues message EDG9117I.

Example: To define the generation data group (GDG) name for the archived

problem determination output data set. The z/OS system image ID (?HOSTID.)

must be valid for your environment.

/***/

/* SAMPLE JOB THAT DEFINES THE GENERATION DATA GROUP NAME FOR THE */

/* ARCHIVED PDA LOG DATA SET. */

/***/

/*

//DEFGDG JOB MSGLEVEL=1

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE GDG(NAME(’?UID..?HOSTID..RMMTRACE’) -

 LIMIT(30) NOSCRATCH NOEMPTY)

/*

Copying the Problem Determination Aid (PDA) Log Data Sets to Tape

Example: The data set name for the DD statement, SYSUT1, must correspond to

the name specified for the EDGPDOY data set. Change the z/OS system image ID

(?HOSTID.) to an ID that is valid for your environment. To copy the inactive trace

data set to a scratch tape as a generation data set (GDS):

/***/

/* SAMPLE JOB THAT COPIES THE INACTIVE PDA LOG DATA SET TO TAPE */

/***/

/*

//PDOCOPY JOB MSGLEVEL=1

//STEP1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT1 DD DSN=?UID..?HOSTID..RMMPDOY,DISP=SHR

//SYSUT2 DD DSN=?UID..?HOSTID..RMMTRACE(+1),

// UNIT=TAPE,

// DISP=(NEW,CATLG,DELETE),

// DCB=(?UID..?HOSTID..RMMPDOY)

Printing the Problem Determination Aid (PDA) Log Data Sets

For information about printing the problem determination aid logs, see z/OS

DFSMShsm Diagnosis for information about the ARCPRPDO utility.

460 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 21. Setting Up DFSMSrmm Disposition Processing

DFSMSrmm disposition processing is optional and provides support for these

functions:

v Providing operators with information to help them perform tasks like moving a

tape to a specific location

v Generating sticky labels

v Updating the location where a volume resides.

You can request DFSMSrmm disposition processing by identifying a disposition

control data set using the DFSMSrmm parmlib EDGRMMxx OPTION

DISPDDNAME operand and optionally coding the same DD name in a job step that

creates or references a tape data set. Figure 198 on page 465 shows how you

might code the DD name in a job step. DFSMSrmm disposition processing occurs

at CLOSE and EOV for each volume. DFSMSrmm does not provide support for

asynchronous processing in a separate job step.

When you do not code the optional disposition DD name, you can create sticky

labels, but you must use installation exit EDGUX100 to request the label to be

produced.

At CLOSE and EOV time, DFSMSrmm always prepares a sticky label using one of

the default label layouts depending on the volume mounted. The prepared label is

only printed when the sticky label is requested. You request the label either by

using the options in the disposition control file or by using EDGUX100 to request

the label. In any case, you can customize the label and the location processing

using EDGUX100.

If you use the input disposition control file and, optionally, customize via the

DFSMSrmm EDGUX100 installation exit, DFSMSrmm disposition processing can be

expanded to support:

v Messages that are issued to one or more route codes by defining multiple

messages in the disposition control file.

v Suppression of label output you might have set up using the control file. Modify

label output by using the DFSMSrmm EDGUX100 installation exit.

v Assignment of loan location, storage location, or library location for a volume.

Implementing DFSMSrmm Disposition Control File Processing

Follow these steps to implement DFSMSrmm disposition processing.

1. When you plan on using disposition control files to trigger sticky label

production, define disposition control information in a disposition control file as

described in “Modifying the Contents of the Disposition Control File” on page

462. You can define separate disposition control files for individual users, a

separate job, or a separate job step. Define the data sets with LRECL 80. The

data sets can be sequential files or can be members of a partitioned data set.

You can also include data in your JCL stream instead of defining a data set.

2. When you do not plan to use disposition control files, but you would still like to

create sticky labels, you must customize the EDGUX100 installation exit. You

can use the default label prepared by DFSMSrmm, or do your own custom label

processing.

© Copyright IBM Corp. 1992, 2007 461

3. Add the disposition control file DD name to the batch job step of the tape jobs

that process the tape files for which messages or labels or location assignment

is required. The DD name is the same name as you specified in DISPDDNAME

in parmlib.

4. Define the disposition control file DD name in the DFSMSrmm EDGRMMxx

parmlib member by using the OPTION command DISPDDNAME operand as

described in “Defining System Options: OPTION” on page 175. When you plan

on using disposition control files, you can also define a message ID in parmlib

by using the OPTION command DISPMSGID operand. DFSMSrmm builds a

WTO message by using the message number from the DISPMSGID parmlib

option and the message text defined in the disposition control file.

5. If you do not add the OUTPUT JCL statement, sticky labels are produced using

a WTO on route code 13. Add the OUTPUT JCL statement to the DFRMM

started procedure as shown in “Step 8: Updating the Procedure Library” on

page 34 if you want DFSMSrmm to dynamically allocate a SYSOUT file for

each label. Use the attributes of the OUTPUT statement to define how the label

output should be printed.

6. Document the procedures you use for printing label output and applying sticky

labels to the correct volumes. If you are using DFSMSrmm disposition control

for the first time, work with your operations staff to develop, test, and document

procedures for responding to DFSMSrmm messages, printing labels, and using

the DFSMSrmm EDGUX100 exit to modify output. See z/OS DFSMSrmm Guide

and Reference for information about procedures for your operators.

Tip: DFSMSrmm disposition processing can fail when your application closes a

DASD data set and a tape data set at the same time. The system issues error code

50D under these conditions.

v When the DASD data set was allocated with RLSE for the SPACE parameter in

the DD statement or RELEASE in the TSO ALLOCATE command,

v When the SMS management class specifies YI or CI for the partial release

attribute.

Partial release processing during CLOSE holds an exclusive enqueue on the task

input/output table (SYSZTIOT) resource and can prevent DFSMSrmm from opening

the disposition control file at the same time. To ensure that the disposition control

file can be opened, code a separate CLOSE for every data set or remove the RLSE

parameter from the DD statement for the DASD data set.

Modifying the Contents of the Disposition Control File

You identify the input disposition control file by using DFSMSrmm EDGRMMxx

parmlib DISPDDNAME operand. The disposition control file is a fixed format

sequential file with a record length of 80 characters. All the parameters including the

message text are position dependent. Figure 197 shows the layout for the

disposition control file.

ddname

1-to-8 character ddname of an input file or output file. This ddname must match

the ddname you defined for the input tape file or the output tape file processed

ddname_1nrlOUT=vvvv,message text

ddname_1nrlmessage text

ddname_2nrlLOC=vvvvvvvv,message text

ddname_3nrlLOC=vvvvvvv,message text

Figure 197. Disposition Control File Record Format

462 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

by the current job step. DFSMSrmm only processes the statements that match

to the DD name of the file being processed by CLOSE or EOV.

 You can code multiple lines for each ddname specified and can include as

many different ddnames as is required to cover tape data sets requiring

disposition support. As each file is processed by CLOSE or EOV, DFSMSrmm

uses only those statements that match the ddname of that file. ddname must be

coded in position 1 through 8.

n Code any non-blank character in position 9 to cause the message to be issued

in a non-roll deletable message to the console.

r Code a character to define the route code to use for the WTO. Use one of the

characters shown in Table 61 to use specific route codes. Use any character

other than the characters in Table 61 to use the default route code 13.

 Table 61. Setting the Message Route Code

If You Code Then You Are Requesting This Route Code

Any 13 (default value). Any value other than those results in the default

value being used.

A 2

B 3

C 5

* 11

F 2,11

G 3,11

H 5,11

l Indicates if a sticky label is to be produced as part of disposition processing and

must be coded in position 11. DFSMSrmm ignores any other value and no label

is produced. The valid text codes are shown in Table 62.

 Table 62. Coding Sticky Label Text

If You Code Then You Are Requesting That

L a label is produced by disposition processing. You can code multiple

L’s with the same ddname and route code if more message text is

required.

M a label is produced by disposition processing but the message text is

passed as user data to the DFSMSrmm EDGUX100 installation exit

for further processing.

OUT=vvvvvvvv

This is an optional keyword starting in position 12. Use OUT to change the

location for a volume. When you use OUT to change a volume’s location, you

do not need to confirm the volume move. When OUT is specified, OUT must be

followed by a comma, if you also specified message text. vvvvvvvv is a 1 to 8

character location name, that is to be used by DFSMSrmm as a location name

for the current volume.

LOC=vvvvvvvv

This is an optional keyword. If you specify LOC, it must be followed by a

comma if the optional message text is specified. vvvvvvvv is a 1 to 8 character

location name. DFSMSrmm uses the value as a location name for the current

volume. When you use LOC=, you request that DFSMSrmm update the

volume’s’ destination so that the move can be tracked and confirmed later.

Chapter 21. Setting Up DFSMSrmm Disposition Processing 463

LOC and OUT are mutually exclusive. If you specify multiple statements for the

same DD name, DFSMSrmm uses the last location name that you specify for

the volume.

 You can optionally blank pad location names on the right up to the maximum

length of a location name.

 DFSMSrmm checks the location name you specify against the location names

you defined using the DFSMSrmm LOCDEF location information defined to

DFSMSrmm at startup time. If the location you specified, is not defined using

LOCDEF DFSMSrmm treats the location as if it is a loan location. If the location

you specified is identified as a storage location, use OUT= if you do not want to

confirm the move. Use LOC= if you want the move confirmed at a later time.

 You can use EDGUX100 to control how the location name is used as described

in “Changing Location Information with EDGUX100” on page 284. You can

override the location type determined from the LOCDEF location information to

specify that a location is a loan location. You can control whether a confirm

move is required for DFSMSrmm storage locations.

 When you specify a location name, DFSMSrmm uses this information just as if

you had entered the value on an RMM CHANGEVOLUME subcommand with

either LOANLOC or LOCATION. If the location is a bin-managed storage

location, the required location is set to this value and inventory management

DSTORE processing assigns a bin number. You can override any location

assignment by defining vital record specification movement policies.

message_text

This is up to 69 characters of message text to be issued as a WTO. It must

begin in position 12 or after the comma which separates the message text from

the location name. If additional text is required, include another record in the

control file specifying the same ddname and route code. Each message is

issued as a separate WTO.

 If the l value is M, the message text is limited to up to 69 characters of text and

is treated as user data for label processing. No additional ddname records are

supported for the M user data option.

 Figure 198 on page 465 shows the sample JCL, if you want to perform these tasks:

v Issue a WTO on route code 2 and route code 1

v Generate a sticky label

v Set the volume location to a location called FICH

v Confirm that the volume is moved to the location FICH. In Figure 198 on page

465, when IEBGENER closes the SYSUT2 output file, DFSMSrmm scans the

DISPDD file for the SYSUT2 DD statement, if the DISPDD file is defined.

Figure 198 on page 465 shows two entries for SYSUT2 which is the file being

closed. The first entry requests that DFSMSrmm issue the message ’SEND THIS

TAPE TO THE FICHE PRINTER’ on route codes 2 and 11, that a sticky label is

generated, and that the volume’s move to location FICH is already confirmed.

The second entry provides user data that is passed to the DFSMSrmm

EDGUX100 installation exit. DFSMSrmm includes the user data in the sticky

label it generates as described in “Creating Sticky Labels” on page 277

464 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

The message DFSMSrmm issues is EDG4054I, but you can use the DISPMSGID

parmlib option to change the message number to an installation selected value.

Selecting the Method Used for Label Processing

You can request that DFSMSrmm produce labels using a WTO on route code 13 or

using the OUTPUT JCL statement to send labels to a spool file or a printer. You

control the method DFSMSrmm uses by specifying an OUTPUT JCL statement in

the DFSMSrmm started procedure as described in “Step 8: Updating the Procedure

Library” on page 34. The name on the OUTPUT JCL statement must exactly match

that specified for the DD name of the disposition control file.

If you use the OUTPUT JCL statement method, DFSMSrmm dynamically allocates

a sysout file for each label using the DISPDDNAME OUTPUT JCL statement. You

use the attributes of the OUTPUT statement to define how the label output is to be

printed. For example, you can route the output to another system, specify a special

forms type or use any of the OUTPUT statement keywords.

If you do not provide an OUTPUT JCL statement in the DFSMSrmm started

procedure, you must configure a console to accept WTO messages on route code

13 so that the labels can be printed.

Modifying Tape Labels

The default label is 10 rows with a maximum of 80 characters per row. The default

LRECL is set to 80. The maximum number of data characters supported in a label

is 2000 characters. DFSMSrmm provides two default label styles for your use. You

can modify these label styles using the DFSMSrmm EDGUX100 installation exit.

Figure 199 shows the default label for cartridges. The default label consists of eight

data rows, two of which are used for spacing. Cartridge labels are identified by

media type other than *, and a density of either *, IDRC, or 3480. Figure 200 on

page 466 shows the default label for all other types of volumes. The default label

consists of seven data rows, 3 of which are used for spacing the labels.You can use

the DFSMSrmm installation exit EDGUX100 to update the default labels as

described in “Modifying DFSMSrmm Label Output” on page 281.

// EXEC PGM=IEBGENER

//SYSUT2 DD DISP=(,KEEP),DSN=MY.FICHE.DATA,UNIT=TAPE,LABEL=(,SL)

//SYSUT1 DD DISP=SHR,DSN=MASTER.FICHE.DATA

//SYSIN DD DUMMY

//DISPDD DD *

SYSUT2 FLOUT=FICH,SEND THIS TAPE TO THE FICHE PRINTER

SYSUT2 MUSER DATA TO BE SENT TO EDGUX100

/*

Figure 198. Sample JCL to Request Disposition Processing

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7.

dsname______________________________________

userdata___

 jobname_ crdate____

 expdt_____

 dens comp lrecl blksiz recf

 volser seqn lab devc

Figure 199. Default Label Format for a Tape Cartridge

Chapter 21. Setting Up DFSMSrmm Disposition Processing 465

The values for the variables shown in Figure 199 on page 465 and Figure 200 are:

dsname The data set name of the file being processed. 1 to 44 characters.

userdata The user data specified via message text in the disposition control

file. 0 to 69 characters.

jobname The current job name. 1 to 8 characters.

crdate The data set create date. 1 to 10 characters in the date format

specified by the DATEFORM parmlib option.

expdate The data set expiration date. 1 to 10 characters in the date format

specified by the DATEFORM parmlib option.

dens The recording density of the volume. 1 to 4 characters.

comp Indication of compaction of data on the volume. 4 characters.

lrecl The logical record length of the data. 1 to 5 characters.

blksiz The block size of the data. 1 to 6 characters.

recf The record format. 1 to 4 characters.

volser The volume serial number. 1 to 6 characters.

seqn The volume sequence number. 1 to 4 characters.

lab The volume label type. 1 to 3 characters.

devc The number of the drive on which the file is processed. 4

characters.

 Use the EDGSLAB macro to map the label data area as described in “Sticky Label

Data: EDGSLAB” on page 493.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7.

dsname______________________________________

userdata___

 jobname_ crdate____

 dens comp lrecl blksiz recf expdt_____

 volser seqn lab devc

Figure 200. Default Label Format for a Round Tape

466 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Chapter 22. Running DFSMSrmm with the IBM Tivoli Workload

Scheduler for z/OS

DFSMSrmm provides sample jobs and procedures that you can modify to set up

automation software, such as the IBM Tivoli Workload Scheduler for z/OS, to run

DFSMSrmm tasks. The sample jobs and procedures are shipped in SAMPLIB.

Recommendation: Before you use the DFSMSrmm-supplied jobs, customize the

jobs for your installation. You must make the job control language (JCL) available to

the IBM Tivoli Workload Scheduler for z/OS for submission. The procedures must

be in a procedure library that you use with jobs that are submitted by the IBM Tivoli

Workload Scheduler for z/OS.

The naming conventions are EDGJxxxx for IBM Tivoli Workload Scheduler for z/OS

jobs and EDGPxxxx for IBM Tivoli Workload Scheduler for z/OS procedures. Each

EDGJxxxx job contains JCL SET statements for variables that are required for

correct JCL generation. For example, you must set the variable RMMPREF to the

data set name prefix for use on all output data sets. You can tailor the jobs so you

can use the jobs for normal job submission or for recovery or restart. Each

EDGPxxxx procedure can be tailored as well. You might have to customize space

requirements for the files that are allocated for use as output files.

The supplied jobs support DFSMSrmm tasks that are performed daily, weekly, and

monthly and fall into these categories:

1. Scheduled tasks that are run on a regularly scheduled basis.

2. Event triggered tasks that are run on as-needed basis. See “Event Triggered

Tracking” on page 473 for descriptions of DFSMSrmm event triggered tasks.

Using a Tivoli Special Resource When Running DFSMSrmm with the

IBM Tivoli Workload Scheduler for z/OS

Use an IBM Tivoli Workload Scheduler for z/OS special resource to perform these

functions:

v Allow some DFSMSrmm jobs to run in parallel.

v Prevent more than one EDGHSKP job from running at the same time.

v Avoid jobs failing because inventory management is already running.

v Prevent the EDGUTIL VERIFY job from running at the same time that other

DFSMSrmm inventory management jobs are running.

v Allow the IBM Tivoli Workload Scheduler for z/OS to handle the dependencies for

jobs that do not always need to run.

The special resource is named in the DFSMSrmm sample IBM Tivoli Workload

Scheduler for z/OS loader job EDGJLOPC. The special resource is defined when

you load the DFSMSrmm application to the IBM Tivoli Workload Scheduler for

z/OS. You can customize the name of the special resource in EDGJLOPC. Be sure

to change all occurrences of the special resource name in the application definition,

so that the IBM Tivoli Workload Scheduler for z/OS job scheduling can maintain

inventory management serialization properly.

Most of the DFSMSrmm tasks in the job flow are automated. These tasks require

manual intervention.

© Copyright IBM Corp. 1992, 2007 467

1. Confirmation of moves requires intervention at an IBM Tivoli Workload

Scheduler for z/OS terminal to mark volume moves completed. You must

confirm volume movement before you can run the confirm job.

2. During restart or recovery of the DFSMSrmm-supplied Main job, you might have

to perform visual checking and some other recovery actions based on the

reason for the failure. For example, when recovery completed, the Main job

restarts from the beginning. For EDGHSKP, return code 4 is an acceptable

completion code. Any higher return code value triggers restart or recovery

processing.

DFSMSrmm provides a sample procedure called EDGJLOPC. The sample

procedure includes code that supports the inventory management schedule that is

recommended in “Scheduling DFSMSrmm Utilities” on page 325.

Setting Up DFSMSrmm to Use the IBM Tivoli Workload Scheduler for

z/OS

Follow this procedure to set up IBM Tivoli Workload Scheduler for z/OS for

management of DFSMSrmm tasks:

1. Customize the batch loader statements in EDGJLOPC as described in

“Customizing the IBM Tivoli Workload Scheduler for z/OS Batch Loader

Statements” on page 473.

2. Ensure that the IBM Tivoli Workload Scheduler for z/OS workstations that are

required by the DFSMSrmm applications are defined to the IBM Tivoli Workload

Scheduler for z/OS as described in “Setting Up IBM Tivoli Workload Scheduler

for z/OS Workstations” on page 473.

3. Make the customized jobs and procedures available to IBM Tivoli Workload

Scheduler for z/OS and to your running systems as described in “Descriptions

of DFSMSrmm Jobs to Run with the IBM Tivoli Workload Scheduler for z/OS”

on page 469.

4. Run EDGJHKPA to define GDG bases and to create first generations if needed.

DFSMSrmm provides a job called preparation, that is described in “Descriptions

of DFSMSrmm Jobs to Run with the IBM Tivoli Workload Scheduler for z/OS”

on page 469, that you can use to create the GDGs.

5. Change the DFSMSrmm PARMLIB OPTION command BACKUPPROC and

SCRATCHPROC operands to use the new sample procedures for use with the

IBM Tivoli Workload Scheduler for z/OS as described in “Defining System

Options: OPTION” on page 175.

6. Run the DFSMSrmm sample EDGJLOPC job as described in “Descriptions of

DFSMSrmm Jobs to Run with the IBM Tivoli Workload Scheduler for z/OS” on

page 469.

7. Add the event trigger tracking entries to the IBM Tivoli Workload Scheduler for

z/OS by using the dialog as described in “Event Triggered Tracking” on page

473.

8. Set up the IBM Tivoli Workload Scheduler for z/OS restart management to

handle restart activities. Restart management uses the DFSMSrmm application

programming interface to issue commands based on the IBM Tivoli Workload

Scheduler for z/OS restart/recovery options that you define. If you do not use

IBM Tivoli Workload Scheduler for z/OS, you can issue DFSMSrmm TSO

subcommands to change information as needed.

If not all of the data sets on a volume are created successfully, you can use the

subcommand shown in Figure 201 on page 469 to override normal vital record

468 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

specification management processing.

Descriptions of DFSMSrmm Jobs to Run with the IBM Tivoli Workload

Scheduler for z/OS

All the sample jobs that are used with the IBM Tivoli Workload Scheduler for z/OS

job management include the required control statements about recovery, restart, or

modifications to make at submit time. The JCL uses procedures that are provided to

avoid duplicate JCL and to simplify job construction.

Preparation

You must first allocate files that are required for the regular processing.

EDGHSKP has special requirements for the data sets that are used for

processing. Use EDGJHKPA to define the GDGs and set up the first generation

of the files as required. EDGJHKPA uses the procedures EDGPHKPA,

EDGPVRSA, EDGPMSGA, EDGPACTA and EDGPRPTA, and REXX procedure

EDGRHKPA. Specify parameters in EDGHKPA to customize the GDG names

and limits. Customize the file size by altering the SPACE values in the lowest

level procedures.

 The GDGMODEL should be customized to match a model DSCB available on

your system. Any DCB attributes are acceptable because DFSMSrmm overrides

the values at OPEN time. For system-managed data sets, a model DSCB name

is not required, and you can specify GDGMODEL=’’ in that case.

CDS Verify

Run this job when you want to verify the contents of the DFSMSrmm control

data set. The EDGJVFY job runs EDGUTIL with PARM=VERIFY on the current

DFSMSrmm control data set. The expected completion is return code 0. You

must perform manual recovery before dependent jobs can be run when the

return code is greater than 0.

CDS Backup

Run this job when you want to back up the DFSMSrmm control data set. The

EDGJBKP1 and EDGBKP2 jobs run EDGHSKP with PARM=BACKUP. Backup

is performed at the start and at the end of the main inventory management

application processing. You can modify the jobs to use DFSMSdss or AMS for

backup. You make the choice of backup to DASD or tape when running the

preparation jobs.

 Jobs EDGJBKP1 and EDGJBKP2 run procedure EDGPBKP to perform the

backup. Expected completion is return code 4 or less. You must perform

manual recovery before dependent jobs can be run when the return code is

greater than 4.

Inventory Management

Run this job when you want to perform DFSMSrmm inventory management

processing. These jobs run EDGHSKP with VRSEL and EXPROC. These jobs

also include running storage location management on a weekly basis to trigger

movement decisions for off-site storage. Job EDGJDHKP and job EDGJWHKP

run procedures EDGPHSKP, EDGPMSGA, and EDGPVRSA to process and set

up the files for the next run. The job copies the message file to SYSOUT for

easier information analysis. The expected completion is return code 4 or less.

You must perform manual recovery before dependent jobs can be run when the

RMM CHANGEDATASET dsname VOLUME(volser) SEQ(number) ABEND

Figure 201. Overriding Vital Record Specification Management Processing with the RMM

CHANGEDATASET TSO Subcommand

Chapter 22. Running DFSMSrmm with the IBM Tivoli Workload Scheduler for z/OS 469

return code is greater than 4. As part of the recovery, run the EDGJVRSV job to

run VRSEL with VERIFY and to report on the ACTIVITY file for analysis of

VRSMIN and VRSCHANGE conditions. For return code 8, you might have to

change vital record specifications or add additional empty bin numbers. Higher

return codes or abends need to be researched by the support programmer.

Erasing and Labeling Volumes

Run this job when you want to initialize and erase volumes depending on the

release actions set for the volumes. The EDGJINER job runs an automatic

EDGINERS job to handle the INIT and ERASE release actions. You can run

dependent jobs that are run regardless of successful completion.

Scratch Processing

Run this job when you want to process volumes that are returning to scratch

status. The EDGJSCR job runs EDGHSKP with the EXPROC parameter. This

job handles the return to scratch of volumes requiring confirmed actions;

whether INIT/ERASE or movement actions. You can run dependent jobs

regardless of successful completion.

Scratch Reporting

Run this job when you want to obtain information about volumes in scratch

status. The EDGJSCR job produces an up-to-date extract and uses EDGRPTD

with SCRLIST and NEWSCR files to produce the latest scratch list reports. You

can run dependent jobs regardless of successful completion.

Ejecting Volumes

Run this job to eject volumes from system-managed tape libraries. This is an

optional job that you can use if your installation uses system-managed tape.

The job also includes support for VTS export processing. You can run

dependent jobs regardless of successful completion. You can customize this job

to include similar processing that is required for any non-system-managed

volumes that you have in your library.

Producing Reports

Run this job to produce volume movement reports. The EDGJMOVE job is

dependent on the inventory management job and optionally the ejecting volume

job processing. This job creates an up-to-date extract and uses EDGRPTD to

produce the movement reports. You can run dependent jobs regardless of

successful completion.

Move Confirmation

Run this job to perform global confirmation of volume movement. The

EDGJCMOV job issues a global confirm move. You can run this job after a

manual action is taken by the installation to mark the movement complete at the

dependent IBM Tivoli Workload Scheduler for z/OS workstation. You can run

dependent jobs regardless of successful completion.

 Daily jobs are always run on processing days. Weekly and monthly jobs are

included in the job flow and the IBM Tivoli Workload Scheduler for z/OS

automatically adjusts dependencies that are based on the rules you specify. When

a job fails, the IBM Tivoli Workload Scheduler for z/OS automatically prevents

dependent jobs from processing if any manual recovery actions have been defined.

To alter the dependencies, you can modify the sample IBM Tivoli Workload

Scheduler for z/OS applications that are described in “IBM Tivoli Workload

Scheduler for z/OS Applications for DFSMSrmm” on page 471.

CDS backup and scratch processing are functions that are always run in the daily

cycle. CDS backup and scratch processing can also be added dynamically to the

cycle as required. When CDS backup and scratch processing are added

470 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

dynamically, they run independently. They are added automatically to the schedule

when the write-to-operator (WTO) from DFSMSrmm is detected and the

BACKUPPROC or SCRATCHPROC is triggered. When a started procedure

matches an application defined to the IBM Tivoli Workload Scheduler for z/OS

running on a started task processor, IBM Tivoli Workload Scheduler for z/OS

modifies the current plan.

IBM Tivoli Workload Scheduler for z/OS Applications for DFSMSrmm

The application definition implements the schedule suggested in the “Scheduling

DFSMSrmm Utilities” on page 325. In addition, EDGJLOPC includes support for

events that are triggered by alerts such as the CBR3660A, short on scratch

message, and the EDG2107E, journal threshold reached message.

The applications defined in the DFSMSrmm sample IBM Tivoli Workload Scheduler

for z/OS setup job are shown in Table 63 on page 472:

Chapter 22. Running DFSMSrmm with the IBM Tivoli Workload Scheduler for z/OS 471

Table 63. IBM Tivoli Workload Scheduler for z/OS Applications

Application Description

GRMMDAY GRMMDAY is a grouping application used to set a common start

time for daily jobs and applications. GRMMDAY is scheduled to run

every working day of the year.

GRMMMTH GRMMMTH is a grouping application used to set a common start

time for monthly jobs and applications. GRMMMTH is scheduled to

run once each month on the first Friday of the month.

GRMMWK GRMMWK is a grouping application used to set a common start time

for weekly jobs and applications. GRMMWK is scheduled to run

every Monday.

RMMBKP RMMBKP is the first daily application. RMMBKP backs up the

control data set and journal data set, and clears the journal.

RMMBKP is dependent on the monthly RMMMTH job EDGJVFY.

RMMEXP RMMEXP runs expiration processing and produces scratch list

reports. RMMEXP is dependent on prior daily jobs and the weekly

movement processing performed by the RMMMOVES job.

RMMHKPD RMMHKPD is the main daily inventory management run. RMMHKPD

is replaced once a week with a weekly inventory management run

that includes movement processing.

RMMMOVES RMMMOVES includes jobs to:

v Eject system-managed volumes that are moving

v Produce and print movement reports

v Confirm volume moves once volumes have been moved

RMMMOVES includes a manual action to complete a task at a

workstation when volumes have been moved. RMMEXP is

dependent on the completion of RMMMOVES.

RMMMTH RMMMTH performs a monthly verify of the DFSMSrmm control data

set. When you run RMMMTH, all other applications are dependent

on RMMMTH running successfully.

RMMPOST RMMPOST backs up the control data set and journal data set, and

clears the journal. RMMPOST runs EDGINERS to process any new

release actions.

RMMWK The main inventory management run once each week instead of the

daily inventory management application. RMMWK is dependent on

RMMBKP.

RMMVRSVER RMMVRSVER is an application that is set up only for use during

recovery of the main inventory management application.

RMMVRSVER is dynamically added if the EDGHSKP step fails with

return code 8. RMMVRSVER runs VRSEL with VERIFY and

produces a report from the ACTIVITY file.

You can use the sample job EDGJLOPC to run the IBM Tivoli Workload Scheduler

for z/OS batch loader utility to define DFSMSrmm as an application to IBM Tivoli

Workload Scheduler for z/OS to manage the regular scheduling of DFSMSrmm

functions.

Customize the EDGJLOPC sample by:

v Modifying the supplied JCL to run in your environment

v Tailoring and customizing the sample application definition and schedule to meet

your specific needs.

472 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Then run the sample to load the application definition to the active control file or to

a VSAM file to be used with the IBM Tivoli Workload Scheduler for z/OS

subsystem.

Customizing the IBM Tivoli Workload Scheduler for z/OS Batch Loader

Statements

The DFSMSrmm sample job EDGJLOPC contains the application definitions for the

applications and jobs described in “IBM Tivoli Workload Scheduler for z/OS

Applications for DFSMSrmm” on page 471. You can alter or add to the definitions

before running the IBM Tivoli Workload Scheduler for z/OS batch loader to load the

definitions to your IBM Tivoli Workload Scheduler for z/OS subsystem or to another

VSAM file you plan to use as an IBM Tivoli Workload Scheduler for z/OS AD

database.

Setting Up IBM Tivoli Workload Scheduler for z/OS Workstations

You should ensure that you define these workstations to your IBM Tivoli Workload

Scheduler for z/OS subsystem or alter them to those you want to use with the

DFSMSrmm applications.

The sample definitions use these workstations:

STC1 A computer workstation for the running started tasks

CPU1 A computer workstation for the running batch jobs

PRT1 A workstation for printing movement reports

TLIB A manual workstation for use by the tape librarian or operator to mark

movement of volumes completed.

Event Triggered Tracking

The applications are set up to take advantage of the IBM Tivoli Workload Scheduler

for z/OS event trigger tracking for these conditions:

v Journal threshold is reached - backup is required to clear the journal

v Low on scratch - expiration processing is required to return pending release

volumes to scratch status and produce new scratch lists.

To use the applications, follow these steps:

1. Define these tasks to the IBM Tivoli Workload Scheduler for z/OS under Event

Trigger Tracking; EDGSETT triggers RMMEXP, and EDGBETT triggers

RMMBKP.

2. Change the DFSMSrmm parmlib OPTION command BACKUPPROC and

SCRATCHPROC operands to name special procedures EDGBETT and

EDGSETT. Specify EDGBETT and EDGSETT to enable the event trigger

processing.

The options for each entry in the ETT table are:

v Event type=J

v Job replace=Y

v Dependency resolution=N

v Availability status=N

EDGBETT and EDGSETT sample procedures are only intended for tracking by

IBM Tivoli Workload Scheduler for z/OS because they only execute IEFBR14.

Chapter 22. Running DFSMSrmm with the IBM Tivoli Workload Scheduler for z/OS 473

474 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Appendix A. DFSMSrmm Installation Verification Procedures

DFSMSrmm Samples Provided in SAMPLIB

v EDGIVPPM Sample Parmlib for Use in the IVP

v EDGIVP1 IVP Job 1 to Initialize Tape Volumes

v EDGIVP2 IVP Job 2 to Use Tape Volumes

This topic helps you prepare for and run the DFSMSrmm installation verification

procedures (IVP). You can use the IVP to ensure that the DFSMSrmm functional

component has been successfully installed by SMP/E and can be activated on your

system. The IVP does not test all the functions in DFSMSrmm but validates that the

key interfaces are in place.

Preparing to Run the IVP

Before you run the IVP, you need to activate some of DFSMSrmm’s functions. This

topic lists and describes the steps you should perform to set up DFSMSrmm for the

IVP. Chapter 2, “Implementing DFSMSrmm” contains all the steps needed to install

DFSMSrmm.

If this is first time you are setting up DFSMSrmm, follow all the steps described in

this topic. If your system has previously been set up for use with DFSMSrmm, you

might not need to perform all the steps listed here. Evaluate your installation setup

to determine which steps you can omit.

 1. Install DFSMSrmm with SMP/E.

Ensure that DFSMS including DFSMSrmm is SMP/E applied. Refer to z/OS

Program Directory that you received with the product tape or to ServerPac:

Installing Your Order for complete installation instructions.

Once you have used SMP/E to install DFSMSrmm, IPL your system without

performing any implementation tasks and have DFSMSrmm take no part in

removable media management. The ability to run without DFSMSrmm is

especially helpful if you are running another tape management product in

production.

 2. Update SYS1.PARMLIB members.

Refer to “Step 5: Updating SYS1.PARMLIB Members” on page 27 for detailed

instructions. At a minimum, you should update IEFSSNxx and IKJTSOxx. Also

update IFAPRDxx.

 3. Update the procedure library.

Refer to “Step 8: Updating the Procedure Library” on page 34 for detailed

instructions. Use member EDGDFRMM of SYS1.SAMPLIB as a sample

DFSMSrmm procedure.

 4. Assign DFSMSrmm a RACF user ID.

Perform this step if you want to use a specific RACF user ID for DFSMSrmm

during the IVP. When running on a system with RACF installed, assign

DFSMSrmm a RACF user ID by adding a profile in the STARTED class as

described in “Step 9: Assigning DFSMSrmm a RACF User ID” on page 37. You

can use the DFSMSrmm procedure name that you created in step 3 as the

RACF user ID but any installation-selected RACF user ID is acceptable. As

data sets are created for use by the DFSMSrmm procedure, add the RACF

user ID to the access list for the data sets. Table 6 on page 37 lists the data

sets that the DFSMSrmm procedure should be able to access.

© Copyright IBM Corp. 1992, 2007 475

If you are using an equivalent security product, review the RACF-related

information to determine the changes that might be required to run

DFSMSrmm with that product.

 5. Define parmlib member EDGRMMxx.

Refer to “Step 10: Defining Parmlib Member EDGRMMxx” on page 38 for

detailed instructions. Use member EDGIVPPM of SYS1.SAMPLIB as a sample

parmlib member.

 6. Specify DFSMSrmm options.

Refer to Chapter 10, “Using the Parmlib Member EDGRMMxx,” on page 167

for information on tailoring the DFSMSrmm sample parmlib member

EDGIVPPM to specify DFSMSrmm options for the IVP.

During the IVP, DFSMSrmm runs in record-only mode. DFSMSrmm records

information about tape volumes, but does no validation. You can tailor

EDGIVPPM to specify that DFSMSrmm run in warning mode or protect mode if

you want DFSMSrmm to validate volumes.

If you are running the IVP on a system with no other tape management system

you can select any mode: record-only, warning or protect. If there is a

possibility of accidental use of the wrong tape volumes, we suggest that you

run in protect mode. However, if you run the IVP on a system where others are

using tape including the use of scratch tapes, be aware that DFSMSrmm

rejects all scratch tapes not defined to it while running in protect mode. See

“Defining System Options: OPTION” on page 175 for information about

DFSMSrmm modes of operation.

 7. Create the DFSMSrmm control data set.

Refer to “Step 12: Creating the DFSMSrmm Control Data Set” on page 39 for

detailed instructions. You can use the sample JCL in member EDGJMFAL in

SYS1.SAMPLIB to allocate a control data set. Ensure that the control data set

name is the same as that specified in the parmlib member EDGRMMxx that

you created. Initialize the control data set by running the EDGUTIL utility. You

can use the sample JCL in member EDGJUTIL in SYS1.SAMPLIB. Set the

rack and bin count fields to 0.

 8. Create the journal.

Refer to “Step 13: Creating the Journal” on page 44 for detailed instructions.

You can use sample JCL in member EDGJNLAL in SYS1.SAMPLIB to allocate

a journal data set.

 9. Make the DFSMSrmm ISPF Dialog available to users.

Refer to “Step 15: Making the DFSMSrmm ISPF Dialog Available to Users” on

page 47 for instructions to make the DFSMSrmm dialog available to users.

10. Restart z/OS with DFSMSrmm implemented.

You are ready to start the system with DFSMSrmm implemented. Refer to

“Step 16: Restarting z/OS with DFSMSrmm Implemented” on page 51 for

information on conditions that determine if you need to IPL the system to

restart z/OS with DFSMSrmm implemented. Perform this step so that the

changes you made to IEFSSNxx and other parmlib members when you

performed step 2 on page 475 take effect.

11. Start DFSMSrmm.

Refer to “Step 18: Starting DFSMSrmm” on page 52 for detailed instructions.

When you start DFSMSrmm, if it issues message EDG0103D, reply ’RETRY’.

If you do not reply ’RETRY’, DFSMSrmm will not record any tape usage

activity.

DFSMSrmm is activated and you are ready to run the IVP.

476 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Running the IVP

To run the IVP, perform these steps:

1. You need three tape volumes that do not have any data on them, and a single

tape unit online to your system. Ask your tape librarian to externally label these

volumes EDG000, EDG001, and EDG002 for your testing.

Ensure that the tape volumes you use are suitable for use with DFSMSrmm

during the IVP. For example, if you have an existing tape management system,

check that the volumes are either not managed by it or are designated for use

with DFSMSrmm for testing.

2. Ensure that TSO help information has been correctly installed by entering this

command from a TSO terminal:

HELP RMM

DFSMSrmm lists help information for the RMM TSO subcommand, including a

list of subcommands, function, syntax, and operands.

3. Add some shelf locations to DFSMSrmm by entering this RMM TSO command

from a TSO terminal:

RMM ADDRACK RMM000 COUNT(10)

4. Add some volumes to DFSMSrmm by using the DFSMSrmm ISPF dialog. Enter

this command from a TSO terminal:

%RMMISPF

DFSMSrmm displays the DFSMSrmm ISPF dialog primary option menu as

shown in Figure 202.

Enter VOLUME on the option line to display the DFSMSrmm Volume Menu as

shown in Figure 202. DFSMSrmm displays a panel as shown in Figure 203 on

page 478.

 Panel Help

 --

 EDG@PRIM REMOVABLE MEDIA MANAGER (DFSMSrmm) - z/OS V1R7

 Option ===> VOLUME

 0 OPTIONS - Specify dialog options and defaults

 1 USER - General user facilities

 2 LIBRARIAN - Librarian functions

 3 ADMINISTRATOR - Administrator functions

 4 SUPPORT - System support facilities

 5 COMMANDS - Full DFSMSrmm structured dialog

 6 LOCAL - Installation defined dialog

 X EXIT - Exit DFSMSrmm Dialog

 Enter selected option or END command. For more info., enter HELP or PF1.

Figure 202. DFSMSrmm Primary Option Menu

Appendix A. DFSMSrmm Installation Verification Procedures 477

Select option 7, ADDSCR, and press ENTER. DFSMSrmm displays the

DFSMSrmm Add Scratch Volumes panel that is shown in Figure 204. Complete

the details as shown in the panel and press ENTER:

DFSMSrmm displays the message 3 volumes added in the top right hand corner

of the screen.

Exit the DFSMSrmm ISPF dialog by entering =X on the command line.

5. Initialize tape volumes by editing and submitting the JCL in member EDGIVP1

in SYS1.SAMPLIB. Mount the three tape volumes requested by this job in the

sequence EDG002, EDG001, and EDG000.

Ensure that the job completes with a return code of zero and the expected

messages in EDGIVP1 are in the job output.

 Panel Help

 --

 EDGPT000 DFSMSrmm Volume Menu

 Option ===>

 0 OPTIONS - Specify dialog options and defaults

 1 DISPLAY - Display volume information

 2 ADD - Add a new volume

 3 CHANGE - Change volume information

 4 RELEASE - Delete or release a volume

 5 SEARCH - Search for volumes

 6 REQUEST - Request a volume

 7 ADDSCR - Add one or more SCRATCH volumes

 8 CONFIRM - Confirm librarian or operator actions

 9 STACKED - Add one or more stacked volumes

 Enter selected option or END command. For more info., enter HELP or PF1.

Figure 203. DFSMSrmm Volume Menu

 Panel Help

 --

 EDGPT230 DFSMSrmm Add Scratch Volumes

 Command ===>

 VolumeEDG000 Pool

 or

 Media name3480 Rack RMM000

 Vendor Location name . . .SHELF

 Count 3 (Default is 1)

 Description

 Account number . . .TSG/WAR/T6149MX

 Assigned date . . .2007/043 YYYY/DDD MVS useYES

 Assigned time . . .06:34:12 VM use NO

 Media typeCST

 Label SL (AL, NL or SL)

 Current version Label version number(for example 3)

 Required version Label version number(for example 4)

 Density 3480 (1600, 3480, 6250 or *)

 Initialize YES (Default is YES)

 Press ENTER to ADD one or more SCRATCH volumes, or END command to CANCEL.

Figure 204. DFSMSrmm Add Scratch Volumes Panel

478 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

6. Write data to tape volumes by editing and submitting the JCL in member

EDGIVP2 in SYS1.SAMPLIB. Mount the three tape volumes requested by this

job in the sequence EDG000, EDG001, and EDG002. Use the three volumes

initialized in step 5 on page 478.

Ensure that all steps of the job complete with a return code of zero. Message

IEC502E is issued when the job finishes with the second volume, EDG001.

Check that the message in the SYSLOG contains the text RACK=RMM001 on

the right hand side as follows:

IEC502E RK ddd,EDG001,SL,jjjjjjjj,WRITE22 - RACK=RMM001

7. To display data set information that is recorded by DFSMSrmm, enter these

RMM TSO subcommands:

RMM LISTDATASET ’RMMIVP.TEST1’ VOLUME(EDG000) SEQ(1)

RMM LISTDATASET ’RMMIVP.TEST2’ VOLUME(EDG000) SEQ(2)

RMM LISTDATASET ’RMMIVP.TEST3’ VOLUME(EDG001) SEQ(1)

RMM LISTDATASET ’RMMIVP.TEST4’ VOLUME(EDG001) SEQ(2)

RMM LISTDATASET ’RMMIVP.TEST4’ VOLUME(EDG002) SEQ(1)

DFSMSrmm displays data set information as shown in Figure 205.

To cleanup after running the IVP or to prepare to rerun the IVP, issue these

commands to remove information from the DFSMSrmm control data set.

RMM DELETEVOLUME EDG000 FORCE

RMM DELETEVOLUME EDG001 FORCE

RMM DELETEVOLUME EDG002 FORCE

RMM DELETERACK RMM000 COUNT(10)

When you have completed running the IVP, you can return the three volumes to

your tape library.

Data set name = RMMIVP.TEST1

Volume = EDG000 Physical file sequence number = 1

Owner = MTHUM Data set sequence = 1

Create date = 2007/044 Create time = 06:56:09 System ID = EZU34

Expiration date = 2007/049 Original expir. date =

Block size = 80 Block count = 10

Percent of volume = 0 Total block count = 10

Logical Record Length = 80 Record Format = FB

Date last written = 2007/044 Date last read = 2007/044

Job name = EDGIVP2 Last job name = EDGIVP2

Step name = WRITE11 Last step name = WRITE11

Program name = IEBDG Last program name = IEBDG

DD name = SEQOUT Last DD name = SEQOUT

Device number = 0590 Last Device number = 0590

Management class = VRS management value =

Storage group = VRS retention date =

Storage class = VRS retained = NO

Data class = ABEND while open = NO

 Catalog status = YES

Primary VRS details:

 Name =

 Job name = Type =

 Subchain NAME = Subchain start date =

Secondary VRS details:

 Value or class =

 Job name =

 Subchain NAME = Subchain start date =

Security Class = Description =

Figure 205. Sample Data Set Information

Appendix A. DFSMSrmm Installation Verification Procedures 479

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

480 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Appendix B. DFSMSrmm Mapping Macros

Note

The mapping macros have been moved to z/OS DFSMSrmm Reporting.

v Report Extract Data Set Mapping Macros in SYS1.MACLIB.

You use the extract data set as input to the DFSMSrmm utility EDGRPTD

to create reports.

The extract data set contains information extracted from the DFSMSrmm

control data set.

The extract data set records contain all major key fields so that you can

select fields and sort them for reports. Variable length fields are expanded

to maximum length and redundant control information is removed.

v SMF Records Mapping Macros in SYS1.MODGEN.

DFSMSrmm requires two record types to support audit needs and security

needs. You specify the exact SMF record types in EDGRMMxx, using the

SMFAUD macro for auditing and the SMFSEC macro for security records.

 DFSMSrmm provides these macros as programming interfaces for customers.

 Attention:

Do not use as programming interfaces any DFSMSrmm macros other than those

identified in this topic.

v Library Control System Interface Macro in SYS1.MODGEN.

 “OAM Interface: EDGLCSUP”

v DFSMSrmm Installation Exit Mapping Macros in SYS1.MODGEN.

 “Installation Exit Mapping Macro: EDGPL100” on page 487

 “Installation Exit Mapping Macro: EDGPL200” on page 492

v DFSMSrmm Sticky Label Mapping Macro in SYS1.MACLIB.

– “Sticky Label Data: EDGSLAB” on page 493

General-use Programming Interface Mapping Macros

“General-use Programming Interface Mapping Macros” contains General-use

Programming Interface and Associated Guidance Information.

OAM Interface: EDGLCSUP

EDGLCSUP maps the Library Control System interface parameter list. See

“Managing System-Managed Tape Library Volumes: EDGLCSUX” on page 248 for

more information about using the OAM interface.

 Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 160 LCSUP LCSUP EDGLOCV PARAMETER

LIST

0 (0) STRUCTURE 16 LCSUP_HDR CONTROL BLOCK HEADER

THE FOLLOWING FIELDS ARE VALIDATED BY EDGLCSUX BEFORE PROCESSING

0 (0) CHARACTER 8 LCSUP_IDENT CONTROL BLOCK ID

8 (8) UNSIGNED 1 LCSUP_VERNO CONTROL BLOCK VERSION

NUMBER

© Copyright IBM Corp. 1992, 2007 481

||
||||||
||||||
|
||||||
|
||||||
||||||
|

Offsets

Dec Hex Type Len Name (Dim) Description

9 (9) UNSIGNED 1 LCSUP_REVNO CONTROL BLOCK REVISION

NUMBER

10 (A) UNSIGNED 2 LCSUP_SUBPOOL CONTROL BLOCK SUBPOOL

NUMBER

12 (C) UNSIGNED 4 LCSUP_LENGTH CONTROL BLOCK LENGTH

INPUT FIELDS START HERE

16 (10) BITSTRING 1 LCSUP_FUNCTION REQUESTED FUNCTION

1... LCSUP_ENT CALLER IS CBRUXENT

.1.. LCSUP_EJC CALLER IS CBRUXEJC

..1. LCSUP_CUA CALLER IS CBRUXCUA

...1 LCSUP_VNL CALLER IS CBRUXVNL

.... 1... LCSUP_ACTVNL REENTRY FROM CBRUXVNL

..... .111 * RESERVED

17 (11) CHARACTER 1 * RESERVED

18 (12) BITSTRING 1 LCSUP_STATUSD Corresponds to MVSFLGD flag

1... LCSUP_MVOREAD Owner may read volume

.1.. LCSUP_MVOUPD Owner may update volume

..1. LCSUP_MVOALT Owner may alter volume

...1 LCSUP_MVPROTR Read-Only protection

.... 1... LCSUP_MVPROTU Update protection

.... .1.. LCSUP_MVMVSUSE May be used on MVS system@05A

.... ..1. LCSUP_MVVMUSE May be used on VM system

.... ...1 * Reserved

19 (13) BITSTRING 1 LCSUP_STATUSE Corresponds to MVSFLGE byte

1... LCSUP_MVRETSCR Return to scratch pending@05A

.1.. LCSUP_MVREPREL Replace tape on release

pending@05A

..1. LCSUP_MVREINIT Init pending

...1 LCSUP_MVDEGAUS Degaus/security erase

pending@05A

.... 1... LCSUP_MVROWNER Return to owner pending

.... .1.. LCSUP_MVNOWNER Notify owner pending

.... ..11 * Reserved

20 (14) SIGNED 4 LCSUP_LCSPL POINTER TO LCS PARAMETER

LIST

OUTPUT FIELDS START HERE

24 (18) SIGNED 4 LCSUP_LCSRC RETURN CODE FOR LCS

28 (1C) SIGNED 4 LCSUP_LCSRS REASON CODE FOR LCS

OUTPUT FIELDS FOR CBRUXVNL

32 (20) CHARACTER 8 LCSUP_LOANLOC LOAN LOCATION

40 (28) CHARACTER 8 LCSUP_LOCATION CURRENT VOLUME LOCATION

48 (30) UNSIGNED 1 LCSUP_LOCTYPE CURRENT LOCATION TYPE

49 (31) CHARACTER 8 LCSUP_DEST CURRENT VOLUME

DESTINATION

57 (39) UNSIGNED 1 LCSUP_DESTYPE CURRENT DESTINATION TYPE

58 (3A) CHARACTER 8 LCSUP_HOME VOLUME HOME LOCATION

66 (42) UNSIGNED 1 LCSUP_HOMETYPE VOLUME HOME LOCATION TYPE

67 (43) CHARACTER 6 LCSUP_RACK RACK NUMBER

73 (49) CHARACTER 6 LCSUP_BIN BIN NUMBER

79 (4F) BITSTRING 1 LCSUP_STATUS VOLUME STATUS (MVFLGA)

1... LCSUP_MSTFLG VOLUME IS MASTER

.1.. LCSUP_RLSFLG VOLUME PENDING RELEASE

..1. LCSUP_VRFLG VITAL RECORD - DO NOT

RELEASE

EDGLCSUP

482 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|
||||||
||||||
|
||||||
|
||||||
|

Offsets

Dec Hex Type Len Name (Dim) Description

...1 LCSUP_ASSFLG USER TAPE (ASSIGNED BY

LIB)002

.... 1... LCSUP_LONFLG TAPE IS ON LOAN

.... .1.. LCSUP_OPNFLG TAPE OPENED AND NOT YET

CLOSED

.... ..1. LCSUP_SCRFLG VOLUME IS SCRATCH

.... ...1 LCSUP_OCEFLG VOLUME RECORDED BY

O/C/EOV

80 (50) BITSTRING 1 LCSUP_STATUSX VOLUME STATUS (MVFLGAX)

1... LCSUP_GVCFLG SCRATCH VOL CLAIMED VIA

GETVOL

.1.. LCSUP_XINFLG SCRATCH VOLUME HAS NEVER

BEEN INITIALIZED

..1. LCSUP_INIFLG SCRATCH VOLUME WITH INIT

ACTION PENDING

...1 LCSUP_ENTFLG SCRATCH VOLUME WAITING TO

ENTER ATL

.... 1... LCSUP_FABEND ABEND IN PROCESS WHEN A

DATA SET CLOSED

.... .1.. LCSUP_FOCEAB ABEND PROBABLY IN O/C/EOV

.... ..1. LCSUP_ATIFLG NIT REQUESTED FOR ATL VOL

81 (51) BITSTRING 1 LCSUP_FLAGS FLAG BYTE

1... LCSUP_TRANSIT VOLUME MOVING STATUS

.1.. LCSUP_8197 If ON, msg EDG8197 is issued

..11 1111 * Reserved

82 (52) UNSIGNED 1 LCSUP_OPMODE OPMODE (like TLVOPFLG)

1... * Reserved

.1.. LCSUP_OPMODE_MAN MANUAL mode

..1. LCSUP_OPMODE_REC RECORDING mode

...1 LCSUP_OPMODE_WARN WARNING mode

.... 1... LCSUP_OPMODE_PROT PROTECT mode

.... .111 * Reserved

83 (53) CHARACTER 1 * Reserved

84 (54) SIGNED 4 LCSUP_TDSI DEVICE SELECTION INFO.

88 (58) CHARACTER 72 LCSUP_VER2SEC VERSION 2 SECTION

88 (58) CHARACTER 16 LCSUP_INCONTAINER CONTAINER

88 (58) CHARACTER 6 LCSUP_STV STACKED VOLUME

104 (68) UNSIGNED 1 LCSUP_VOLUMETYPE VOLUME TYPE

105 (69) CHARACTER 55 * Reserved

END OUTPUT FIELDS FOR CBRUXVNL

160 (A0) CHARACTER 0 LCSUP_END(0) END OF LCSUP

EDGLCSUP Constants

 Table 64. Constants for EDGLCSUP

Len Type Value Name Description

CONSTANTS USED TO INITIALIZE THE LCSUP HEADER SECTION

8 CHARACTER EDGLCSUP LCSUP_IDENTV CONTROL BLOCK ID

1 DECIMAL 1 LCSUP_VER1# VERSION 1

1 DECIMAL 2 LCSUP_VER2# VERSION 2

1 DECIMAL 2 LCSUP_VER# VERSION

1 DECIMAL 0 LCSUP_REV# REVISION NUMBER

1 DECIMAL 0 LCSUP_SP# SUBPOOL NUMBER

2 DECIMAL 160 LCSUP_LEN# CB LENGTH

EDGLCSUP

Appendix B. DFSMSrmm Mapping Macros 483

|
||||||
||||||
|
||||||
||||||
|
||||||
||||||
|
||||||
||||||
|
||||||
|
||||||
|
||||||
|
||||||
|

||
|||||
|

Table 64. Constants for EDGLCSUP (continued)

Len Type Value Name Description

2 DECIMAL 88 LCSUP_LEN1#

2 DECIMAL 160 LCSUP_LEN2#

CONSTANTS USED TO TEST THE LOCATION TYPE FIELDS

1 DECIMAL 0 LCSUP_TYPE_SHELF Shelf location type

1 DECIMAL 1 LCSUP_TYPE_STORE Store location type

1 DECIMAL 2 LCSUP_TYPE_MTL MTL location type

1 DECIMAL 3 LCSUP_TYPE_ATL ATL location type

1 NUMB HEX 00 LCSUP_VOLUMETYPE_PHYSICAL

1 NUMB HEX 01 LCSUP_VOLUMETYPE_LOGICAL

CONSTANTS FOR RETURN CODES IN R15

1 DECIMAL 0 LCSUP_RC_OK SUCCESSFUL. A REASON CODE

IS SET.

1 DECIMAL 4 LCSUP_RC_SSNA DFSMSRMM SUBSYSTEM NOT

AVAILABLE.

1 DECIMAL 8 LCSUP_RC_LERR LOGICAL ERROR

1 DECIMAL 12 LCSUP_RC_ENV ENVIRONMENT ERROR. A

REASON CODE IS SET.

CONSTANTS FOR REASON CODES IN R0 WHEN R15 = LCSUP_RC_OK

1 DECIMAL 0 LCSUP_RS_OK REQUEST SUCCESSFULLY

PROCESSED

1 DECIMAL 1 LCSUP_RS_NOACTION NO ACTION PERFORMED BY

DFSMSrmm

1 DECIMAL 2 LCSUP_RS_DONT DONT NEED RMM EXITS TO BE

CALLED

CONSTANTS FOR REASON CODES IN R0 WHEN R15 = LCSUP_RC_ENV

1 DECIMAL 1 LCSUP_RS_IDENT INCORRECT VALUE IN

LCSUP_IDENT

1 DECIMAL 2 LCSUP_RS_VERNO INCORRECT VALUE IN

LCSUP_VERNO

1 DECIMAL 3 LCSUP_RS_REVNO INCORRECT VALUE IN

LCSUP_REVNO

1 DECIMAL 4 LCSUP_RS_SUBPOOL INCORRECT VALUE IN

LCSUP_SUBPOOL

1 DECIMAL 5 LCSUP_RS_LENGTH INCORRECT VALUE IN

LCSUP_LENGTH

1 DECIMAL 6 LCSUP_RS_FUNCTION INCORRECT VALUE IN

LCSUP_FUNCTION

1 DECIMAL 7 LCSUP_RS_NSUPV EDGLCSUX NOT SUPERVISOR

STATE

1 DECIMAL 8 LCSUP_RS_LCSUP EDGLCSUX PARAMETER LIST

COULD NOT BE ADDRESSED

1 DECIMAL 9 LCSUP_RS_CBRPL CBRUXXPL PARAMETER LIST

COULD NOT BE ADDRESSED

1 DECIMAL 10 LCSUP_RS_ABEND EDGLCSUX ABENDED

CONSTANTS FOR REASON CODES RETURNED IN LCSUP_LCSRS

1 DECIMAL 1 LCSUP_RS_PBD INCONSISTENT PARAMETER LIST

1 DECIMAL 2 LCSUP_RS_NMV VOLUME NOT TO BE USED WITH

MVS

1 DECIMAL 3 LCSUP_RS_DEB SPECIFIED DESTINATION NOT

CURRENT LIB

1 DECIMAL 4 LCSUP_RS_RJP UNDEF. VOL. REJECTED BY

REJECT PREFIX

1 DECIMAL 5 LCSUP_RS_SCR PRIVATE TO SCRATCH CHANGE

INVALID

1 DECIMAL 6 LCSUP_RS_IVU USER ID NOT VALID FOR RMM

EDGLCSUP

484 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

Table 64. Constants for EDGLCSUP (continued)

Len Type Value Name Description

1 DECIMAL 7 LCSUP_RS_RPX RET. PERIOD EXCEEDS

INSTALLATION MAX.

1 DECIMAL 8 LCSUP_RS_NRM VOLUME NOT RMM MANAGED

1 DECIMAL 9 LCSUP_RS_RIU RACK TO MATCH VOLSER NOT

AVAILABLE

1 DECIMAL 10 LCSUP_RS_NSL LABEL TYPE IS NOT SUPPORTED

IN A LIB.

1 DECIMAL 11 LCSUP_RS_IRK VOLUME RACK INCONSISTENT

1 DECIMAL 12 LCSUP_RS_REL VOLUME PENDING RELEASE

1 DECIMAL 13 LCSUP_RS_STA VOLUME STATUS IS SCRATCH

1 DECIMAL 14 LCSUP_RS_INI VOLUME INIT ACTION PENDING

1 DECIMAL 15 LCSUP_RS_DUPLV LOGICAL VOLUME DUPLICATES

PHYSICAL

1 DECIMAL 16 LCSUP_RS_NOTEXP LOGICAL VOLUME IS NOT

EXPORTED

1 DECIMAL 17 LCSUP_RS_DUPPV PHYSICAL VOLUME DUPLICATES

LOGICAL

1 DECIMAL 18 LCSUP_RS_SMM ENTRY VOLUME STATUS

MISMATCH

1 DECIMAL 19 LCSUP_RS_DUPSV VOLUME DUPLICATES STACKED

VOLUME

1 DECIMAL 20 LCSUP_RS_IDL

EDGLCSUP Cross Reference

 Name Offset Hex Tag Level

LCSUP 0 1

LCSUP_ACTVNL 10 08 3

LCSUP_ASSFLG 4F 10 3

LCSUP_ATIFLG 50 02 3

LCSUP_BIN 49 2

LCSUP_CUA 10 20 3

LCSUP_DEST 31 2

LCSUP_DESTYPE 39 2

LCSUP_EJC 10 40 3

LCSUP_END A0 2

LCSUP_ENT 10 80 3

LCSUP_ENTFLG 50 10 3

LCSUP_FABEND 50 08 3

LCSUP_FLAGS 51 2

LCSUP_FOCEAB 50 04 3

LCSUP_FUNCTION 10 2

LCSUP_GVCFLG 50 80 3

LCSUP_HDR 0 2

LCSUP_HOME 3A 2

LCSUP_HOMETYPE 42 2

LCSUP_IDENT 0 3

LCSUP_INCONTAINER 58 3

LCSUP_INIFLG 50 20 3

LCSUP_LCSPL 14 2

LCSUP_LCSRC 18 2

LCSUP_LCSRS 1C 2

LCSUP_LENGTH C 3

LCSUP_LOANLOC 20 2

EDGLCSUP

Appendix B. DFSMSrmm Mapping Macros 485

|
|||||
|||||
|
|||||
|||||
|
|||||
|

|

Name Offset Hex Tag Level

LCSUP_LOCATION 28 2

LCSUP_LOCTYPE 30 2

LCSUP_LONFLG 4F 08 3

LCSUP_MSTFLG 4F 80 3

LCSUP_MVDEGAUS 13 10 3

LCSUP_MVMVSUSE 12 04 3

LCSUP_MVNOWNER 13 04 3

LCSUP_MVOALT 12 20 3

LCSUP_MVOREAD 12 80 3

LCSUP_MVOUPD 12 40 3

LCSUP_MVPROTR 12 10 3

LCSUP_MVPROTU 12 8 3

LCSUP_MVREINIT 13 20 3

LCSUP_MVREPREL 13 40 3

LCSUP_MVRETSCR 13 80 3

LCSUP_MVROWNER 13 08 3

LCSUP_MVVMUSE 12 02 3

LCSUP_OCEFLG 4F 01 3

LCSUP_OPMODE 52 2

LCSUP_OPMODE_MAN 52 40 3

LCSUP_OPMODE_PROT 52 08 3

LCSUP_OPMODE_REC 52 20 3

LCSUP_OPMODE_WARN 52 10 3

LCSUP_OPNFLG 4F 04 3

LCSUP_RACK 43 2

LCSUP_REVNO 9 3

LCSUP_RLSFLG 4F 40 3

LCSUP_SCRFLG 4F 02 3

LCSUP_STATUS 4F 2

LCSUP_STATUSD 12 2

LCSUP_STATUSE 13 2

LCSUP_STATUSX 50 2

LCSUP_STV 58 4

LCSUP_SUBPOOL A 3

LCSUP_TDSI 54 2

LCSUP_TRANSIT 51 80 3

LCSUP_VERNO 8 3

LCSUP_VER2SEC 58 2

LCSUP_VNL 10 10 3

LCSUP_VOLUMETYPE 68 3

LCSUP_VRFLG 4F 20 3

LCSUP_XINFLG 50 40 3

LCSUP_8197 51 40 3

Product-sensitive Programming Interface Mapping Macros

This topic contains product-sensitive programming interface and associated

guidance information. The macros in this topic map the parameter lists for the

DFSMSrmm EDGPL100 installation exit and the EDGPL200 installation exit, and

the mapping for the EDGSLAB sticky label data area.

EDGLCSUP

486 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

Installation Exit Mapping Macro: EDGPL100

EDGPL100 maps the DFSMSrmm installation exit, EDGUX100, parameter list. See

“Using the DFSMSrmm EDGUX100 Installation Exit” on page 267 for information

about using the EDGPL100 installation exit.

 Offsets

Dec Hex Type Len Name(Dim) Description

0 (0) STRUCTURE 192 PL100 EGDUX100 PARAMETER LIST

0 (0) CHARACTER 16 PL100_HDR(0) CONTROL BLOCK HEADER

 THE FOLLOWING FIELDS CAN BE VALIDATED BY EDGUX100 BEFORE PROCESSING

0 (0) CHARACTER 8 PL100_IDENT CONTROL BLOCK ID

8 (8) UNSIGNED 1 PL100_VERNO CONTROL BLOCK VERSION

NUMBER

9 (9) UNSIGNED 1 PL100_REVNO CONTROL BLOCK REVISION

NUMBER

10 (A) UNSIGNED 2 PL100_SUBPOOL CONTROL BLOCK SUBPOOL

NUMBER

12 (C) UNSIGNED 4 PL100_LENGTH CONTROL BLOCK LENGTH

INPUT FIELDS START HERE

16 (10) BITSTRING 1 PL100_VALID VALID FUNCTIONS

 1... PL100_CAN_IGNORE CAN REQUEST VOLUME IS

IGNORED

 .1.. PL100_CAN_VRS CAN REQUEST VRS VALUE SET

 ..1. PL100_CAN_RACKNO CAN RETURN RACKNO

 ...1 PL100_CAN_IGNORE_FILE2_TON

CAN REQUEST DS RECORD

IGNORE

 1... * RESERVED

 1.. PL100_CAN_POOL CAN SET SCRATCH POOL NAME

 1. PL100_ITS_CLOSE Exit called at CLOSE/EOV

 1 * RESERVED

17 (11) BITSTRING 1 PL100_INFO INFORMATION BYTE

 1... PL100_INFO_IGNORE VOLUME IGNORED BY RMM

 .1.. PL100_INFO_NOTRMM VOLUME NOT RMM MANAGED

 ..1. PL100_INFO_DISPDD DISPDD ENTRY PROCESSED

 ...1 PL100_INFO_CMOVE CMOVE REQUIRED LATER

 1... PL100_INFO_USERDATA USERDATA PROVIDED

 1.. PL100_INFO_MTL ALLOCATED TAPE DRIVE MTL

 1. PL100_INFO_DISPLAB DispDD entry requested lab@08A

 1 * RESERVED

18 (12) CHARACTER 2 * RESERVED

20 (14) CHARACTER 6 PL100_REQ_VOLSER REQUESTED VOLUME SERIAL

NUMBER

26 (1A) CHARACTER 6 PL100_MOUNT_VOLSER MOUNTED VOLUME SERIAL

NUMBER

32 (20) ADDRESS 4 PL100_WTOPTR ADDRESS OF WTO MESSAGE

OUTPUT FIELDS START HERE

36 (24) BITSTRING 1 PL100_FUNCTION REQUESTED FUNCTION

 1... PL100_SET_IGNORE CAN REQUEST VOLUME IS

IGNORED

 .1.. PL100_SET_IGNORE_MOUNTED

REQUEST MOUNTED VOL IS

IGNORED

 ..1. PL100_SET_IGNORE_REQUESTED

REQUEST REQ-ED VOL IS

IGNORED

EDGPL100

Appendix B. DFSMSrmm Mapping Macros 487

||

Offsets

Dec Hex Type Len Name(Dim) Description

 ...1 PL100_SET_IGNORE_FILE2_TON

DS IGNORE HAS BEEN SET

 1... PL100_SET_NOLABEL SUPRESS STICKY LABEL

 1.. PL100_SET_POOL POOL NAME HAS BEEN SET

 1. * RESERVED

 1 PL100_SET_ACLOFF DO NOT PERFORM AN ACL LOAD

37 (25) BITSTRING 1 PL100_FUNCTION2 REQUESTED FUNCTION

 1... PL100_SET_CMOVE Confirm move is required

 .1.. PL100_SET_NOCMOVE Confirm move not required

 ..1. PL100_SET_IGNORE_SGNAME Use system pooling

 ...1 1111 * RESERVED

38 (26) CHARACTER 2 * RESERVED

40 (28) ADDRESS 4 PL100_JFCBPTR POINTER TO JFCB COPY

44 (2C) CHARACTER 8 PL100_VRS NEW VRS MANAGEMENT VALUE

52 (34) CHARACTER 6 PL100_RACKNO EXTERNAL VOLSER

52 (34) CHARACTER 6 PL100_POOL SCRATCH POOL NAME

60 (3C) ADDRESS 4 PL100_LABINFO ADDRESS OF LABEL INFO BLOCK

START OF VERSION 2 FIELDS

64 (40) CHARACTER 69 PL100_LAB_USERDATA USER DATA FOR LABEL

PROCESSING

136 (88) ADDRESS 4 PL100_LABPTR ADDRESS OF PREPARED LABEL

140 (8C) CHARACTER 8 PL100_LOCATION TARGET LOCATION NAME

148 (94) BITSTRING 1 PL100_LOCTYPE TARGET LOCATION TYPE

149 (95) CHARACTER 3 * RESERVED

152 (98) CHARACTER 8 PL100_DDNAME DD NAME

160 (A0) CHARACTER 8 PL100_DISPDD DISPDDNAME

168 (A8) CHARACTER 8 PL100_ACCODE ACCODE parameter value or blank if

no ACCODE or reduced form

’ACCODE=’ specified

176 (B0) ADDRESS 4 PL100_ACEROPTR ADDRESS OF IGDACERO

180 (B4) CHARACTER 12 * RESERVED

192 (C0) CHARACTER 8 PL100_END(0) END OF PL100

The following DSECT is passed to EDGUX100 user exit and is addressed by PL100_LABINFO. The information is

provided by DFSMSrmm to allow sticky label processing by EDGUX100.

0 (0) STRUCTURE 137 PL100_LABDS LABEL INFO BLOCK

0 (0) CHARACTER 44 PL100_DSN DATA SET NAME

44 (2C) CHARACTER 1 PL100_LTYP LABEL TYPE

 1... * RESERVED

 .1.. PL100_AL AL - ANSI LABEL

 ..1. * RESERVED

 ...1 PL100_BLP BLP - BYPASS LABEL

 1... PL100_UL UL - USER LABEL

 1.. PL100_NSL NSL - NONSTANDARD LABEL

 1. PL100_SL SL - STANDARD LABEL

 1 PL100_NL NL - NO LABEL

The following 2 date fields are copied from the JFCB and contain ’YYDDDD’ in which the ’YY’ is an offset

from 1900 and ’DDDD’ contain the Julian day of the year. Example: X’590008’ represents January 8, 1989.

45 (2D) CHARACTER 3 PL100_CRDT CREATION DATE YYDDDD

48 (30) CHARACTER 3 PL100_XPDT EXPIRATION DATE YYDDDD

51 (33) CHARACTER 1 PL100_OFLAG OPEN FLAGS

 1... PL100_FOUT DATASET OPENED FOR OUTP

 .1.. * RESERVED

 ..1. PL100_FEOV CALL FOR END OF VOLUME

 ...1 1111 * RESERVED

EDGPL100

488 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

|

Offsets

Dec Hex Type Len Name(Dim) Description

52 (34) CHARACTER 6 PL100_VOLSER VOLUME SERIAL NUMBER

58 (3A) CHARACTER 8 PL100_JOBNAM JOB NAME

66 (42) CHARACTER 8 PL100_STPNAM STEP NAME

74 (4A) CHARACTER 8 PL100_SYSTEM SYSID

82 (52) SIGNED 2 PL100_LRECL LOGICAL RECORD LENGTH

84 (54) SIGNED 2 PL100_BLKSI BLOCKSIZE

86 (56) CHARACTER 2 PL100_UNIT UNIT ADDRESS (BINARY)

88 (58) SIGNED 4 PL100_BLK# NUMBER OF BLKS WRITTEN

92 (5C) UNSIGNED 2 PL100_FSCT DATASET SEQUENCE COUNT

94 (5E) CHARACTER 1 PL100_RECFM RECORD FORMAT

 11.. PL100_UND UNDEFINED

 1... PL100_FIX FIXED

 .1.. PL100_VAR VARIABLE

 ..1. PL100_RFO TRACK OVERFLOW

 ...1 PL100_RFB BLOCKED

 1... PL100_RFS STANDARD/SPANNED RECORD

 1.. PL100_ASA ASA CONTROL CHARACTERS

 1. PL100_MAC MACHINE CONTROL CHARS

 1 * RESERVED

95 (5F) CHARACTER 1 PL100_NVOL VOLUME SEQUENCE NUMBER

96 (60) CHARACTER 1 PL100_DEN TAPE DENSITY FROM JFCB

The following 2 TDSI fields are copied from the JFCB and apply only to ATL’s (AUTOMATIC TAPE LIBRARY).

The TDSI (Tape Device Selection Information is used to communicate device selection information to and

among system components providing tape library support (for example, OAM).

97 (61) BITSTRING 1 PL100_TDSI1_OLD TDSI BYTE 1

5 BIT(2), RESERVED

5 PL100_36TRK BIT(1), 36 TRACK MODE

5 PL100_18TRK BIT(1), 18 TRACK MODE

5 BIT(2), RESERVED

5 PL100_MED1 BIT(1), CARTRIDGE SYSTEM

5 PL100_MED2 BIT(1), ENHANCED CAPACITY CART

98 (62) CHARACTER 1 PL100_TDSI2_OLD TDSI BYTE 2

5 BIT(2), RESERVED

5 PL100_BIDRC BIT(1), COMPACTION TYPE=IDRC

5 PL100_NOCMP BIT(1), COMPACTION NOT USED

5 BIT(3), RESERVED

5 PL100_RDCOM BIT(1), READ COMPATIBILITY

Start of VERSION 2 fields

99 (63) CHARACTER 8 PL100_MEDIANAME VOLUME MEDIA NAME

107 (6B) CHARACTER 4 PL100_CRDATE DATA SET CREATION DATE

PACKED DECIMAL YYYYDDDS

111 (6F) CHARACTER 4 PL100_CRTIME DATA SET CREATION DATE

PACKED DECIMAL HHMMSSTS

115 (73) CHARACTER 4 PL100_XPDATE DATA SET EXPIRATION DATE

PACKED DECIMAL YYYYDDDS

119 (77) CHARACTER 6 PL100_PREVOL PREVIOUS VOLUME IN SEQ.

125 (7D) CHARACTER 8 PL100_CRJOB CREATING JOB NAME

133 (85) CHARACTER 4 PL100_TEPMTDSI TDSI FROM IFGTEP WORK AREA

133 (85) CHARACTER 1 PL100_TEPMTDS1 RECORDING TECHNOLOGY

134 (86) CHARACTER 1 PL100_TEPMTDS2 MEDIA TYPE

135 (87) CHARACTER 1 PL100_TEPMTDS3 COMPACTION

136 (88) CHARACTER 1 PL100_TEPMTDS4 SPECIAL ATTRIBUTES

EDGPL100

Appendix B. DFSMSrmm Mapping Macros 489

|

EDGPL100 Constants

 Table 65. Constants for EDGPL100

Len Type Value Name Description

CONSTANTS USED TO INITIALIZE THE EDGPL100 HEADER SECTION

8 CHARACTER EDGPL100 PL100_IDENTV CONTROL BLOCK ID

1 DECIMAL 2 PL100_VER# VERSION NUMBER

1 DECIMAL 0 PL100_REV# REVISION NUMBER

1 DECIMAL 0 PL100_SP# SUBPOOL NUMBER

2 DECIMAL 192 PL100_LEN# CB LENGTH

CONSTANTS TO COMPACTION AND READ COMPATIBILITY 4 BYTE TDSI

1 DECIMAL 1 PL100_TEPM_NOCMP NOT COMPACTED

1 DECIMAL 2 PL100_TEPM_BIDRC YES COMPACTED

1 DECIMAL 1 PL100_TEPM_RDCOM READ COMPATIBILITY@SFA

CONSTANTS TO DEFINE LOCATION TYPE

1 HEX 00 PL100_LOC_LOAN Loan location

1 HEX 01 PL100_LOC_STORE Storage location

1 HEX 02 PL100_LOC_LIBRARY Library

EDGPL100 Cross Reference

 Name Offset Hex Tag Level

PL100 0 1

PL100_ACCODE A8 2

PL100_ACEROPTR B0 2

PL100_AL 2C 40 2

PL100_ASA 5E 4 2

PL100_BIDRC 62 20 2

PL100_BLK# 58 2

PL100_BLKSI 54 2

PL100_BLP 2C 10 2

PL100_CAN_IGNORE 10 80 2

PL100_CAN_IGNORE_FILE2_TON 10 10 2

PL100_CAN_POOL 10 4 2

PL100_CAN_RACKNO 10 20 2

PL100_CAN_VRS 10 40 2

PL100_CRDATE 6B 2

PL100_CRDT 2D 2

PL100_CRJOB 7D 2

PL100_CRTIME 6F 2

PL100_DDNAME 98 2

PL100_DEN 60 2

PL100_DISPDD A0 2

PL100_DSN 0 2

PL100_END C0 2

PL100_FEOV 33 20 2

PL100_FIX 5E 80 2

PL100_FOUT 33 80 2

PL100_FSCT 5C 2

PL100_FUNCTION 24 0 2

PL100_FUNCTION2 25 2

PL100_HDR 0 2

PL100_IDENT 0 C5C4C7D7 2

PL100_INFO 11 0 2

PL100_INFO_CMOVE 11 10 2

PL100_INFO_DISPDD 11 20 2

EDGPL100

490 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

||
|||||
|

Name Offset Hex Tag Level

PL100_INFO_IGNORE 11 80 2

PL100_INFO_MTL 11 4 2

PL100_INFO_NOTRMM 11 40 2

PL100_INFO_USERDATA 11 8 2

PL100_ITS_CLOSE 10 2 2

PL100_JFCBPTR 28 2

PL100_JOBNAM 3A 2

PL100_LAB_USERDATA 40 2

PL100_LABDS 0 1

PL100_LABINFO 3C 2

PL100_LABPTR 88 2

PL100_LEN# C0 C0 2

PL100_LENGTH C 2

PL100_LOC_LIBRARY 94 2 2

PL100_LOC_LOAN 94 0 2

PL100_LOC_STORE 94 1 2

PL100_LOCATION 8C 2

PL100_LOCTYPE 94 2

PL100_LRECL 52 2

PL100_LTYP 2C 2

PL100_MAC 5E 2 2

PL100_MEDIANAME 63 2

PL100_MED1 61 1 2

PL100_MED2 61 2 2

PL100_MED3 61 3 2

PL100_MED4 61 4 2

PL100_MOUNT_VOLSER 1A 2

PL100_NL 2C 1 2

PL100_NOCMP 62 10 2

PL100_NSL 2C 4 2

PL100_NVOL 5F 2

PL100_OFLAG 33 2

PL100_POOL 34 34 2

PL100_PREVOL 77 2

PL100_RACKNO 34 2

PL100_RDCOM 62 1 2

PL100_RECFM 5E 2

PL100_REQ_VOLSER 14 2

PL100_REV# C0 0 2

PL100_REVNO 9 2

PL100_RFB 5E 10 2

PL100_RFO 5E 20 2

PL100_RFS 5E 8 2

PL100_SET_ACLOFF 24 1 2

PL100_SET_CMOVE 25 80 2

PL100_SET_IGNORE 24 80 2

PL100_SET_IGNORE_FILE2_TON 24 10 2

PL100_SET_IGNORE_MOUNTED 24 40 2

PL100_SET_IGNORE_REQUESTED 24 20 2

PL100_SET_IGNORE_SGNAME 25 20 2

PL100_SET_NOCMOVE 25 40 2

PL100_SET_NOLABEL 24 8 2

PL100_SET_POOL 24 4 2

PL100_SL 2C 2 2

EDGPL100

Appendix B. DFSMSrmm Mapping Macros 491

Name Offset Hex Tag Level

PL100_SP# C0 0 2

PL100_STPNAM 42 2

PL100_SUBPOOL A 2

PL100_SYSTEM 4A 2

PL100_TDSI1_OLD 61 2

PL100_TDSI2_OLD 62 2

PL100_UL 2C 8 2

PL100_UND 5E C0 2

PL100_UNIT 56 2

PL100_VALID 10 0 2

PL100_VAR 5E 40 2

PL100_VER# C0 2 2

PL100_VERNO 8 2

PL100_VOLSER 34 2

PL100_VRS 2C 2

PL100_WTOPTR 20 2

PL100_XPDATE 73 2

PL100_XPDT 30 2

PL100_128TRK 61 30 2

PL100_18TRK 61 10 2

PL100_36TRK 61 20 2

Installation Exit Mapping Macro: EDGPL200

EDGPL200 maps the DFSMSrmm installation exit, EDGUX200, parameter list. See

“Using the DFSMSrmm EDGUX200 Installation Exit” on page 297 for information

about using the EDGPL100 installation exit.

 Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 136 PL200 EDGUX200 PARAMETER LIST

0 (0) CHARACTER 16 PL200_HDR CONTROL BLOCK HEADER

THE FOLLOWING FIELDS CAN BE VALIDATED BY EDGUX200 BEFORE PROCESSING

0 (0) CHARACTER 8 PL200_IDENT CONTROL BLOCK ID

8 (8) UNSIGNED 1 PL200_VERNO CONTROL BLOCK VERSION

NUMBER

9 (9) UNSIGNED 1 PL200_REVNO CONTROL BLOCK REVISION

NUMBER

10 (A) UNSIGNED 2 PL200_SUBPOOL CONTROL BLOCK SUBPOOL

NUMBER

12 (C) UNSIGNED 4 PL200_LENGTH CONTROL BLOCK LENGTH

INPUT FIELDS START HERE

16 (10) BITSTRING 1 PL200_VALID VALID FUNCTIONS

 1... PL200_CAN_SCRTCH CAN REQUEST VOL. IS IGNORED

 .111 1111 * RESERVED

17 (11) CHARACTER 3 * RESERVED

20 (14) CHARACTER 6 PL200_VOLSER RMM DEFINED VOLUME SERIAL

NUMBER

26 (1A) CHARACTER 6 PL200_RACK_NUMBER RMM DEFINED RACK NUMBER

32 (20) CHARACTER 8 PL200_MEDIA_NAME VOLUME MEDIA NAME

40 (28) CHARACTER 8 PL200_LOCATION VOLUME LOCATION

48 (30) UNSIGNED 2 PL200_VOLSEQ VOLUME SEQUENCE NUMBER

50 (32) CHARACTER 44 PL200_DSNAME 1ST FILE DATA SET NAME

94 (5E) BITSTRING 1 PL200_VOLUME_FLAGS STATUS FLAGS FOR VOLUME

 1... PL200_SMS_VOL VOLUME IS SMS MANAGED

EDGPL100

492 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

||

Offsets

Dec Hex Type Len Name (Dim) Description

 .111 1111 * RESERVED

OUTPUT FIELDS START HERE

95 (5F) BITSTRING 1 PL200_FUNCTION REQUESTED FUNCTION

 1... PL200_SET_NOSCRTCH DO NOT RETURN TO SCRATCH

 .1.. PL200_SET_IGNORE_DSN DO NOT RETURN TO SCRATCH

 ..11 1111 * RESERVED

96 (60) CHARACTER 30 PL200_DESCRIPTION USER DESCRIPTION

126 (7E) CHARACTER 8 PL200_OWNER VOLUME OWNER ID

136 (88) CHARACTER 0 PL200_END END OF PL200

EDGPL200 Constants

 Table 66. Constants for EDGPL200

Len Type Value Name Description

CONSTANTS USED TO INITIALIZE THE PL200 HEADER SECTION

8 CHARACTER EDGPL200 PL200_IDENTV CONTROL BLOCK ID

1 DECIMAL 1 PL200_VER# VERSION NUMBER

1 DECIMAL 1 PL200_REV# REVISION NUMBER

1 DECIMAL 1 PL200_SP# SUBPOOL NUMBER

2 DECIMAL 136 PL200_LEN# CB LENGTH

EDGPL200 Cross Reference

 Name Offset Hex Tag Level

PL200 0 1

PL200_CAN_SCRTCH 10 80 3

PL200_DESCRIPTION 60 2

PL200_DSNAME 32 2

PL200_END 88 2

PL200_FUNCTION 5F 2

PL200_HDR 0 2

PL200_IDENT 0 3

PL200_LENGTH C 3

PL200_LOCATION 28 2

PL200_MEDIA_NAME 20 2

PL200_OWNER 7E 2

PL200_RACK_NUMBER 1A 2

PL200_REVNO 9 3

PL200_SET_IGNORE_DSN 5F 40 3

PL200_SET_NOSCRTCH 5F 80 3

PL200_SMS_VOL 5E 80 3

PL200_SUBPOOL A 3

PL200_VALID 10 2

PL200_VERNO 8 3

PL200_VOLSEQ 30 2

PL200_VOLSER 14 2

PL200_VOLUME_FLAGS 5E 2

Sticky Label Data: EDGSLAB

EDGSLAB maps the DFSMSrmm sticky label data area. See Chapter 21, “Setting

Up DFSMSrmm Disposition Processing,” on page 461 for more information about

the default sticky labels you can request with DFSMSrmm disposition processing.

EDGPL200

Appendix B. DFSMSrmm Mapping Macros 493

|
||||||
||||||
|

||
|||||
|

|

|

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE 2024 SLAB

0 (0) CHARACTER 8 SLABID

8 (8) UNSIGNED 1 SLABSPL SLAB SUBPOOL NUMBER

9 (9) UNSIGNED 3 SLABSIZE SLAB TOTAL SIZE

12 (C) UNSIGNED 1 SLABKEY SLAB PROTECTION KEY

13 (D) UNSIGNED 1 SLABVER SLAB VERSION

14 (E) UNSIGNED 1 SLABLRECL SLAB OUTPUT FILE LRECL

15 (F) BITSTRING 1 SLABTYPE SLAB LABEL TYPE

1... SLABTYPE_CART SLAB CARTRIDGE LABEL

BUILT

.1.. SLABTYPE_REEL SLAB REEL LABEL BUILT

..11 1111 * RESERVED

16 (10) UNSIGNED 1 SLABCOL SLAB NUMBER OF COLUMNS

17 (11) UNSIGNED 1 SLABROW SLAB NUMBER OF ROWS

18 (12) UNSIGNED 2 * RESERVED

20 (14) CHARACTER 2000 SLABLAB SLAB STICKY LABEL

20 (14) CHARACTER 2000 SLABMAX SLAB MAXIMUM SIZE

20 (14) CHARACTER 800 SLABCART (0) SLAB CARTRIDGE LABEL

LAYOUT

20 (14) CHARACTER 80 SLABCLN1 SLAB RECORD 1

20 (14) CHARACTER 44 SLABCDSN SLAB CART. LABEL DSNAME

100 (64) CHARACTER 80 SLABCLN2 SLAB RECORD 2

100 (64) CHARACTER 69 SLABCUSR SLAB USER DATA !

180 (B4) CHARACTER 80 SLABCLN3 SLAB RECORD 3

260 (104) CHARACTER 80 SLABCLN4 SLAB RECORD 4

260 (104) CHARACTER 1 *

261 (105) CHARACTER 8 SLABCJBN SLAB CART. LABEL JOBNAME

269 (10D) CHARACTER 5 *

274 (112) CHARACTER 10 SLABCCRD SLAB CART. LABEL CREATE

DATE

340 (154) CHARACTER 80 SLABCLN5 SLAB RECORD 5

340 (154) CHARACTER 14 *

354 (162) CHARACTER 10 SLABCEXP SLAB CART. LABEL EXPIR.

DATE

420 (1A4) CHARACTER 80 SLABCLN6 SLAB RECORD 6

420 (1A4) CHARACTER 1 *

421 (1A5) CHARACTER 4 SLABCDEN SLAB CART. LABEL DENSITY

425 (1A9) CHARACTER 1 *

426 (1AA) CHARACTER 4 SLABCCMP SLAB CART. LABEL

COMPACTION

430 (1AE) CHARACTER 1 *

431 (1AF) CHARACTER 5 SLABCLRC SLAB CART. LABEL LRECL

436 (1B4) CHARACTER 1 *

437 (1B5) CHARACTER 6 SLABCBLK SLAB CART. LABEL BLKSIZE

443 (1BB) CHARACTER 2 *

445 (1BD) CHARACTER 4 SLABCRCF SLAB CART. LABEL RECFM

500 (1F4) CHARACTER 80 SLABCLN7 RECORD 7

580 (244) CHARACTER 80 SLABCLN8 RECORD 8/entry>

580 (244) CHARACTER 1 *

581 (245) CHARACTER 6 SLABCVSL SLAB CART. LABEL VOLSER

587 (24B) CHARACTER 1 *

588 (24C) CHARACTER 4 SLABCSQN SLAB CART. LABEL VOL

592 (250) CHARACTER 1 *

EDGSLAB

494 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Offsets

Dec Hex Type Len Name (Dim) Description

593 (251) CHARACTER 3 SLABCLAB SLAB CART. LABEL VOL LABL

TYPE

596 (254) CHARACTER 7 *

603 (25B) CHARACTER 4 SLABCDVC SLAB CART. LABEL DEVICE

NUMBER

660 (294) CHARACTER 80 SLABCLN9 SLAB RECORD 9

740 (2E4) CHARACTER 80 SLABCLNA SLAB RECORD 10

20 (14) CHARACTER 800 SLABTAPE SLAB TAPE LABEL LAYOUT

20 (14) CHARACTER 80 SLABTLN1 SLAB RECORD 1

20 (14) CHARACTER 44 SLABTDSN SLAB TAPE LABEL DSNAME

100 (64) CHARACTER 80 SLABTLN2 RECORD 2

100 (64) CHARACTER 69 SLABTUSR SLAB TAPE DATA !

180 (B4) CHARACTER 80 SLABTLN3 RECORD 3

180 (B4) CHARACTER 4 *

184 (B8) CHARACTER 8 SLABTJBN SLAB TAPE LABEL JOBNAME

192 (C0) CHARACTER 18 *

210 (D2) CHARACTER 10 SLABTCRD SLAB TAPE LABEL CREATE

DATE

260 (104) CHARACTER 80 SLABTLN4 RECORD 4

340 (154) CHARACTER 80 SLABTLN5 RECORD 5

340 (154) CHARACTER 1 *

341 (155) CHARACTER 4 SLABTDEN SLAB TAPE LABEL DENSITY

345 (159) CHARACTER 1 *

346 (15A) CHARACTER 4 SLABTCMP SLAB TAPE LABEL

COMPACTION

350 (15E) CHARACTER 1 *

351 (15F) CHARACTER 5 SLABTLRC SLAB TAPE LABEL LRECL

356 (164) CHARACTER 1 *

357 (165) CHARACTER 6 SLABTBLK SLAB TAPE LABEL BLKSIZE

363 (16B) CHARACTER 2 *

365 (16D) CHARACTER 4 SLABTRCF SLAB TAPE LABEL RECFM

369 (171) CHARACTER 1 *

370 (172) CHARACTER 10 SLABTEXP SLAB TAPE LABEL EXPIR.

DATE

420 (1A4) CHARACTER 80 SLABTLN6 RECORD 6

500 (1F4) CHARACTER 80 SLABTLN7 RECORD 7

500 (1F4) CHARACTER 15 *

515 (203) CHARACTER 6 SLABTVSL SLAB TAPE LABEL VOLSER

521 (209) CHARACTER 1 *

522 (20A) CHARACTER 4 SLABTSQN SLAB TAPE LABEL VOL

SEQUENCE

526 (20E) CHARACTER 1 *

527 (20F) CHARACTER 3 SLABTLAB SLAB TAPE LABEL VOL LABL

TYPE

530 (212) CHARACTER 6 *

536 (218) CHARACTER 4 SLABTDVC SLAB TAPE LABEL DEVICE

NUMBER

580 (244) CHARACTER 80 SLABTLN8 RECORD 8

660 (294) CHARACTER 80 SLABTLN9 SLAB RECORD 9

740 (2E4) CHARACTER 80 SLABTLNA SLAB RECORD 10

2024 (7E8) CHARACTER 0 SLABEND (0) END OF STICKY LABEL

LAYOUT

EDGSLAB

Appendix B. DFSMSrmm Mapping Macros 495

||
||||||||
||||||||
|
||||||||
||||||||
|

EDGSLAB Constants

 Table 67. Constants for EDGSLAB

Len Type Value Name Description

1 DECIMAL 1 SLABVER# VERSION NUMBER

1 DECIMAL 5 SLABKEY# KEY NUMBER

1 DECIMAL 230 SLABSP# SUBPOOL NUMBER

1 DECIMAL 10 SLABROW# DEFAULT NUMBER OF ROWS

1 DECIMAL 80 SLABCOL# DEFAULT NUMBER OF COLUMNS

1 DECIMAL 80 SLABLRECL# DEFAULT NUMBER OF COLUMNS

2 DECIMAL 2024 SLABLNG

EDGSLAB Cross Reference

 Name Offset Hex Tag Level

SLAB 0 1

SLABCART 14 3

SLABCBLK 1B5 5

SLABCCMP 1AA 5

SLABCCRD 112 5

SLABCDEN 1A5 5

SLABCDSN 14 5

SLABCDVC 25B 5

SLABCEXP 162 5

SLABCJBN 105 5

SLABCLAB 251 5

SLABCLNA 2E4 4

SLABCLN1 14 4

SLABCLN2 64 4

SLABCLN3 B4 4

SLABCLN4 104 4

SLABCLN5 154 4

SLABCLN6 1A4 4

SLABCLN7 1F4 4

SLABCLN8 244 4

SLABCLN9 294 4

SLABCLRC 1AF 5

SLABCOL 10 5

SLABCRCF 1BD 5

SLABCSQN 24C 5

SLABCUSR 64 5

SLABCVSL 245 5

SLABEND 7E8 2

SLABID 0 2

SLABKEY C 2

SLABLAB 14 2

SLABLRECL E 2

SLABMAX 14 3

SLABROW 11 2

SLABSIZE 9 2

SLABSPL 8 2

SLABTAPE 14 3

SLABTBLK 165 5

SLABTCMP 15A 5

SLABTCRD D2 5

SLABTDEN 155 5

EDGSLAB

496 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

||

|

Name Offset Hex Tag Level

SLABTDSN 14 5

SLABTDVC 218 5

SLABTEXP 172 5

SLABTJBN B8 5

SLABTLAB 20F 5

SLABTLNA 2E4 4

SLABTLN1 14 4

SLABTLN2 64 4

SLABTLN3 B4 4

SLABTLN4 104 4

SLABTLN5 154 4

SLABTLN6 1A4 4

SLABTLN7 1F4 4

SLABTLN8 244 4

SLABTLN9 294 4

SLABTLRC 15F 5

SLABTRCF 16D 5

SLABTSQN 20A 5

SLABTUSR 64 5

SLABTVSL 203 5

SLABTYPE F 2

SLABTYPE_CART F 80 3

SLABTYPE_REEL F 40 3

SLABVER D 2

EDGSLAB

Appendix B. DFSMSrmm Mapping Macros 497

EDGSLAB

498 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Appendix C. Using DFSMSrmm Samples

DFSMSrmm provides several samples in SAMPLIB, SMPSTS, and

SYS1.SEDGEXE1. Table 68 lists the samples that are available and where they can

be found after SMP/E APPLY processing. After SMP/E ACCEPT processing,

samples in SAMPLIB move to ASAMPLIB and samples in SMPSTS move to the

AEDGSRC1 library.

You can use the IBM Tivoli Workload Scheduler for z/OS sample jobs or procedures

with other scheduling systems. In some cases, you must modify the sample jobs.

 Table 68. SAMPLIB and SMPSTS Members

Member Name Shows You How To Supplied In

CBRUXCUA Use programming interface to EDGLCSUX SMPSTS

CBRUXEJC Use programming interface to EDGLCSUX SMPSTS

CBRUXENT Use programming interface to EDGLCSUX SMPSTS

CBRUXVNL Use programming interface to EDGLCSUX SMPSTS

EDG3IIP1 Update IATIIP1 to force DEFER for all tape requests SAMPLIB

EDG3LVVR Update IATLVVR to AWAIT MSGDISP for scratch mounts SAMPLIB

EDG3UX29 Install a JES3 USERMOD SAMPLIB

EDG3UX62 Update IATUX62 to override JES3 rejection of standard

label tapes

SAMPLIB

EDG3UX71 Update IATUX71 to replace and append text to JES3

fetch and mount messages and to provide text for tape

drive displays

SAMPLIB

EDGBETT Sample procedure for Tivoli event trigger tracking of

backup

SAMPLIB

EDGCLIBQ Use reports for VM tape volumes SAMPLIB

EDGCLMS Convert volume information into commands SAMPLIB

EDGDFRMM Create a procedure in SYS1.PROCLIB SAMPLIB

EDGHCLT Sample shows how to issue RMM subcommands using

DFSMSrmm classes and methods

SAMPLIB

EDGIVPPM Parmlib member for supplied Installation Verification

Program (IVP)

SAMPLIB

EDGIVP1 IVP job 1 - initializes tape volumes SAMPLIB

EDGIVP2 IVP job 2 - uses tape volumes SAMPLIB

EDGJACTP Print the ACTIVITY file SAMPLIB

EDGJAUDM Create a monthly archive from weekly audit reports SAMPLIB

EDGJAUDW Create a weekly archive from daily audit reports SAMPLIB

EDGJBCAV Build RMM ADDVOLUME subcommands from a list of

barcode scanned volumes

SAMPLIB

EDGJBKP1 Sample Tivoli job for running backup SAMPLIB

EDGJBKP2 Sample Tivoli job for running backup SAMPLIB

EDGJBKUP Sample JCL for using the backup program SAMPLIB

EDGJCMOV Sample Tivoli job for confirming volume moves SAMPLIB

EDGJCOMB Audit tape library using a list of barcode scanned

volumes

SAMPLIB

EDGJCVB Create a report of volumes in a storage location SAMPLIB

EDGJDHKP Sample Tivoli job for running daily inventory management SAMPLIB

EDGJDSN Create a report of data sets sorted by data set name SAMPLIB

EDGJEJC Sample Tivoli job for ejecting volumes from

system-managed libraries

SAMPLIB

EDGJEXP Sample Tivoli job for running expiration processing SAMPLIB

EDGJHKPA Sample JCL for allocating the data sets required for

inventory management

SAMPLIB

© Copyright IBM Corp. 1992, 2007 499

Table 68. SAMPLIB and SMPSTS Members (continued)

Member Name Shows You How To Supplied In

EDGJHSKP Sample JCL for using the utility program EDGHSKP SAMPLIB

EDGJIMPC Sample JCL to create an import list from CLIST output SAMPLIB

EDGJINER Sample JCL for using the utility program EDGINERS SAMPLIB

EDGJLOPC Sample JCL for running the IBM Tivoli Workload

Scheduler for z/OS batch loader utility to define

DFSMSrmm as an application to IBM Tivoli Workload

Scheduler for z/OS

SAMPLIB

EDGJMFAL Sample JCL for allocating the control data set SAMPLIB

EDGJMOVE Sample Tivoli job for creating movement reports SAMPLIB

EDGJNLAL Sample JCL for allocating the journal SAMPLIB

EDGJNSCR Create a report of volumes recently returned to scratch

status

SAMPLIB

EDGJRACK Create a report based on rack number prefixes SAMPLIB

EDGJRECL Create a report containing information about lost volumes SAMPLIB

EDGJRECV Build RMM subcommands to add volumes to DFSMSrmm SAMPLIB

EDGJROWN Create a report about owners sorted by name and

department number

SAMPLIB

EDGJRPT Sample JCL to create reports using the extended report

extract file

SAMPLIB

EDGJRVOL Create a report about volumes; by volume serial number,

by rack number, by security level, by owner, and by

expiration date

SAMPLIB

EDGJSCRL Sample Tivoli job for creating scratch listings SAMPLIB

EDGJSMF Create a report of SMF records SAMPLIB

EDGJSMFP Create a list of types of SMF record found SAMPLIB

EDGJUTIL Sample JCL for initializing the control data set SAMPLIB

EDGJVFY Sample Tivoli job for verifying control data set contents SAMPLIB

EDGJVLT Create a report about volumes currently in storage

locations sorted by volume serial number

SAMPLIB

EDGJVLTM Create a report about volumes moving to storage

locations

SAMPLIB

EDGJVME Sample JCL for creating reports for VM tape volumes SAMPLIB

EDGJVOL Create a report about volumes sorted by volume serial

number

SAMPLIB

EDGJVRSV Sample Tivoli job for running vital record processing trial

run

SAMPLIB

EDGJWHKP Sample Tivoli job for running weekly inventory

management

SAMPLIB

EDGLABEL Started procedure for initializing and erasing tapes SAMPLIB

EDGPACTA Sample Tivoli procedure for allocating ACTIVITY report

files

SAMPLIB

EDGPACTC Sample Tivoli procedure sort input SAMPLIB

EDGPACTD Sample Tivoli procedure sort input SAMPLIB

EDGPACTI Sample Tivoli procedure ICETOOL control statements SAMPLIB

EDGPACTM Sample Tivoli procedure sort input SAMPLIB

EDGPACTP Sample Tivoli procedure reporting on ACTIVITY file SAMPLIB

EDGPACTT Sample Tivoli procedure sort input SAMPLIB

EDGPACTV Sample Tivoli procedure sort input SAMPLIB

EDGPBKUP Sample Tivoli procedure for control data set backup SAMPLIB

EDGPCMOV Sample Tivoli procedure for global volume move

confirmation

SAMPLIB

EDGPEJC Sample Tivoli procedure for ejecting volumes SAMPLIB

EDGPEXP Sample Tivoli procedure for running expiration processing SAMPLIB

500 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Table 68. SAMPLIB and SMPSTS Members (continued)

Member Name Shows You How To Supplied In

EDGPHKP Sample Tivoli procedure for running inventory

management

SAMPLIB

EDGPHKPA Sample Tivoli procedure for allocating inventory

management data sets

SAMPLIB

EDGPINER Sample Tivoli procedure for labeling and erasing tapes SAMPLIB

EDGPMOVE Sample Tivoli procedure for creating movement reports SAMPLIB

EDGPMSGA Sample Tivoli procedure for allocating the next generation

of the MESSAGE file

SAMPLIB

EDGPMSGC Sample Tivoli procedure for copying the MESSAGE file

and creating the next generation of the MESSAGE file

SAMPLIB

EDGPRPTA Sample Tivoli procedure for allocating the next generation

of the report extract file

SAMPLIB

EDGPRPTX Sample Tivoli procedure for creating the report extract file SAMPLIB

EDGPSCRL Sample Tivoli procedure for creating the scratch list report SAMPLIB

EDGPVFY Sample Tivoli procedure for verifying the contents of the

control data set

SAMPLIB

EDGPVRSA Sample Tivoli procedure for allocating the next generation

of the REPORT file and the ACTIVITY file

SAMPLIB

EDGRHKPA Sample Tivoli exec for defining GDG bases SAMPLIB

EDGRCSCR REXX Exec to convert pool information to ACS routine

input and VLPOOL definitions

EDGEXE1

EDGRRPTE REXX Exec to create reports using the extended report

extract file

EDGEXE1

EDGRRPTR REXX Exec to create an extended report extract file EDGEXE1

EDGRVCLN REXX Exec to report and update existing vital record

specifications

EDGEXE1

EDGSETT Sample Tivoli procedure for event trigger tracking of

low-on-scratch volume condition

SAMPLIB

EDGUX100 Use the installation exit EDGUX100 SAMPLIB

EDGUX200 Use the installation exit EDGUX200 SAMPLIB

EDGXMP1 REXX EXEC to list all volumes in a multivolume set SAMPLIB

EDGXMP2 REXX EXEC to list all data set information for a given

volume

SAMPLIB

EDGXMP3 REXX EXEC to show how the EDGRLCL exec can be

coded to handle the ’U’ line command.

SAMPLIB

EDGXPROC Replenish scratch volumes in a automated tape library SAMPLIB

IGXMSGEX Use programming interface to EDGMSGEX SMPSTS

Appendix C. Using DFSMSrmm Samples 501

502 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Appendix D. Evaluating Removable Media Management Needs

Use the list of questions to assess your current tape management practices and

anticipate future requirements. You need your answers to these questions later,

when you assess direct access storage device (DASD) needs for the control data

set, journal, and report extract data set.

If you plan to change anything about the removable media library, such as

increasing the number of volumes, consider the changes shown in Table 69 when

identifying your DASD needs.

 Table 69. Evaluating Removable Media Management Needs

Task Subtask

Determine the number of resources

you have in your removable media

library.

How many volumes do you have in your removable media library?

 A volume is any type of removable media, such as a tape cartridge or an

optical disk. Add an average of five volumes in your count for each

software product in your installation.

How many shelf locations or slots do you maintain in your removable media

library and in your storage locations?

 A shelf location is a single space on a shelf where you store a volume.

Count all shelves in the library and in your storage locations. For

DFSMSrmm subcommands and the ISPF dialog, shelf locations in the

removable media library are called rack numbers. Shelf locations in

storage locations are called bin numbers.

How many data sets do you have on removable media?

 Count any data sets on your removable media.

How many different individuals or groups use removable media?

 DFSMSrmm can keep track of owners and of removable media in the

DFSMSrmm control data set.

Determine the number of requests

submitted to your removable media

library.

How many scratch tape mounts are performed daily?

 A scratch tape mount is a non-specific tape mount as, for example, when

someone requests a blank tape.

How many non-scratch tape mounts are performed daily?

 A non-scratch tape mount is a specific tape mount as, for example, when

someone requests a tape he or she owns or a software product tape.

Determine the types of activities taking

place in your media library.

What activities are performed to support disaster recovery and vital records

management?

 How many volumes enter and leave your removable media library daily?

This includes volumes moving to storage locations for disaster recovery

and vital records, as well, as foreign tapes entering your library.

How many volumes are returned to scratch daily?

 This number can be used to calculate the space required for the journal.

How many volumes expire daily?

 This number can be used to calculate the space required for the journal.

How many logical volumes are imported and exported daily?

 This number can be used to calculate the space required for the journal.

Determine the number of information

changes that might be made to

DFSMSrmm information.

This number can be used to calculate the space required for the journal.

 Changes include information about data sets, owners, software products,

or volumes made by using the DFSMSrmm TSO subcommands or

DFSMSrmm ISPF dialog.

© Copyright IBM Corp. 1992, 2007 503

504 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Appendix E. Problem Determination Aid Log Data Set Size

Work Sheet for Long-Term Trace History

Use the work sheet to calculate the size of your PDA log data set (long term).

1. Fill in the blanks with values for your installation.

 ________ = ?UID - The high-level qualifier you want to

 use for the PDA log data sets.

 ________ = ?HOSTID - The identifier for the processing unit

 at your site.

 ________ = ?TRACEUNIT - The unit identifier for the device on

 which you want to allocate the PDA log

 data sets.

 ________ = ?TRACEVOL - The serial number for the volume on

 which you want to put your PDA log

 data sets.

2. Allocate the minimum recommended storage for PDA log data sets: 20

cylinders.

Substitute the values you have provided in step 1 of this work sheet, and run

the JCL job shown in “Allocating the Problem Determination Aid (PDA) Log Data

Sets” on page 459 to allocate and catalog the PDA log data sets.

If you allocated these data sets as SMS-managed data sets, they must be

allocated on a specific volume and they must be associated with a storage class

having the GUARANTEED SPACE attribute.

3. Allocate a generation data group (GDG) in which you can archive your site’s

trace history data.

The example defines the generation data group (GDG) name for the archived

problem determination output data set. Substitute the applicable values you

provided in step 1 of this work sheet, and run the JCL job shown in “Archiving

the Problem Determination Aid (PDA) Log Data Sets” on page 460 to create a

generation data group.

4. Develop a procedure to automatically copy your PDA log data sets to tape.

The example shows you how to copy the inactive trace data set to tape as a

generation data set (GDS). Substitute the applicable values you have provided

in step 1 of this work sheet, and run the JCL job shown in “Copying the Problem

Determination Aid (PDA) Log Data Sets to Tape” on page 460 to automatically

copy your PDA log data sets to tape.

© Copyright IBM Corp. 1992, 2007 505

506 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Appendix F. Problem Determination Aid Log Data Set Size

Work Sheet for Short-Term Trace History

Use the work sheet to calculate the size of your PDA log data set (short term).

1. Fill in the blanks with values for your installation.

________ = ?tracehours - The number of hours of trace history

 you want to retain.

________ = ?UID - The high-level qualifier you want to

 use for the PDA log data sets.

________ = ?HOSTID - The identifier for the processing unit

 at your site.

________ = ?TRACEUNIT - The unit identifier for the device on

 which you want to allocate the PDA log

 data sets.

________ = ?TRACEVOL - The serial number for the volume on

 which you want to put your PDA log

 data sets.

2. Allocate the minimum recommended storage for PDA log data sets which is 20

cylinders.

Substitute the values you used in step 1 of this work sheet, and run the JCL job

shown in Figure 206 to allocate and catalog the PDA log data sets.

If you have allocated these data sets as SMS-managed, they must be allocated

on a specific volume and they must be associated with a storage class having

the GUARANTEED SPACE attribute.

3. Measure the cylinders per hour trace history generation rate at your site.

After one hour of processing (during a time of high DFSMSrmm activity),

measure the amount of storage used to record that hour’s trace activity. Issue

the MODIFY command to swap the EDGPDOX and EDGPDOY data sets. After

you have swapped these data sets, the EDGPDOY data set will be ready to

measure and the EDGPDOX data set will be ready to receive additional trace

data.

F DFRMM,PDALOG=SWAP

Use the information gathered in this step to calculate the cylinders per hour.

Cylinders/hr = cylinders per hour of trace history

4. Calculate the total amount of cylinders required for your site’s trace history data.

((tracehours = ________) x (cylinders/hr = ________)) = ________

 Total = total number of cylinders of trace data

5. Divide in half the total cylinders required for your short-term trace history

interval. If the result is a fraction, round up to the next whole number.

 (Total =) = ________

 2

This step provides the total number of cylinders to allocate for each data set.

//ALLOPDO JOB MSGLEVEL=1,TYPRUN=HOLD

//STEP1 EXEC PGM=IEFBR14

//DD1 DD DSN=?UID..?HOSTID..RMMPDOX,DISP=(,CATLG),

// UNIT=?TRACEUNIT.,VOL=SER=?TRACEVOL.,SPACE=(CYL,(20))

//DD2 DD DSN=?UID..?HOSTID..RMMPDOY,DISP=(,CATLG),

// UNIT=?TRACEUNIT.,VOL=SER=?TRACEVOL.,SPACE=(CYL,(20))

Figure 206. JCL for Allocating and Cataloging PDA Log Data Sets

© Copyright IBM Corp. 1992, 2007 507

508 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Appendix G. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol Ifor information

about accessing TSO/E and ISPF interfaces. These guides describe how to use

TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF

keys). Each guide includes the default settings for the PF keys and explains how to

modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1992, 2007 509

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

510 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

© Copyright IBM Corp. 1992, 2007 511

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Programming interface information

This publication documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of DFSMSrmm.

Trademarks

These are trademarks of the International Business Machines Corporation in the

United States, or other countries, or both:

 IBM

DFSMSdfp

DFSMSdss

DFSMShsm

DFSMSrmm

DFSORT

IBMLink

NetView

RACF

TotalStorage

z/OS

z/VM

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

512 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Glossary

This glossary defines technical terms and

abbreviations used in DFSMS documentation. If

you do not find the term you are looking for, refer

to the index of the appropriate DFSMS manual or

view the Glossary of Computing Terms located at:

http://www.ibm.com/ibm/terminology/

This glossary includes terms and definitions from:

v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,

copyright 1990 by the American National

Standards Institute (ANSI). Copies may be

purchased from the American National

Standards Institute, 11 West 42nd Street, New

York, New York 10036. Definitions are identified

by the symbol (A) after the definition.

v The Information Technology Vocabulary

developed by Subcommittee 1, Joint Technical

Committee 1, of the International Organization

for Standardization and the International

Electrotechnical Commission (ISO/IEC

JTC1/SC1). Definitions of published part of this

vocabulary are identified by the symbol (I) after

the definition; definitions taken from draft

international standards, committee drafts, and

working papers being developed by ISO/IEC

JTC1/SC1 are identified by the symbol (T) after

the definition, indicating that final agreement

has not yet been reached among the

participating National Bodies of SC1.

v The IBM Dictionary of Computing, New York:

McGraw-Hill, 1994.

The following cross-reference is used in this

glossary:

See: This refers the reader to (a) a related

term, (b) a term that is the expanded form

of an abbreviation or acronym, or (c) a

synonym or more preferred term.

A

abend. Abnormal end of task.

ACEE. Accessor environment element.

AL. American National Standards Label.

AMODE. Addressing mode.

ANDVRS. An RMM ADDVRS TSO subcommand

operand. See alsoUsing AND.

ANSI. American National Standards Institute.

APAR. Authorized program analysis report.

API. Application Programming interface.

ASA. American Standards Association.

assigned date. The date that the volume is assigned

to the current owner. Assigned date is not meaningful

for a scratch volume.

AUL. ANSI and user header or trailer label.

automated tape library data server. A device

consisting of robotic components, cartridge storage

areas, tape subsystems, and controlling hardware and

software, together with the set of tape volumes that

reside in the library and can be mounted on the library

tape drives. Contrast with manual tape library. See also

tape library.

automatic cartridge loader. An optional feature of the

3480 Magnetic Tape Subsystem that allows preloading

of multiple tape cartridges. This feature is standard in

the 3490 Magnetic Tape Subsystem.

automatic recording. In DFSMSrmm, the process of

recording information about a volume and the data sets

on the volume in the DFSMSrmm control data set at

open or close time.

availability. For a storage subsystem, the degree to

which a data set or object can be accessed when

requested by a user.

B

backup. The process of creating a copy of a data set

or object to be used in case of accidental loss.

basic catalog structure (BCS). The name of the

catalog structure in the catalog environment.

basic format. The format of a data set that has a data

set name type (DSNTYPE) of BASIC. A basic format

data set is a sequential data set that is specified to be

neither large format nor extended format. The size of a

basic format data set cannot exceed 65 535 tracks on

each volume.

BCS. Basic catalog structure.

bin number. The specific shelf location where a

volume resides in a storage location; equivalent to a

rack number in the removable media library. See also

shelf location.

BLP. Bypass label processing.

© Copyright IBM Corp. 1992, 2007 513

BTLS. Basic Tape Library Support.

built-in storage location. One of the Removable

Media Manager defined storage locations: LOCAL,

DISTANT, and REMOTE.

Byte. 8 bit.

C

cache fast write. A storage control capability in which

the data is written directly to cache without using

nonvolatile storage. Cache fast write is useful for

temporary data or data that is readily recreated, such as

the sort work files created by DFSORT. Contrast with

DASD fast write.

cartridge eject. For an IBM Total Storage Enterprise

Automated Tape Library (3494), IBM TotalStorage

Enterprise Automated Tape Library (3495), or a manual

tape library, the act of physically removing a tape

cartridge, usually under robot control, by placing it in an

output station. The software logically removes the

cartridge by deleting or updating the tape volume record

in the tape configuration database. For a manual tape

library, the act of logically removing a tape cartridge

from the manual tape library by deleting or updating the

tape volume record in the tape configuration database.

cartridge entry. For either an IBM Total Storage

Enterprise Automated Tape Library (3494), IBM

TotalStorage Enterprise Automated Tape Library (3495),

or a manual tape library, the process of logically adding

a tape cartridge to the library by creating or updating

the tape volume record in the tape configuration

database. The cartridge entry process includes the

assignment of the cartridge to scratch or private

category in the library.

Cartridge System Tape. The base tape cartridge

media used with 3480 or 3490 Magnetic Tape

Subsystems. Contrast with Enhanced Capacity

Cartridge System Tape.

CDS. Control data set.

cell. A single cartridge location within an automated

tape library dataserver. See also rack number.

CIM. Common Information Model.

CIMOM. Common Information Model Object Manager.

CIM provider. A piece of code, such as a plugin for

the CIMOM, that links to the DFSMSrmm application

programming interface to obtain information about

DFSMSrmm resources.

circular file. A type of file that appends data until full.

Then, starting at the beginning of the file, subsequent

incoming data overwrites the data already there.

classpath. The name of a Windows-environment

variable that contains the names and paths of required

Java libraries.

client. (1) A user. (2) A consumer of resources or

services. (3) A functional unit that receives shared

services from a server. (4) A system that is dependent

on a server to provide it with programs or access to

programs. (5) On a network, the computer requesting

services or data from another computer.

client-server. (1) In TCP/IP, the model of interaction in

distributed data processing in which a program at one

site sends a request to a program at another site and

waits for a response. The requesting program is called

a client; the answering program is called a server. (2) A

model of computer interaction in which a server

provides resources for other systems on a network, and

a client accesses those resources. See also client,

client-server relationship, server.

client-server relationship. Any process that provides

resources to other processes on a network is a server.

Any process that employs these resources is a client. A

machine can run client and server processes at the

same time.

command line. On a display screen, a display line

usually at the bottom of the screen in which only

commands can be entered.

concurrent copy. A function to increase the

accessibility of data by enabling you to make a

consistent backup or copy of data concurrent with the

usual application program processing.

confirmation panel. A DFSMSrmm panel that lets you

tell DFSMSrmm to continue or stop a delete or release

action. You specify whether or not you want to confirm

delete or release requests in your dialog user options.

container. A receptacle in which one or more exported

logical volumes can be stored. A stacked volume

containing one or more logical volumes and residing

outside a virtual tape server library is considered to be

the container for those volumes.

container volume. See container.

control data set. A VSAM key-sequenced data set

that contains the complete inventory of your removable

media library, as well as the movement and retention

policies you define. In the control data set DFSMSrmm

records all changes made to the inventory, such as

adding or deleting volumes.

control data set ID. A one-to-eight character identifier

for the DFSMSrmm control data set used to ensure that,

in a multi-system, multi-complex environment, the

correct management functions are performed.

convenience input. The process of adding a small

number of tape cartridges to the IBM TotalStorage

514 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Enterprise Automated Tape Library (3494) and the IBM

TotalStorage Enterprise Automated Tape Library (3495)

without interrupting operations, by inserting the

cartridges directly into cells in a convenience input

station.

convenience input/output station. A transfer station

with combined tape cartridge input and output functions

in the IBM TotalStorage Enterprise Automated Tape

Libraries (3494) only.

convenience output. The process of removing a

small number of tape cartridges from the IBM

TotalStorage Enterprise Automated Tape Library (3494)

or the IBM TotalStorage Enterprise Automated Tape

Library (3495) without interrupting operations, by

removing the cartridges directly from cells in a

convenience input station.

convenience output station. A transfer station, used

by the operator to remove tape cartridges from the

automated tape library dataserver, which is accessible

from outside the enclosure area.

conversion. In DFSMSrmm, the process of moving

your removable media library inventory from another

media management system to DFSMSrmm.

DFSMSrmm manages the inventory and policies once

you have converted it.

create date. Create date for a data set is the date that

the data set is written to tape. Create date can also be

the date a data set was read if it was created before

DFSMSrmm is in use. Create date is updated each time

a data set is replaced and not extended. Create date for

volumes and other resources defined to DFSMSrmm is

the date the resource is defined to DFSMSrmm or the

date specified on the command as the create date.

D

DASD. Direct access storage device.

DASD fast write. An extended function of some

models of the IBM 3990 Storage Control in which data

is written concurrently to cache and nonvolatile storage

and automatically scheduled for destaging to DASD.

Both copies are retained in the storage control until the

data is completely written to the DASD, providing data

integrity equivalent to writing directly to the DASD. Use

of DASD fast write for system-managed data sets is

controlled by storage class attributes to improve

performance. See also dynamic cache management.

Contrast with cache fast write.

DASD volume. A DASD space identified by a common

label and accessed by a set of related addresses. See

also volume, primary storage, migration level 1,

migration level 2.

data column. A vertical arrangement of identical data

items, used on list panels to display an attribute,

characteristic, or value of one or more objects.

data control block (DCB). A control block used by

access method routines in storing and retrieving data.

data entry panel. A panel in which the user

communicates with the system by filling in one or more

fields.

Data Facility Storage Management Subsystem

(DFSMS). An operating environment that helps

automate and centralize the management of storage. To

manage storage, SMS provides the storage

administrator with control over data class, storage class,

management class, storage group, and automatic class

selection routine definitions.

Data Facility Sort. An IBM licensed program that is a

high-speed data processing utility. DFSORT provides an

efficient and flexible way to handle sorting, merging, and

copying operations, as well as providing versatile data

manipulation at the record, field, and bit level.

DCB. Data control block.

device. This term is used interchangeably with unit.

You mount a tape on a unit or device, such as a 3490.

DFSMS environment. An environment that helps

automate and centralize the management of storage.

This is achieved through a combination of hardware,

software, and policies. In the DFSMS environment for

MVS, this function is provided by DFSMS, DFSORT,

and RACF. See also system-managed storage.

DFSMSdfp. A DFSMS functional component or base

element of z/OS, that provides functions for storage

management, data management, program

management, device management, and distributed data

access.

DFSMSdss. A DFSMS functional component or base

element of z/OS, used to copy, move, dump, and

restore data sets and volumes.

DFSMShsm. A DFSMS functional component or base

element of z/OS, used for backing up and recovering

data, and managing space on volumes in the storage

hierarchy.

DFSMShsm-managed volume. (1) A primary storage

volume, which is defined to DFSMShsm but which does

not belong to a storage group. (2) A volume in a storage

group, which is using DFSMShsm automatic dump,

migration, or backup services. Contrast with

system-managed volume, DFSMSrmm-managed

volume.

DFSMShsm-owned volume. A storage volume on

which DFSMShsm stores backup versions, dump

copies, or migrated data sets.

Glossary 515

DFSMSrmm. A DFSMS functional component or base

element of z/OS, that manages removable media.

DFSMSrmm control data set. See control data set.

DFSMSrmm-managed volume. A tape volume that is

defined to DFSMSrmm. Contrast with system-managed

volume, DFSMShsm-managed volume.

disaster recovery. A procedure for copying and

storing an installation’s essential business data in a

secure location, and for recovering that data in the

event of a catastrophic problem. Compare with vital

records.

DISTANT. A DFSMSrmm built-in storage location ID.

See built-in storage location.

DNS. Domain Name System.

Domain Name System. In the Internet suite of

protocols, the distributed database system used to map

domain names to IP addresses.

dual copy. A high availability function made possible

by nonvolatile storage in some models of the IBM 3990

Storage Control. Dual copy maintains two functionally

identical copies of designated DASD volumes in the

logical 3990 subsystem, and automatically updates both

copies every time a write operation is issued to the dual

copy logical volume.

dump class. A set of characteristics that describes

how volume dumps are managed by DFSMShsm.

duplexing. The process of writing two sets of identical

records in order to create a second copy of data.

dynamic cache management. A function that

automatically determines which data sets will be cached

based on the 3990 subsystem load, the characteristics

of the data set, and the performance requirements

defined by the storage administrator.

E

EAR. (1) Enterprise Application Repository. (2)

Enterprise ARchive.

EETC. IBM TotalStorage Enterprise Economy Tape

Cartridge.

EEWTC. IBM TotalStorage Enterprise Economy

WORM Tape Cartridge.

EHPCT. Extended High Performance Cartridge Tape.

eject. The process used to remove a tape volume

from a system-managed library. For an automated tape

library dataserver, the volume is removed from its cell

location and moved to the output station. For a manual

tape library, the volume is not moved, but the tape

configuration database is updated to show that the

volume no longer resides in the manual tape library.

empty bin. A bin that can accept a volume.

Enhanced Capacity Cartridge System Tape.

Cartridge system tape with increased capacity that can

only be used with 3490E Magnetic Tape Subsystems.

Contrast with Cartridge System Tape.

entry panel. See data entry panel.

EREP. Environmental Record Editing and Printing

program.

ETC. IBM TotalStorage Enterprise Tape Cartridge.

EWTC. IBM TotalStorage Enterprise WORM Tape

Cartridge.

expanded output. The output produced by the

DFSMSrmm application programming interface when

you specify OUTPUT=FIELDS and EXPAND=YES. For

those subcommands for which expanded output applies,

your application program receives more variable data

than for standard output.

expiration. The process by which data sets and

volumes are identified as available for reuse. In

DFSMSrmm, all volumes have an expiration date or

retention period set for them either by vital record

specification policy, by user-specified JCL when writing

a data set to the volume, or by an installation default.

When a volume reaches its expiration date or retention

period, it becomes eligible for release.

expiration date. The date at which a file is no longer

protected against automatic deletion by the system.

expiration processing. The process of inventory

management that ensures expired volumes are released

and carries out required release actions on those

volumes.

export. The operation to remove one or more logical

volumes from a virtual tape server library. First, the list

of logical volumes to export must be written on an

export list volume and then, the export operation itself

must be initiated.

exported logical volume. A logical volume that has

gone through the export process and now resides on a

stacked volume outside a virtual tape server library.

export list volume. A virtual tape server logical

volume containing the list of logical volumes to export.

EXTC. IBM TotalStorage Enterprise Extended Tape

Cartridge.

extended bin support. Enhanced options for

managing shelf locations in a storage location including

optimized use of the number of bins.

516 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

 |
 |

extended extract data set file. A data set created

using the DFSMSrmm EDGJRPT exec. The records

within the data set combine data set and volume

information into single records.

extended record. A record in the DFSMSrmm extract

data set that is mapped by the EDGXREXT mapping

macro. The record contains both data set and volume

information.

external label. A label attached to the outside of a

tape cartridge that is to be stored in an IBM 3494 Tape

Library Dataserver or IBM 3495 Tape Library

Dataserver. The label might contain the DFSMSrmm

rack number of the tape volume.

extract data set. A data set that you use to generate

reports.

extract data set record. A record in an extract data

set that is mapped by a DFSMSrmm mapping macro.

EXWTC. IBM TotalStorage Enterprise Extended

WORM Tape Cartridge.

F

field format. Field format is where the output consists

of Structured Field Introducers and variable data rather

than output in line format.

filtering. The process of selecting data sets based on

specified criteria. These criteria consist of fully or

partially-qualified data set names or of certain data set

characteristics.

FIPS. Federal Information Processing Standard.

FMID. Function modification identifier.

FRR. Functional recovery routines.

G

generation data group (GDG). A collection of data

sets kept in chronological order. Each data set is a

generation data set.

generation data set (GDS). One generation of a

generation data group.

generation number. The number of a generation

within a generation data group. A zero represents the

most current generation of the group, a negative integer

(-1) represents an older generation and, a positive

integer (+1) represents a new generation that has not

yet been cataloged.

GDG. Generation data group.

GDS. Generation data set.

giga (G). The information-industry meaning depends

upon the context:

1. G = 1 073 741 824(2³⁰) for real and virtual storage.

2. G = 1 000 000 000 for disk storage capacity (for

example, a 4 GB fixed disk).

3. G = 1 000 000 000 for transmission rates.

global resource serialization (GRS). A component of

z/OS used for serializing use of system resources and

for converting hardware reserves on DASD volumes to

data set enqueues.

GPR. General purpose register.

GMT. Greenwich mean time.

GRS. Global resource serialization.

grouping. When creating a report, grouping sorts

report output contents into separate groups (and

separate pages) based upon field contents.

guaranteed space. A storage class attribute indicating

the space is to be preallocated when a data set is

created. If you specify explicit volume serial numbers,

SMS honors them. If space to satisfy the allocation is

not available on the user-specified volumes, the

allocation fails.

H

hardware configuration definition (HCD). An

interactive interface in z/OS that enables an installation

to define hardware configurations from a single point of

control.

HCD. Hardware configuration definition.

high-capacity input station. A transfer station, used

by the operator to add tape cartridges to the IBM

TotalStorage Enterprise Automated Tape Library (3494)

or the IBM TotalStorage Enterprise Automated Tape

Library (3495), which is inside the enclosure area.

high capacity output station. A transfer station, used

by the operator to remove tape cartridges from the

automated tape library dataserver, which is inside the

enclosure area.

home. See home location.

home location. For DFSMSrmm, the place where

DFSMSrmm normally returns a volume when the

volume is no longer retained by vital records

processing.

HPCT. High Performance Cartridge Tape.

Glossary 517

|
|

I

ICETOOL. The DFSORT multipurpose data processing

and reporting utility.

ID. Identifier.

IDRC. Improved data recording capability.

import. The operation to enter previously exported

logical volumes residing on a stacked volume into a

virtual tape server library. First, the list of logical

volumes to import must be written on an import list

volume and the stacked volumes must be entered, and

then, the import operation itself must be initiated.

import list volume. A virtual tape server logical

volume containing the list of logical volumes to import.

This list can contain individual logical volumes to import

and/or it can contain a list of stacked volumes in which

all logical volumes on the stacked volume are imported.

imported logical volume. An exported logical volume

that has gone through the import process and can be

referenced as a tape volume within a virtual tape server

library. An imported logical volume originates from a

stacked volume that went through the export process.

improved data recording capability (IDRC). A

recording mode that can increase the effective cartridge

data capacity and the effective data rate when enabled

and used. IDRC is always enabled on the 3490E

Magnetic Tape Subsystem.

installation defined storage location. A storage

location defined using the LOCDEF command in the

EDGRMMxx parmlib member.

Interactive Storage Management Facility (ISMF).

The interactive interface of DFSMS that allows users

and storage administrators access to the storage

management functions.

Interactive Problem Control System (IPCS). A

system facility that allows interactive problem analysis.

Interactive System Productivity Facility (ISPF). An

IBM licensed program used to develop, test, and run

interactive, panel-driven dialogs.

internal label. The internal label for standard label

tapes is recorded in the VOL1 header label,

magnetically recorded on the tape media.

Internet Protocol (IP). The TCP/IP layer between the

higher-level host-to-host protocol and the local network

protocols. IP uses local area network protocols to carry

packets in the form of diagrams to the next gateway or

destination host.

in transit. A volume state where a volume must be

moved from one location to another and DFSMSrmm

believes that the move has started, but has not yet

received confirmation that the move is complete. For a

volume moving from a system-managed library, the

move starts when the volume is ejected.

inuse bin. A bin that is occupied by a volume and into

which no volume can be assigned.

inventory management. The regular tasks that need

to be performed to maintain the control data set. See

also expiration processing, storage location

management processing, and vital record processing.

IP address. The unique 32-bit address that specifies

the location of each device or workstation in the

Internet. For example, 9.67.97.103 is an IP address.

IPCS. Interactive Problem Control System.

IPL. Initial program load.

ISPF. Interactive System Productivity Facility.

ISMF. Interactive Storage Management Facility.

ISO. International Organization for Standardization.

J

JCL. Job control language.

JES2. Job entry subsystem 2.

JES3. Job entry subsystem 3.

JFCB. Job file control block.

journal. A sequential data set that contains a

chronological record of changes made to the

DFSMSrmm control data set. You use the journal when

you need to reconstruct the DFSMSrmm control data

set. DFSMSrmm supports large format sequential data

sets for the journal.

K

keyword. A predefined word that is used as an

identifier.

kilo (K). The information-industry meaning depends

upon the context:

1. K = 1024(2¹⁰) for real and virtual storage.

2. K = 1000 for disk storage capacity (for example, a 4

KB fixed disk).

3. K = 1000 for transmission rates.

L

large format. The format of a data set that has a data

set name type (DSNTYPE) of LARGE. A large format

data set has the same characteristics as a sequential

(non-extended format) data set, but its size on each

518 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

volume can exceed 65 535 tracks. There is no minimum

size requirement for a large format data set.

Library Control System. The Object Access Method

component that controls optical and tape library

operations and maintains configuration information.

line format. Line format is where text and variable

data are formatted into lines suitable for displaying at a

terminal or printing as printed documentation.

LOCAL. A DFSMSrmm built-in storage location ID.

See built-in storage location.

location name. A name given to a place for

removable media that DFSMSrmm manages. A location

name can be the name of a system-managed library, a

storage location name, or the location SHELF,

identifying shelf space outside a system-managed

library or storage locations.

logical volume. Logical volumes have a many-to-one

association with physical tape media and are used

indirectly by z/OS applications. They reside in a Virtual

Tape Server or on exported stacked volumes.

Applications can access the data on these volumes only

when they reside in a Virtual Tape Server which makes

the data available via its tape volume cache or after the

data has been copied to a physical volume through the

use of special utilities.

low-on-scratch management. The process by which

DFSMSrmm replenishes scratch volumes in a

system-managed library when it detects that there are

not enough available scratch volumes.

LSR. Local shared resource.

M

management class. (1) A named collection of

management attributes describing the retention and

backup characteristics for a group of data sets, or for a

group of objects in an object storage hierarchy. For

objects, the described characteristics also include class

transition. (2) In DFSMSrmm, if assigned by ACS

routine to system-managed tape volumes, management

class can be used to identify a DFSMSrmm vital record

specification.

manual cartridge entry processing. The process by

which a volume is added to the tape configuration

database when it is added to a manual tape library.

DFSMSrmm can initiate this process.

manual mode. An operational mode where

DFSMSrmm runs without recording volume usage or

validating volumes. The DFSMSrmm TSO commands,

ISPF dialog, and inventory management functions are

all available in manual mode.

manual tape library. An installation-defined set of

stand-alone tape drives and the set of tape volumes

that can be mounted on those drives.

master system. The z/OS system where the master

DFSMSrmm control data set resides.

master volume. A private volume that contains data

that is available for write processing based on the

DFSMSrmm EDGRMMxx parmlib

MASTEROVERWRITE operand.

media format. The type of volume, recording format

and techniques used to create the data on the volume.

media library. Removable media library.

media management system. A program that helps

you manage removable media. DFSMSrmm is a media

management system.

media name. An up to 8 character value that

describes the shape or type of removable media stored

in a storage location. Examples of media name are:

SQUARE, ROUND, CARTRDGE, 3480.

media type. A value that specifies the volume’s media

type. Media type can be specified as *, CST, ECCST,

HPCT, EHPCT, ETC, EWTC, EETC, EEWTC, EXTC, or

EXWTC.

MEDIA1. Cartridge system tape.

MEDIA2. Enhanced capacity cartridge system tape.

MEDIA3. High performance cartridge tape.

MEDIA4. Extended high performance cartridge tape

MEDIA5. IBM TotalStorage Enterprise Tape Cartridge.

MEDIA6. IBM TotalStorage Enterprise WORM Tape

Cartridge.

MEDIA7. IBM TotalStorage Enterprise Economy Tape

Cartridge.

MEDIA8. IBM TotalStorage Enterprise Economy

WORM Tape Cartridge.

MEDIA9. IBM TotalStorage Enterprise Extended Tape

Cartridge.

MEDIA10. IBM TotalStorage Enterprise Extended

WORM Tape Cartridge.

mega (M). The information-industry meaning depends

upon the context:

1. M = 1 048 576(2²⁰) for real and virtual storage.

2. M = 1 000 000 for disk storage capacity (for

example, a 4 MB fixed disk).

3. M = 1 000 000 for transmission rates.

Glossary 519

 |
 |

 |
 |

 |
 |

migration. The process of moving unused data to

lower cost storage in order to make space for

high-availability data. If you wish to use the data set, it

must be recalled. See also migration level 1, migration

level 2.

migration level 1. DFSMShsm-owned DASD volumes

that contain data sets migrated from primary storage

volumes. The data can be compressed. See also

storage hierarchy. Contrast with primary storage,

migration level 2.

migration level 2. DFSMShsm-owned tape or DASD

volumes that contain data sets migrated from primary

storage volumes or from migration level 1 volumes. The

data can be compressed. See also storage hierarchy.

Contrast with primary storage, migration level 1.

MOF. Managed Object Format.

moving-in volume. A volume for which a move into a

bin has been started, but not yet confirmed.

moving-out volume. A volume for which a move out

of a bin has been started, but not yet confirmed.

N

name vital record specification. A vital record

specification used to define additional retention and

movement policy information for data sets or volumes.

NEXTVRS. An RMM ADDVRS TSO subcommand

operand. See also Using Next.

NL. No label.

nonscratch volume. A volume that is not scratch,

which means it has valid or unexpired data on it.

Contrast with scratch.

NSL. Nonstandard label.

O

OAM. Object access method.

object. A named byte stream having no specific format

or record orientation.

object access method (OAM). An access method

that provides storage, retrieval, and storage hierarchy

management for objects and provides storage and

retrieval management for tape volumes contained in

system-managed libraries.

OPC/ESA. Operations Planning and Control/Enterprise

Systems Architecture.

OpenPegasus. C++ CIM/WBEM Manageability

Services Broker. The Open Group is home for the

OpenPegasus project at www.opengroup.org

optical volume. Storage space on an optical disk,

identified by a volume label. See also volume.

optical disk. A disk that uses laser technology for data

storage and retrieval.

option line. Command line.

owner. In DFSMSrmm, a person or group of persons

defined as a DFSMSrmm user owning volumes. An

owner is defined to DFSMSrmm through an owner ID.

owner ID. In DFSMSrmm, an identifier for DFSMSrmm

users who own volumes.

P

parallel. During conversion, when you install

DFSMSrmm concurrently with an existing media

management system, it is called running in parallel.

partitioned data set (PDS). A data set on direct

access storage that is divided into partitions, called

members, each of which can contain a program, part of

a program, or data.

PDS. Partitioned data set.

permanent data set. A user-named data set that is

normally retained for longer than the duration of a job or

interactive session. Contrast with temporary data set.

peta (T). The information-industry meaning depends

upon the context:

1. T = 1 125 899 906 842 624(25 0) for real and virtual

storage.

2. T = 1 000 000 000 000 000 for disk storage

capacity (for example, 4 TB of DASD storage).

3. T = 1 000 000 000 000 000 for transmission rates.

PF. Program function key.

physical stacked volume. See stacked volume.

physical volume. A volume that has a one-to-one

association with physical tape media and which is used

directly by z/OS applications. It may reside in an

automated tape library dataserver or be kept on shelf

storage either at vault sites or within the data center

where it can be mounted on stand-alone tape drives.

pool. A group of shelf locations in the removable

media library whose rack numbers share a common

prefix. The shelf locations are logically grouped so that

the volumes stored there are easier to find and use.

pool ID. The identifier for a pool. You define pool IDs

in parmlib member EDGRMMxx.

pooling. The process of arranging shelf locations in

the removable media library into logical groups.

520 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

pool storage group. A type of storage group that

contains system-managed DASD volumes. Pool storage

groups allow groups of volumes to be managed as a

single entity. See also storage group.

port. (1) An access point for data entry or exit. (2) A

receptacle on a device to which a cable for another

device is attached.

primary space allocation. Amount of space

requested by a user for a data set when it is created.

Contrast with secondary space allocation.

primary storage. A DASD volume available to users

for data allocation. The volumes in primary storage are

called primary volumes. See also storage hierarchy.

Contrast with migration level 1, migration level 2.

primary vital record specification. The first retention

and movement policy that DFSMSrmm matches to a

data set and volume used for disaster recovery and vital

record purposes. See also vital record specification and

secondary vital record specification.

private tape volume. A volume assigned to specific

individuals or functions.

protect mode. In protect mode, DFSMSrmm validates

all volume requests.

provider. See CIM provider.

pseudo-generation data group. A collection of data

sets, using the same data set name pattern, to be

managed like a generation data group. The ¬ masking

character is used in DFSMSrmm to identify the

characters in the pattern that change with each

generation.

PSW. Program status word.

PTF. Program temporary fix.

pull list. A list of scratch volumes to be pulled from the

library for use.

PUT. Program update tape.

R

RACF. Resource Access Control Facility.

rack number. A six-character identifier that

corresponds to a specific volume’s shelf location in the

installation’s removable media library, and is the

identifier used on the external label of the volume to

identify it. The rack number identifies the pool and the

external volume serial number for a volume residing in

an automated tape library dataserver. The rack number

identifies the pool, the external volume serial, and shelf

location number for a volume not residing in an

automated tape library dataserver. The rack number is

not written by the tape drive. It exists as an entry in the

DFSMSrmm control data set and on the external label

of the tape. See also shelf location.

rack pool. A group of shelves that contains volumes

that are generally read-only.

ready to scratch. This describes the condition where

a volume is eligible for scratch processing while it

resides in a storage location. Since no other release

actions are required, the volume can be returned to

scratch directly from the storage location.

recording format. For a tape volume, the format of

the data on the tape; for example, 18 tracks or 36

tracks.

record-only mode. The operating mode where

DFSMSrmm records information about volumes as you

use them, but does not validate or reject volumes.

recovery. The process of rebuilding data after it has

been damaged or destroyed, often by using a backup

copy of the data or by reapplying transactions recorded

in a journal.

relative start generation. Relative start generation

zero is the latest generation of a tape. Relative start

generation -1 is the previous generation of that tape.

Relative start generation -2 is the generation before the

previous one.

REMOTE. A DFSMSrmm built-in storage location ID.

See also built-in storage location.

removable media. See also volume.

removable media library. The volumes that are

available for immediate use, and the shelves where they

could reside.

report. Data that has been selected and extracted

according to the reporting tool, the type of report

desired, and the formatting criteria.

reporting tool. A REXX exec that builds control

statements to enable you to create reports using a

reporting utility.

report type. A data source and how it is mapped.

Resource Access Control Facility (RACF). An IBM

licensed program that provides for access control by

identifying and verifying the users to the system;

authorizing access to protected resources; logging the

detected unauthorized attempts to enter the system;

and logging the detected accesses to protected

resources.

Resource Group. A collection of structured fields that

describe the attributes of a resource such as a volume.

Glossary 521

Restructured Extended Executor (REXX) Language.

A general-purpose, high-level programming language,

particularly suitable for EXEC procedures or programs

for personal computing.

retention date. Retention date can be the date that a

data set or volume is retained by a vital record

specification or the date of the inventory management

run when the data set or volume is no longer retained

by a vital record specification.

retention period. The time for which DFSMSrmm

retains a volume or data set before considering it for

release. You can retain a data set or volume as part of

disaster recovery or vital records management. You set

a retention period through a vital record specification

that overrides a data set’s expiration date.

retention type. The types of retention for which

DFSMSrmm retains a volume or data set before

considering it for release. The retention types for data

sets are BYDAYSCYCLE, CYCLES, DAYS,

EXTRADAYS, LASTREFERENCEDAYS,

UNTILEXPIRED, and WHILECATALOG. The retention

types for volumes are DAYS and CYCLE.

REXX. Restructured Extended Executor Language.

RMF. Resource Measurement Facility.

RMM client. An instance of the DFSMSrmm

subsystem running on a system that has no direct

attachment to the DASD containing the DFSMSrmm

control data set. The RMM client system uses TCP/IP to

request the DFSMSrmm server to perform I/O to the

DFSMSrmm control data set.

RMM complex (RMMplex). One or more z/OS images

that share a common DFSMSrmm control data set.

RMM server. An instance of the DFSMSrmm

subsystem running on a system that has direct

attachment to the DASD containing the DFSMSrmm

control data set. The RMM server system uses TCP/IP

to receive requests from a DFSMSrmm client to perform

I/O to the DFSMSrmm control data set.

RMODE. Residence mode.

S

SAF. System Authorization Facility.

scratch. The status of a tape volume that is available

for general use, because the data on it is incorrect or is

no longer needed. You request a scratch volume when

you omit the volume serial number on a request for a

tape volume mount.

scratch pool. The collection of tape volumes from

which requests for scratch tapes can be satisfied.

Contrast with rack pool.

scratch processing. The process for returning a

volume to scratch status once it is no longer in use and

has no outstanding release actions pending.

scratch tape. See scratch volume.

scratch volume. A tape volume that contains expired

data only. See scratch.

SDB. Structured database.

SDSF. Spool display and search facility.

secondary space allocation. Amount of additional

space requested by the user for a data set when

primary space is full. Contrast with primary space

allocation.

secondary vital record specification. The second

retention and movement policy that DFSMSrmm

matches to a data set and volume used for disaster

recovery and vital records purposes. See also vital

record specification and primary vital record

specification.

server. (1) A functional unit that provides shared

services to workstations over a network; for example, a

file server, a print server, a mail server. (2) On a

network, the computer that contains the data or

provides the facilities to be accessed by other

computers in the network. (3) A program that handles

protocol, queuing, routing, and other tasks necessary for

data transfer between devices in a computer system.

SFI. Structured field introducer.

shelf. A place for storing removable media, such as

tape and optical volumes, when they are not being

written to or read.

shelf location. A single space on a shelf for storage of

removable media. DFSMSrmm defines a shelf location

in the removable media library by a rack number, and a

shelf location in a storage location by a bin number. See

also rack number and bin number.

shelf-management. Is the function provided to

manage the placement of volumes in individual slots in

a location. Shelf-management is provided for the

removable media library using rack numbers. For

storage locations it is optional as defined by the

LOCDEF options in parmlib and uses bin numbers.

shelf-resident volume. A volume that resides in a

non-system-managed tape library.

shelf space. See shelf.

SL. Standard label.

slot. See shelf location.

SMF. System management facility.

522 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

SMP/E. System Modification Program Extended.

SMTP. Simple Mail Transfer Protocol.

SNIA. Storage Networking Industry Association.

SSI. Subsystem interface.

stacked volume. A volume that has a one-to-one

association with physical tape media and which is used

in a virtual tape server to store logical volumes. A

stacked volume is not used by z/OS applications but by

the virtual tape server and its associated utilities. It may

be removed from a virtual tape server to allow

transportation of logical volumes to a vault or to another

virtual tape server.

standard label. An IBM standard tape label.

standard output. The output produced by the

DFSMSrmm application programming interface when

you specify OUTPUT=LINES or EXPAND=NO with

OUTPUT=FIELDS.

storage administrator. A person in the data

processing center who is responsible for defining,

implementing, and maintaining storage management

policies.

storage class. A collection of storage attributes that

identify performance goals and availability requirements,

defined by the storage administrator, used to select a

device that can meet those goals and requirements.

storage group. A collection of storage volumes and

attributes, defined by the storage administrator. The

collections can be a group of DASD volumes or tape

volumes, or a group of DASD volumes and optical

volumes treated as a single object storage hierarchy.

storage location. A location physically separate from

the removable media library where volumes are stored

for disaster recovery, backup, and vital records

management.

(storage) location dominance. The priority used by

DFSMSrmm to decide where to move a volume within

the removable media library during vital record

specification processing. It covers all the locations;

SHELF, storage locations, and system-managed tape

libraries.

storage location management processing. The

process of inventory management that assigns a shelf

location to volumes that have moved as a result of vital

record processing. See also vital record processing.

stripe. In DFSMS, the portion of a striped data set,

such as an extended format data set, that resides on

one volume. The records in that portion are not always

logically consecutive. The system distributes records

among the stripes such that the volumes can be read

from or written to simultaneously to gain better

performance. Whether it is striped is not apparent to the

application program.

striping. A software implementation of a disk array

that distributes a data set across multiple volumes to

improve performance.

structured field. Output from the DFSMSrmm

application programming interface consisting of a

Structured Field Introducer and output data.

structured field introducer (SFI). An 8-byte entity

that either introduces the beginning of a group of data

or introduces output data that immediately follows the

introducer.

subsystem. A special z/OS task that provides services

and functions to other z/OS users. Requests for service

are made to the subsystem through a standard z/OS

facility known as the subsystem interface (SSI).

Standard z/OS subsystems are the master subsystem

and the job entry subsystems JES2 and JES3.

subsystem interface (SSI). The means by which

system routines request services of the master

subsystem, a job entry subsystem, or other subsystems

defined to the subsystem interface.

SUL. IBM standard and user header or trailer label.

SVC. Supervisor call.

system-managed storage. Storage managed by the

Storage Management Subsystem. SMS attempts to

deliver required services for availability, performance,

and space to applications. See also system-managed

storage environment.

system-managed tape library. A collection of tape

volumes and tape devices, defined in the tape

configuration database. A system-managed tape library

can be automated or manual. See also tape library.

system-managed volume. A DASD, optical, or tape

volume that belongs to a storage group. Contrast with

DFSMShsm-managed volume, DFSMSrmm-managed

volume.

system programmer. A programmer who plans,

generates, maintains, extends, and controls the use of

an operating system and applications with the aim of

improving overall productivity of an installation.

T

tape configuration database (TCDB). One or more

volume catalogs used to maintain records of

system-managed tape libraries and tape volumes.

tape librarian. The person who manages the tape

library. This person is a specialized storage

administrator.

Glossary 523

tape library. A set of equipment and facilities that

support an installation’s tape environment. This can

include tape storage racks, a set of tape drives, and a

set of related tape volumes mounted on those drives.

See also system-managed tape library, automated tape

library data server.

Tape Library Control System (TLCS). IBM program

offering 5785-EAW. DFSMSrmm replaces TLCS.

tape library dataserver. A hardware device that

maintains the tape inventory that is associated with a

set of tape drives. An automated tape library dataserver

also manages the mounting, removal, and storage of

tapes. An automated tape library dataserver that

supports system-managed storage of tape volumes. The

IBM automated tape library dataservers include the IBM

3494 Tape Library Dataserver and the IBM 3495 Tape

Library Dataserver.

tape storage group. A type of storage group that

contains system-managed private tape volumes. The

tape storage group definition specifies the

system-managed tape libraries that can contain tape

volumes. See also storage group.

tape subsystem. A magnetic tape subsystem

consisting of a controller and devices, which allows for

the storage of user data on tape cartridges. Examples

of tape subsystems include the IBM 3490 and 3490E

Magnetic Tape Subsystems.

tape volume. A tape volume is the recording space on

a single tape cartridge or reel. See also volume.

TCDB. Tape configuration database.

temporary data set. An uncataloged data set whose

name begins with & or &&, that is normally used only

for the duration of a job or interactive session. Contrast

with permanent data set.

tera (T). The information-industry meaning depends

upon the context:

1. T = 1 099 511 627 776(2⁴⁰) for real and virtual

storage.

2. T = 1 000 000 000 000 for disk storage capacity (for

example, 4 TB of DASD storage).

3. T = 1 000 000 000 000 for transmission rates.

TLCS. Tape Library Control System.

Transmission Control Protocol (TCP). A stream

communication protocol that includes error recovery and

flow control.

Transmission Control Protocol/Internet Protocol

(TCP/IP). The two fundamental protocols of the

Internet protocol suite. The abbreviation TCP/IP is

frequently used to refer to this protocol suite. TCP/IP

provides for the reliable transfer of data, while IP

transmits the data through the network in the form of

datagrams. Users can send mail, transfer files across

the network, or execute commands on other systems.

TSO. Time Sharing Option.

U

UDDI. Universal Description, Discovery and

Integration.

Until Expired. Allows the use of vital record

specification policies for managing retention in a

location as long as the volume expiration date has not

been reached.

use attribute. (1) The attribute assigned to a DAD

volume that controls when the volume can be used to

allocate new data sets; use attributes are public, private,

and storage. (2) For system-managed tape volumes,

use attributes are scratch and private.

user volume. A volume assigned to a user, that can

contain any data and can be rewritten as many times as

the user wishes until the volume expires.

using AND. A method for linking DFSMSrmm vital

record specifications to create chains of vital record

specifications. DFSMSrmm applies policies in chains

using AND only when all the retention criteria are true.

using NEXT. A method for linking DFSMSrmm vital

record specifications to create chains of vital record

specifications. DFSMSrmm applies policies in chains

using NEXT one vital record at a time.

UTC. DFSMSrmm common time support. Also known

as GMT.

V

virtual export. A method of exporting a volume by

marking a volume as exported by using the DFSMSrmm

subcommands.

virtual input/output (VIO) storage group. A type of

storage group that allocates data sets to paging

storage, which simulates a DASD volume. VIO storage

groups do not contain any actual DASD volumes. See

also storage group.

virtual tape server (VTS). This subsystem, integrated

into the IBM TotalStorage Enterprise Automated Tape

Library (3494) or the IBM TotalStorage Enterprise

Automated Tape Library (3495), combines the random

access and high performance characteristics of DASD

with outboard hierarchical storage management and

virtual tape devices and tape volumes.

vital record group. A set of data sets with the same

name that matches to the same DFSMSrmm vital

record specification.

524 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

vital record processing. The process of inventory

management that determines which data sets and

volumes DFSMSrmm should retain and whether a

volume needs to move. These volumes and data sets

have been assigned a vital record specification.

vital records. A data set or volume maintained for

meeting an externally-imposed retention requirement,

such as a legal requirement. Compare with disaster

recovery.

vital record specification. Policies defined to manage

the retention and movement of data sets and volumes

used for disaster recovery and vital records purposes.

vital record specification management value. A

one-to-eight character name defined by your installation

and used to assign management and retention values

to tape data sets. The vital record management value

can be any value you chose to create a match between

a vital record specification and data sets and volumes in

your installation. By matching the vital record

specifications to the data set or volumes, DFSMSrmm

applies the retention and movement policies you define

in the vital record specifications. During inventory

management VRSEL processing, DFSMSrmm selects

the correct, best matching vital record specification for a

tape data set or volume.

VOLSER. Volume serial number.

volume. The storage space on DASD, tape, or optical

devices, which is identified by a volume label. See also

DASD volume, logical volume, optical volume, stacked

volume, and tape volume.

volume catalog. See tape configuration database.

volume expiration date. The date the volume should

expire based on the highest expiration date of the data

sets that reside on the volume.

volume serial number (VOLSER). (1) An identification

number in a volume label that is assigned when a

volume is prepared for use on the system. For standard

label volumes, the volume serial number is the VOL1

label of the volume. For no label volumes, the volume

serial number is the name the user assigns to the

volume. (2) In DFSMSrmm, volume serial numbers do

not have to match rack numbers.

VNDR. Vendor name.

VTS. Virtual tape server.

VWMC. Volume write mount count.

W

warning mode. The operating mode in which

DFSMSrmm validates volumes as you use them, but

issues warning messages when it discovers errors

instead of rejecting volumes.

world-wide identifier (WWID). Often used in z/OS

software as the abbreviation for the world-wide unique

cartridge identifier (WWCID). See also world-wide

unique cartridge identifier

world-wide unique cartridge identifier (WWCID). A

permanent identifier associated with a specific tape

cartridge, typically stored on the tape itself and the

non-volatile cartridge memory.

Write Once, Read Many (WORM). A technology to

allow data to be written once to storage media. After

that, data is permanent and cannot be altered, but can

be read any number of times.

write-to-operator (WTO). An optional user-coded

service that allows a message to be written to the

system console operator informing the operator of errors

and unusual system conditions that may need to be

corrected.

WTO. Write-to-operator.

WWCID. See world-wide unique cartridge identifier.

WWID. See world-wide identifier.

X

XML. eXtensible Markup Language.

Z

z/OS image. A single occurrence of the z/OS

operating system that has the ability to process work.

Glossary 525

526 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Index

A
ABARS (aggregate backup and recovery support)

authorization to DFSMSrmm resources 304

defining ABARS to RACF 37

retaining accompany tapes 315

retaining backup tapes 317

retaining tapes written by 314

ABEND
retaining data sets closed during ABEND

processing 351

retention of data set closed by abend processing 6

ABEND vital record specification 351

access method services REPRO command 378

accessibility 509

accessibility code 294

ACCODE processing 276

accompany tapes 315

ACCOUNTING, EDGRMMxx operand 178

acero 273

ACS processing 110

active requests, number of 55

ACTIVITY file
description 347

printing 348

viewing 348

adding
local dialog extensions 442

volumes to DFSMSrmm 56

ADDOWNER subcommand 55

ADDVOLUME subcommand 126

ADDVRS subcommand 215

examples for retaining DFSMShsm tapes 307

planning 58

allocating data sets
backup copies 329

control data set 42

extract data set 331, 332

inventory management 329

journal 46

alternate tape 311

American date format 181, 336

AMS LIBRARY command 149, 151

ANYUSE, EDGRMMxx operand 202

application programmer
tasks 22

ARCTVEXT programming interface
managing DFSMShsm tapes 245, 247

planning 245, 267

updating during implementation 27

assigning
bin numbers 10

bin numbers using DSTORE 353

expiration dates 287

storage locations 353

assigning a storage group 106, 111

assigning a storage groupr 210

associating a pool with a system 102

audit tape library using a list of barcode scanned

volumes 499

authorization
administrator functions 224

for EDGINERS utility 221

for users 47

ignoring duplicate or undefined volumes 274

initialize and erase functions 221

librarian functions 226

operator functions 226

performing inventory management 226

resources 215, 221

system programmer functions 225

user functions 223

users 213, 238

authorizing users
for use of DFSMSrmm subcommands 29

for use of DFSMSrmm utilities 29

users by defining resources to RACF 17

automated labeling by DFSMSdfp 431

automated tape library
cartridge entry processing 120

defining volumes for 120

description 2

ejecting volumes from 121

moving volumes to 125

replenishing scratch volumes 453

reserving shelf space for ejected volumes 55

scratch pool restrictions 97

specifying a name 120

automatic message handling 208

automatic recovery 386

Automatic Volume Recognition (AVR) 433

automating control data set backup 366

automating volume mounts 432

B
backing up

DFSMSrmm control data set 371

journal 378

using EDGBKUP with access method services

REPRO command 378

using EDGBKUP with DFSMSdss DUMP 378

using EDGHSKP with access method services

REPRO command 366

using EDGHSKP with DFSMSdss DUMP 365

when the DFSMSrmm subsystem is active 365

when the DFSMSrmm subsystem is inactive 365

backup function
control data set 378

DFSMSrmm control data set 365

journal 368

BACKUP parameter 333, 367, 368

backup procedure
automating 369

sample procedure 454

specifying the procedure name 178

© Copyright IBM Corp. 1992, 2007 527

BACKUPPROC, EDGRMMxx operand 178

Basic Tape Library Support (BTLS)
defining scratch pools 149

description 149

inventory management considerations 150

scratch management 152

updating the catalog 152

using EDGINERS with 151

batch processing 423

bin number
assignment using DSTORE 353

estimating the number of 503

BLP, EDGRMMxx operand 178

BUFFER.CONTROL resource symbolic name 32

building
ADDVOLUME subcommands from a list of barcode

scanned volumes 499

RMM CHANGEVOLUME subcommands for volumes

in storage locations 499

RMM subcommands to add volumes to

DFSMSrmm 500

built-in storage locations
description 4, 155

priority of moves to 4

shelf-management 155

switching to installation defined locations 164

bypass label processing
defined in installation options 5

DFSMSrmm control of 178

processing support 14

bypassing tape label processing 228

C
calculating space for

control data set 40

journal 44

cartridge entry processing for logical volume

cartridges 129

catalog control 347

catalog processing
catalog support 197

retaining data sets while cataloged 351

return to scratch 355

catalog retention period
displayed in vital records retention report 346, 347

setting 179

catalog sharing 328

catalog status tracking
identifying system IDs 180

catalog synchronization setup with CATSYSID,

EDGRMMxx operand 180

cataloging the DFSMSrmm control data set in a shared

user catalog 41

catalogs, synchronizing with the DFSMSrmm control

data set 335, 401

CATRETPD, EDGRMMxx operand 179

CATSYSID, EDGRMMxx operand 180

CBRSPPIM — sample JCL for import list volume private

request 136, 139

CBRSPPIM-sample JCL for import list volume scratch

request 136

CBRSPPXP — sample JCL for export list volume

scratch request 137

CBRSPPXP-sample JCL for export list volume scratch

request 134

CBRSPSIM — sample JCL for import list volume

scratch request 136, 139

CBRSPSIM-sample JCL for import list volume scratch

request 136

CBRSPSXP — sample JCL for export list volume

scratch request 137

CBRSPSXP-sample JCL for export list volume scratch

request 134

CBRUXCUA exit
description 499

reason codes 250

return codes 250

volume status change 145

where to find source code 27

CBRUXEJC exit
description 499

return codes 250

where to find source code 27

CBRUXENT exit
description 499

entering volumes 120

modifying 146

return codes 250

where to find source code 27

CBRUXVNL exit
description 499

processing support 123

retrieving information about a volume 260

retrieving information about VTS volumes 260

return codes 250

where to find source code 27

CDSID, EDGRMMxx operand 180, 401

chaining vital record specifications 7

CHANGEVOLUME subcommand 215

changing
ADD product volume dialog panel defaults 443

DFSMSrmm dialog panel navigation 441

pool definition 102

running modes 59, 188

changing owner information 253

changing storage location managementtype 162

changing storage location medianame 162

changing storage locations 162

character set
chart xxvii

use in statement xxvii

checking
DATASET class resource 242

TAPEVOL class resource 242

checking DFSMSrmm status 55

checking for DFSMSrmm license 33

checkpoint data set creation 18

CIM
implementing 75

setting up 73

528 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

CIM provider
using 73

with Web service 91

cim service
setting up 61

clearing the journal 365, 371

client systems
authorization 63

firewall 63

implementing 64

inventory management considerations 328, 372

setting up 63

using 65

utility considerations 328, 372

CLIST operand 16

combining retention types 350

common time support
enabling support 403

completing the export processing 135

concatenated parmlib support 36, 38

confirming
global release actions 365

global volume movement 364

volume movement in the system-managed tape

environment 415

volume movement to system-managed libraries 125

volume release actions 356

considerations for multiple z/OS images or

RMMplexes 26

control data set
allocating the index and data components 42

audit information 228

backing up 9, 378

calculating space 40

cataloging in a shared user catalog 41

control record 400

controlling 379

controlling access to 42

creating during installation
allocating space 42

backing up 43

initializing 43

creating the control record 400

decrease size 385

defining 40

displaying information 414

EDGJMFAL SAMPLIB member 42

EDGJUTIL SAMPLIB member 43

ensuring access in shared environment 41

forward recovering 381

global resource serialization 41

GUARANTEED SPACE attribute, using 41

improving performance 42

increase size 385

index and data components 42

monitoring 385

moving to a different device 387

naming 182

placement of 41

recovering 9, 381

reorganizing 383, 384

control data set (continued)
restoring 380, 381, 382

scheduling back up 325

sharing 414

size increase 41

specifying ID 180

synchronizing with system catalogs 335, 401

update failures 385

updating the control record 400

updating volume status 145

validating against TCDB 405

verifying the contents 403, 405

control data set control record
creating 400

updating during recovery 376

controlling
controlling access to the control data set 42

data set recording 282

message case 187

controlling tape erasure 426

controlling tape initialization 426

controlling the control data set 379

controlling volume movement 186

controlling volume retention 191

conversion
changing duplicate volume serial numbers 117

detecting errors during 392

fixing errors resulting from 392

ignoring duplicate volume serial numbers 271

converting
DFSMSrmm systems 64

duplicate volume serial numbers 117

scratch pool information 58

volume information using EDGCLMS 58

converting CLIST output 134, 136, 137, 139

correcting rack or bin number counts 400

creating
a monthly archive from weekly audit reports 499

a report about owners sorted by name and

department number 500

a report about volumes 500

a report based on rack number prefixes 500

a report containing information about lost

volumes 500

a report of data sets sorted by data set name 499

a report of volumes recently returned to scratch

status 500

a report using the extended report extract file 500

a weekly archive from daily audit reports 499

an import list from CLIST output 500

extract data set 331

reports 16

table for controlling data set recording 283

volume label 434

creating checkpoint data sets 18

creating non-checkpoint data sets 18

customizing
ADD Product Volume dialog panel defaults 443

DFSMSrmm messages 444

DSSOPT DD Statement 377

EDGP@LCL, dummy panel 442

Index 529

customizing (continued)
EDGXPROC procedure 453

installation exits 245, 267

ISPF dialog 441

local dialog extensions 443

notification messages and notes 445

report trailer lines 444

RMMISPF exec 441

user exits 245

D
data set

allocating for inventory management 329

managing 15

order of matching during vital record

processing 351

protection 236

recording information 282

retention by job name 199

types of retention 6

uncataloging during expiration processing 358

data set profile 236

data set recording
table for controlling data set recording 283

using EDGUX100 282

data set vital record specification
example 7

for managing special dates 275

date format
extract data set 332

setting for use in reports and messages 181

DATEFORM
in EDGHSKP 332, 336

operand in EDGRMMxx 181

default retention period, specifying 191

defining
a volume in a system-managed tape library 120

ABARS user ID to RACF 37

DFSMShsm user ID to RACF 37, 303

DFSMSrmm subsystem name to z/OS 27

home location 5

MCS console 271

mount messages 173

original expiration date 208

pools in parmlib member with the VLPOOL

command 205

RACF profiles 213

security classes 202

SMF audit records 193

SMF records generated by DFSMSrmm 30

SMF security records 194

TAPEVOL class resource 242

volumes to DFSMSrmm 56

defining storage locations 156

DELETEVOLUME subcommand 215

DELETEVRS subcommand 215

deleting storage locations 163

delimiters xxvii

designing
rack pool 103

designing (continued)
scratch pool 103

device types supported 2, 3

DFRMM Program Offering
inventory management considerations 415

sharing control data set with DFSMSrmm 414

support for non-system-managed tape libraries 414

DFSMSdfp automated labeling 431

DFSMSdss
changing options 377

clearing the journal during back up processing 368

commands used by DFSMSrmm 377

DSSOPT DD statement 329, 375

EDGSPLCS DD statement 330

inventory management considerations 367

STGADMIN.ADR.DUMP.CNCURRNT 367

using with EDGBKUP 378

DFSMShsm
ADDVRS examples for retaining DFSMShsm

tapes 307

alternate tape 311

authorization to DFSMSrmm resources 303

authorization to RACF 303

defining DFSMShsm to RACF 37, 303

disaster recovery using DFSMShsm alternate

tapes 318

expiration date protection 307

retaining
ABARS accompany tapes 315

backup tapes 310

control data set backup tapes 316

dump tapes 312

migration tapes 309

TAPECOPY tapes 311

tapes 307

tapes written by ABARS 314, 317

running with DFSMSrmm 303, 319

using EDGDFHSM programming interface 247

using EDGTVEXT programming interface 245

validating data set name 19

DFSMSrmm
adding local dialog extensions 442

application programmer tasks 22

authorization checking 238

basic tape library support 149

changing ADD product volume dialog panel

defaults 443

changing DFSMSrmm dialog panel navigation 441

changing volume dialog panel defaults 443

concatenated parmlib support 36, 38

control record 400

customizing local dialog extensions 443

customizing messages 444

defining owner to 55

description 1

duplicate volume serial number support 115

EDGUX100 installation exit 267

EDGUX200 installation exit 297

general user tasks 21

initializing the subsystem 59

modes of operation 19

530 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

DFSMSrmm (continued)
operator tasks 23

panel navigation 441

protecting resources 213

RACF considerations 235

refreshing DFSMSrmm installation exits 292, 299

removing from the system 241

running modes 188

running utilities 8

security classification 229

storage administrator tasks 22

storage group name support 128

system programmer tasks 22

system-managed tape libraries support 119

tape initialization and erase control 426

tape librarian tasks 22

tape mount validation rules 18

undefined volume serial number support 118

validating tape volumes 18

volume rejection rules 20

wrong label processing 426

DFSMSrmm application programming interface 17

DFSMSrmm CIM provider
using 73

with Web service 91

DFSMSrmm utility
EDGBKUP, backing up the control data set 371

EDGHSKP, inventory management program 325

EDGINERS, initializing and erasing volumes 229,

417

EDGRESET utility, removing DFSMSrmm from the

system 241

EDGUTIL, verifying control data set contents 371

DFSORT 17

sample EDGJACTP print job 348

diagnosing errors 330

using SYSPRINT data set 378

using the message file 404

using the TRACE operand 441

dialog customization 441

disability 509

disabling
automatic cartridge loader 270

PDA trace facility 190

the DFSMSrmm subsystem interface 53

disabling the autoloader 269

DISPDDNAME, EDGRMMxx operand 181

displaying information 414

DISPMSGID, EDGRMMxx operand 181

disposition control
defining the message returned by disposition

processing 181

modifying label output using EDGUX100 281

naming a disposition control file 181

setting up 33, 461

DISTANT storage location 4

DITTO, using 141

DSNAME, EDGRMMxx operand 182

DSSOPT
changing options 377

description 329, 330, 375

DSTORE
examples 353

INSEQUENCE 337

LOCATION 336

parameter 336

REASSIGN 337

duplicate volume
adding into system-managed tape library 117

duplicate volume serial number
changing duplicate volume serial numbers 117

defining duplicate volume serial numbers to

DFSMSrmm 116

ignoring 271

labeling duplicate volume serial numbers 117

managing duplicate volume serial numbers 115

using EDGUX100 267

dynamic shelf-management 353

E
EBCDIC labels 435

EDG0154I 53

EDG019VM, programming interface 455

EDG2107E 182

EDG2108E 182

EDG3IIP1 322

EDG3IIP1 SAMPLIB member
using 322

EDG3LVVR 322

EDG3LVVR SAMPLIB member
description 499

using 322

EDG3UX29 321

EDG3UX29 SAMPLIB member 26

EDG3UX62 321

EDG3UX62 SAMPLIB member
description 499

EDG3UX71 321

EDG3UX71 SAMPLIB member
description 499

using 321

EDG3X71, programming interface 262

EDG4026I 418

EDGBETT 499

EDGBKUP control data set backup program
backing up the control data set and journal 378

backing up the journal 368

controlling the control data set recovery point 379

description 499

DFSMSrmm control data set back up and restore

program 378

exec parameters 374, 375

restoring the control data set 380, 381, 382

return codes 376

EDGCLIBQ SAMPLIB member
description 499

using 452

EDGDFHSM, programming interface 247

EDGDFRMM SAMPLIB member
description 499

EDGHCLT 499

Index 531

EDGHSKP EXPROC utility
multitasking 359

EDGHSKP inventory management utility
control data set backup processing 365

description 325

expiration processing 355

extract data set processing 331

return codes 369

storage location management processing 353

vital record processing 341

EDGHSKP utility
SYSIN file 338

EDGINERS initializing and erasing volumes utility
automatic processing 419

creating volume label 434

description 417

differences and similarities to IEHINITT 9

initialize and erase program 417

ISO/ANSI label support 417

JCL 420

label symmetrys 433

manual processing 420

replacing IEHINITT with EDGINERS 418

return codes 435

running for BTLS 151

running with DFSMSrmm 414

SYSIN commands for 427

tape volumes with ISO/ANSI labels 433

using EDGINERS instead of IEHINITT 229

wrong label processing 426

EDGINERS.volser resource symbolic name 32

EDGIVP1 SAMPLIB member
description 499

using 478

EDGIVP2 SAMPLIB member
description 499

using 479

EDGIVPPM SAMPLIB member
description 499

using to specify DFSMSrmm options 476

EDGJACTP SAMPLIB member
description 499

EDGJAUDM 499

EDGJAUDW 499

EDGJBCAV 499

EDGJBKP1 499

EDGJBKP2 499

EDGJCMOV 499

EDGJCOMB 499

EDGJCVB 499

EDGJDHKP 499

EDGJDSN 499

EDGJEJC 499

EDGJEXP 499

EDGJHKPA 499

EDGJHKPA SAMPLIB member
description 499

EDGJHSKP 500

EDGJHSKP SAMPLIB member
description 499

EDGJIMPC 500

EDGJIMPC sample 139

EDGJINER 500

EDGJINER SAMPLIB member
description 499

EDGJLOPC 500

EDGJLOPC SAMPLIB member
description 499

EDGJMFAL 500

EDGJMFAL SAMPLIB member
description 499

using during implementation 42

EDGJMOVE 500

EDGJNLAL 500

EDGJNLAL SAMPLIB member
description 499

using during implementation 46

EDGJNSCR 500

EDGJRACK 500

EDGJRECL 500

EDGJRECV 500

EDGJROWN 500

EDGJRVOL 500

EDGJSCRL 500

EDGJSMF 500

EDGJSMFP 500

EDGJUTIL 500

EDGJUTIL SAMPLIB member
description 499

using during implementation 43

EDGJVFY 500

EDGJVLT 500

EDGJVLTM 500

EDGJVME 500

EDGJVOL 500

EDGJVRSV 500

EDGJWHKP 500

EDGLABEL SAMPLIB member
defining in ICHRIN03 37

description 499

RACF requirement 37

using 454

EDGLCSUP macro programming interface 481

EDGLCSUX
managing automated tape library volumes 248

planning 245

return codes 249

EDGLIBQ SAMPLIB member
description 499

using 453

EDGMSGEX, programming interface 262

EDGP@LCL, dummy panel 442

EDGPACTA 500

EDGPACTC 500

EDGPACTD 500

EDGPACTI 500

EDGPACTM 500

EDGPACTP 500

EDGPACTT 500

EDGPACTV 500

EDGPBKUP 500

EDGPCMOV 500

532 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

EDGPDOX PDA trace data set 457

EDGPDOY PDA trace data set 457

EDGPEJC 500

EDGPEXP 500

EDGPHKP 501

EDGPHKPA 501

EDGPINER 501

EDGPL100 macro programming interface 487

EDGPL200 macro programming interface 492

EDGPMOVE 501

EDGPMSGA 501

EDGPMSGC 501

EDGPRPTA 501

EDGPRPTX 501

EDGPSCRL 501

EDGPVFY 501

EDGPVRSA 501

EDGRCSCR Exec 58

EDGRESET utility
invoking by the DFSMSrmm procedure 227

removing DFSMSrmm from the system 220, 241

EDGRHKPA 501

EDGRMMxx, DFSMSrmm parmlib member
creating parmlib member definitions 38

defining during implementation 38

example 167

MNTMSG command 173

OPTION command 175

REJECT command 201, 234

SECCLS command 202

specifying options for 167

VLPOOL command 205

EDGRVCLN 501

EDGRVCLN exec
description 499

EDGSETT 501

EDGSLAB macro programming interface 493

EDGSPLCS 411

EDGSSSI 28

EDGTVEXT
description 245

EDGTVEXT, programming interface 245

EDGUTIL control data set contents verification program
creating the control record 400

DFSMSrmm control data set create and verify

program 392

enabling stacked volume support 400

exec parameters 393

JCL 393

mending the control data set 406

return codes 410, 414

verify system-managed volume information 127

verifying control data set contents 405

EDGUTIL utility
multitasking 397

EDGUX100 SAMPLIB member
assigning expiration dates 287

bypassing tape label processing 228

data set recording 282

description 499

ignoring duplicate volumes 271

EDGUX100 SAMPLIB member (continued)
installing 291

managing duplicate volumes 271

managing scratch pools 269

modifying disposition control processing label

output 281

refreshing 292, 299

return codes 297

tailoring 273, 275

using 109, 112, 267

EDGUX200 SAMPLIB member
description 499

installing 298

refreshing 299

return codes 301

using 297

EDGXMP1 SAMPLIB member
description 499

EDGXMP2 SAMPLIB member
description 499

EDGXPROC SAMPLIB member
defining in parmlib 193

RACF requirement 37

using EDGXPROC procedure 453

ejecting volumes from system-managed libraries 121,

354

enabling
DFSMSrmm and tape recording 29

DFSMSrmm subsystem interface 59

extended bin support 409

ISPF DSLIST Support 49

PDA trace facility 190

enabling stacked volume support 400

enhanced data integrity function 30

erase volume release action 365

ERASE, EDGRMMxx operand 204

erasing tape volumes using EDGINERS 417

error diagnosis 441

European date format 181, 336

evaluating removable media management needs 503

exec, LIBQ 453

EXPDTCHECK, EDGRMMxx operand 207

expiration date
assigning 287

protection 208

updating 191

expiration processing 152

description 356

retaining DFSMShsm tapes 307

scheduling 325

exploiting high speed cartridge tape positioning 18

export processing 134

EXPROC parameter 333, 356

extended bin support
enabling 409

managing bin reuse 337

REUSEBIN(CONFIRMMOVE) 192

REUSEBIN(STARTMOVE) 192

external data manager considerations 246

extract data set
placement of 332

Index 533

extract data set (continued)
scheduling creation 325

F
finding samples xxii

formatting a list of logical volumes from RMM

SEARCHVOLUME CLIST output 139

forward recovery 9, 381

G
general user

access to DFSMSrmm resources 223

tasks 21

general-use programming interfaces
EDGLCSUP 481

EDGSLAB 493

generic volume serial number 7

global confirmation 364

global resource serialization
control data set 41

global resource serialization (GRS)
reducing global resource serialization traffic 184

global resource serialization(GRS)
converting the RESERVE to a SYSTEMS

enqueue 31

converting the SYSTEMS enqueue to a local

SYSTEM enqueue 31

reserve names 31

SYSZRMM 31

updating GRSRNLxx 31

GRS (global resource serialization)
reducing global resource serialization traffic 184

GRS(global resource serialization)
converting the RESERVE to a SYSTEMS

enqueue 31

converting the SYSTEMS enqueue to a local

SYSTEM enqueue 31

reserve names 31

SYSZRMM 31

updating GRSRNLxx 31

GRSRNLxx 31

GUARANTEED SPACE attribute
control data set 41

journal 45

H
hierarchy of moves 4

hierarchy of storage location names 351

high speed cartridge tape positioning support 18

home location
changing 142, 147

definition 5

updating 123

host name 63

I
I/O errors on a volume 13

IATIIP1 322

IATLVVR 322

IATUX71 322

IBM standard and user header or trailer labels

(SUL) 14

IBM standard labels (SL) 14

IBM Tivoli Workload Scheduler for z/OS
EDGBETT sample procedure 499

EDGJBKP1 sample procedure 499

EDGJBKP2 sample procedure 499

EDGJCMOV sample procedure 499

EDGJDHKP sample procedure 499

EDGJEJC sample procedure 499

EDGJEXP sample procedure 499

EDGJMOVE sample procedure 500

EDGJSCRL sample procedure 500

EDGJVFY sample procedure 500

EDGJVRSV sample procedure 500

EDGJWHKP sample procedure 500

EDGPACTA sample procedure 500

EDGPACTC sample procedure 500

EDGPACTD sample procedure 500

EDGPACTI sample procedure 500

EDGPACTM sample procedure 500

EDGPACTP sample procedure 500

EDGPACTT sample procedure 500

EDGPACTV sample procedure 500

EDGPBKUP sample procedure 500

EDGPCMOV sample procedure 500

EDGPEJC sample procedure 500

EDGPEXP sample procedure 500

EDGPHKP sample procedure 501

EDGPHKPA sample procedure 501

EDGPINER sample procedure 501

EDGPMOVE sample procedure 501

EDGPMSGA sample procedure 501

EDGPMSGC sample procedure 501

EDGPRPTA sample procedure 501

EDGPRPTX sample procedure 501

EDGPSCRL sample procedure 501

EDGPVFY sample procedure 501

EDGPVRSA sample procedure 501

EDGRHKPA sample procedure 501

EDGSETT sample procedure 501

ICETOOL, DFSORT utility
description 16, 17

ICHRIN03, started procedure table
defining ABARS user ID 37

defining DFSMShsm user ID 37, 303

defining DFSMSrmm user ID 37

ID, EDGRMMxx operand 174

IEC507D 108, 208

IEC704A 128

IEFRDER DD 35

IEFSSNxx 28

IEHINITT
description 9

differences with EDGINERS 418

limiting use of 229

534 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

IEHINITT (continued)
replacing with EDGINERS 418

IFAPRD00, ensure update of 33

IFGPSEDI 30

IGDACERO, mapping macro 277

IGDACSXT, pre-ACS installation exit 277

ignoring
duplicate or undefined volumes 274

volumes 271

IGXMSGEX programming interface
displaying DFSMSrmm messages 262

planning 245, 267

updating during implementation 27

IKJEFTxx member 29

IKJTSOxx 29

implementation
adding volumes 56

assigning a RACF user ID 37

authorizing users 47

creating the control data set 39

defining
EDGRMMxx 38

owner information 55

shelf locations 55

dynamically adding DFSMSrmm 29

enabling DFSMSrmm and tape recording 29

initializing the DFSMSrmm subsystem 59

installation defined storage locations 156

installing
JES3 USERMOD 26

with SMP/E 26

journal 44

modifying ISPF 47

planning vital record specifications 58

protect mode 59

restarting z/OS 51

running the IVP 26

setting up utilities 60

START command 52

starting DFSMSrmm 52

storage locations as home locations 158

tailoring EDGRMMxx 38

tasks 25, 60

updating
ARCTVEXT 27

GRSRNLxx 31

IEFSSNxx 28

IFGPSEDI 30

IGXMSGEX 27

IKJTSOxx 29

operational procedures 59

procedure library 34

SMFPRMxx 30

SYS1.PARMLIB members 27

import processing 135, 136, 138

INACTIVE resource symbolic name 32

initialize volume release action 365

initializing
DFSMSrmm control data set 43

DFSMSrmm subsystem 59

volumes in system-managed libraries 127

initializing (continued)
volumes with unknown volume serial numbers 426

initializing and erasing volumes
batch processing 423

examples 435

replacement for IEHINITT 418

scheduling 325

using EDGINERS 417

using LABEL procedure 454

volumes in system-managed libraries 127

input only volume 146

INSEQUENCE 337

installation defined storage locations
defining location names 169

defining with the LOCDEF parmlib command 156

description 4, 156

implementing 156, 158

priority of moves to 4

segregating shelf locations 155

setting a destination for volumes 155

shelf-management 155

switching built-in storage locations 164

installation exit
CBRUXCUA 248

CBRUXEJC 248

CBRUXENT 248

CBRUXVNL 248

displaying DFSMSrmm messages 262

EDGTVEXT 245

EDGUX100 267

IATUX71 262

IFG019VM 455

IGXMSGEX 262

processing NL label tapes 455

running in parallel 263

installation verification program (IVP)
description of EDGIVPPM, EDGIVP1,

EDGIVP2 499

steps for running 475

integrated catalog facility 328

inventory management
allocating data sets 329

backing up the DFSMSrmm control data set 365

creating an extract data set 331

creating reports 331

description 8

EDGHSKP, inventory management program 325

expiration processing 355

management reports 325

message file 325, 404

processing order 333

report file 342

return codes for 369

scheduling 325

storage location management 353

trial run vital record processing 9

using VRSCHANGE EDGRMMxx operand to set up

trial run 198

vital record processing 341

where to run 150, 414

IOS000I 418

Index 535

IP address 63

IPL date checking 182

IPLDATE, EDGRMMxx operand 182

ISO date format 181, 336

ISO/ANSI accessibility 294

ISO/ANSI and user header or trailer labels (AUL) 14

ISO/ANSI label versions, specifying 428

ISO/ANSI labels 435

ISO/ANSI labels (AL) 14

ISO/ANSI tape labels, EDGINERS example 438, 439

ISO/ANSI X3.4–1986 character set 427

ISPF
adding a selection to an ISPF panel 47

changing ADD product volume dialog panel

defaults 443

making the ISPF dialog available 48

modifying during installation 47

ISPF DSLIST Support 49

J
JES2

installing a USERMOD during implementation 26

setting subsystem name example 28

JES3
defining an MCS console 271

DFSMSrmm SAMPLIB member EDG3IIP1 322

DFSMSrmm SAMPLIB member EDG3LVVR 322

DFSMSrmm SAMPLIB member EDG3UX29 321

DFSMSrmm SAMPLIB member EDG3UX62 323

DFSMSrmm SAMPLIB member EDG3UX71 322

message IATUX29 26

mount and fetch messages 100, 173, 269

running with DFSMSrmm 321

setting the SETPARAM DSN option 322

job name
controlling policy selection 199

description 6

order of matching during vital record

processing 351

using for pool selection 288

jobs from non-z/OS systems, defining owner

information 55

journal
allocating space for 46

backing up 46, 368

calculating space for 44

clearing 365, 371

decrease size 385

defining a threshold 182

EDGJNLAL SAMPLIB member 46

GUARANTEED SPACE attribute, using 45

increase size 385

moving to a different device 387

naming 183

placement of 45

protecting 46

resetting 366

scheduling back up 325

JOURNAL DD 35

JOURNALFULL, EDGRMMxx operand 182

JRNLNAME, EDGRMMxx operand 183

Julian date format 181, 336

K
KB 40

keyboard 509

L
LABEL procedure 454

label types supported 14

labeling duplicate volumes 439

LIBQ exec 453

library
automated tape 1

manual tape 1

non-system-managed 1

removable media 1

system-managed 1

LIBRARY command 149, 152

limiting searches 184

limiting tape volume usage at the system level 201

LINECOUNT, EDGRMMxx operand 183

LISTCONTROL subcommand 215

LISTVRS subcommand 215

LOCAL storage location 4

LOCALTASKS EDGRMMxx operand 183

location
defining installation defined storage locations 169

for more than one destination request 351

specifying move locations 7

LOCATION 336

LOCDEF, command in EDGRMMxx
LOCATION operand 169

MANAGEMENTTYPE operand 169

MEDIANAME operand 169

PRIORITY operand 170

TYPE operand 171

using 171

logical volume cartridge entry processing 129

logical volume support 129

LookAt message retrieval tool xxiv

low-on-scratch condition 453

M
macros

EDGLCSUP 481

EDGPL100 487

EDGPL200 492

EDGSLAB 493

Installation Exit mapping macro — EDGPL100 487

Installation Exit mapping macro — EDGPL200 492

Library Control System interface —

EDGLCSUP 481

sticky label data— EDGSLAB 493

maintaining the user access list 235

management class
assigning 113

defining for volume retention 113

536 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

management class (continued)
retaining

system-managed volumes 113

usage in vital record processing 348

management class names 7

managing
DFSMShsm tapes 303

managing scratch tape pools 109

scratch tape pools with EDGUX100 269

special dates with vital record management

values 275

storage locations 155

VM tapes 452

managing stacked volumes 131

manual cartridge entry processing 121

manual mode
implementation, during 53

specifying 188

manual move control 161

manual recovery 386

manual tape library
adding volumes to 121

description 3

ejecting volumes from 121, 354

moving volumes to 125

marking volumes for replacement 358

MASK, EDGRMMxx operand 204

MASTER DD 35

master status 10

master status volumes, controlling tape

initialization 426

master volume
controlling overwriting of 183

validating owner information 258

MASTER.RESERVE resource symbolic name 32

MASTEROVERWRITE, EDGRMMxx operand 183

matching order for vital record specifications 351

MAXHOLD, EDGRMMxx operand 184

maximum retention period, specifying 185

MAXRETPD, EDGRMMxx operand 185

MB 40

MCS console 271

media name
assigning for storage locations 160

defining for storage locations 169

defining for volume pools 102

using to move volumes to non-shelf-managed

storage locations 161

using to segregate storage locations 159

media shape 159

media type pooling 103

MEDIANAME, EDGRMMxx operand 185, 209

MEMBER, EDGRMMxx operand 186

mending the control data set 406

message file 325

message retrieval tool, LookAt xxiv

messages
CBR3660A 453

controlling message case 187

customizing messages 444

EDG0103D 476

messages (continued)
EDG2103D 386

EDG2111I 386

EDG2115I 386

EDG2235E 359

EDG2236I 359

EDG2237E 359

EDG2307I 358

EDG2404W 351, 358

EDG2405 through EDG2409 445

EDG2420I 358

EDG2421I 358

EDG2422I 358

EDG2423I 358

EDG2424I 358

EDG2425I 358

EDG2426I 358

EDG2429I 358

EDG2700 through EDG2713 445

EDG3017I 366

EDG3018I 366

EDG3212E 366

EDG4001D 386, 387

EDG4010D 366

EDG4026I 418

EDG6401I 358

EDG6417I 404

EDG6433I 404

EDG6434I 404

EDG6901I 404

EDG8008D 386, 387

EDG8121D 260

EDG8122D 260

EDG8123D 260

EDG8124I 260

IATUX29 26

IEC502E 479

IEC507D 208

IEC704A 128

IOS000I 418

release notification 445

sample EDGUTIL SYSPRINT output 404

sample messages issued by RMM ADDRACK TSO

subcommand 366

setting date format for 181

updating 173

MHKP.ACTIVE resource symbolic name 32

migrating to vts 129

mixed case messages 187

MNTMSG, command in EDGRMMxx
ID operand 174

MSGID operand 174

RACK operand 174

VOLUME operand 175

mode of operation
changing during implementation 59

definitions 19

description 19

in parmlib member EDGRMMxx 188

type 188

monitoring the space used by control data set 385

Index 537

monthly archive from weekly audit reports 499

movement and retention policies 341

movement hierarchy 7

movement priority number 7

moving
DFSMSrmm data sets to different devices 387

moving volumes to a system-managed tape

library 147

volumes to storage locations 159

volumes using vital record specification chains 7

moving volumes in a multi-volume set 186

MSG, EDGRMMxx operand 187, 205

MSGID, EDGRMMxx operand 174

multi-record update failure 386

multitasking of utilities 359, 397

N
name hiding support 238

name set vital record specification
checking for 397

correcting next vital record specification

information 395

name vital record specification 7

NAME, EDGRMMxx operand 205

NETVIEW 59

no label tapes
setting up RACF profiles to use 219

usage 14

using BLP to create 179

non-checkpoint data set creation 18

non-scratch tape 503

non-system-managed tape library 3

DFRMM support for 414

moving from 147

nonstandard tape label 14

NOTIFY processing
customizing messages 448

NOTIFY, EDGRMMxx operand 187

notifying
customizing messages and notes 445

during inventory management 356

owners 187

release action 356

volume and software product owners 356

volume release 187

NUMBER, EDGRMMxx operand 205

O
OAM (object access method)

cartridge entry processing 120

EDGLCSUP macro 481

manual cartridge entry processing 121

volume-not-in-library processing 123

obtaining updated versions of IKJEFTxx member 29

open data sets
during expiration processing 358

retaining 351

OPEN vital record specification 351

operational procedures 59

operator
access to DFSMSrmm resources 223

tasks 23

OPMODE
EDGRMMxx operand 188

manual mode 188

protect mode 189

record-only mode 188

warning mode 188

OPTION, command in EDGRMMxx
ACCOUNTING operand 178

BACKUPPROC operand 178

BLP operand 178

CATRETPD operand 179

CATSYSID operand 180

CDSID operand 180

CLIENT operand 180

COMMANDAUTH operand 181

DATEFORM operand 181

DISPDDNAME operand 181

DISPMSGID operand 181

DSNAME operand 182

IPLDATE operand 182

JOURNALFULL operand 182

JRNLNAME operand 183

LINECOUNT operand 183

LOCALTASKS operand 183

MASTEROVERWRITE operand 183

MAXHOLD operand 184

MAXRETPD operand 185

MEDIANAME operand 185

MEMBER operand 186

MOVEBY operand 186

MSG operand 187

NOTIFY operand 187

OPMODE operand 188

PDA operand 190

PDABLKCT operand 190

PDABLKSZ operand 190

PDALOG operand 190

PREACS operand 190

RETAINBY operand 191

RETPD operand 191

REUSEBIN operand 192

SCRATCHPROC operand 193

SERVER operand 193

setting during startup 52

SMFAUD operand 193

SMFSEC operand 194

SMSACS operand 194

SYSID operand 195

TPRACF operand 195

VRSCHANGE operand 198

VRSEL operand 199

VRSJOBNAME operand 199

VRSMIN operand 200

original expiration date 228

OUTPUT, EDGRMMxx operand 202

owner
defining owner information 55

information recorded in the TCDB 126

538 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

owner (continued)
managing information 15

P
panel navigation 441

parallel running of exits 263

parmlib member definitions 38

parmlib member EDGRMMxx
defining

implementation, during 38

mount and fetch messages — MNTMSG 173

pools — VLPOOL 205

security classes — SECCLS 202

system options — OPTION 175

tables not available on systems — REJECT 201

description 5

specifying options 167

partitioning a 3494 or 3495 146

partitioning a system-managed tape library 120, 145

partitioning a VTS 145

PDA, EDGRMMxx operand 190

PDABKLSZ, EDGRMMxx operand 190

PDABLKCT, EDGRMMxx operand 190

PDALOG, EDGRMMxx operand 190

permanent errors 358

planning
evaluating removable media management

needs 503

owner information 55

pooling 97

programming interfaces 245, 267

user exits 245, 267

vital record specifications 58

policy
defining for data sets and volumes 5

defining for management class and vital record

management values 112

defining retention and movement policies 5

expiration management 112

retention and movement 341

pool
changing definition 102

changing definitions 102

creating 101

default 101, 205

designing
rack pools 103

scratch pools 103

name 102, 172

operator messages 100

prefixes 100

size 100

tape drive availability 99

tape drive displays 100

types 99

types of 97

VLPOOL command 101, 205

pooling
based on media type 103

considerations 99

pooling (continued)
defining shelf locations during implementation 55

definition 10, 97

example 107

planning 97, 104

rack 10

scratch 11

segregating WORM tapes in separate scratch

pools 118

selection using DFSMSrmm EDGUX100 installation

exit 288

selection using job name 288

selection using system name 288

types 10

using a BTLS category name 210

using VLPOOL to specify 205

within system-managed libraries 11

port 63

pre-acs processing 277

pre-ACS processing 110

predicting when a volume is released 336

PREFIX, EDGRMMxx operand 210

preventing
a volume from returning to scratch status 297

the use of IEHINITT 229

volume use on specific systems 201

primary vital record specification 350

priority
of location names 351

setting with PRIORITY operand 170

volume moves 4

private volume
controlling overwriting of 183

definition 10

validating owner information 258

Problem Determination Aid (PDA)
controlling tracing 459

data sets 457

description 33, 457

PDA parmlib option for enabling and disabling PDA

trace 190

problem diagnosis 441

procedure library updates
during implementation 34

for IVP 475

processing ACCODE 276

product-sensitive programming interfaces
EDGPL200 492

programming interfaces
EDG019VM 455

EDG3X71 262

EDGDFHSM 247

EDGLCSUX 248

EDGMSGEX 262

planning 245, 267

protect mode
running during implementation 59

setting to validate data set names 234

specifying 188

pseudo-GDG 313

Index 539

PTFs
installing 62

Q
QNAME 32

quiescing the DFSMSrmm subsystem interface 54

R
RACF

profiles for no label tapes 219

RACF (Resource Access Control Facility)
assigning DFSMSrmm a user ID during

implementation 37

audit information 229

authorizing users 17, 213, 234

checking for DATASET class resource 242

checking for TAPEVOL class resource 242

considerations for using under DFSMSrmm 235

controlling profile processing 229

data set profile 236

defining a TAPEVOL class resource 242

defining ABARS to RACF 37

defining DFSMShsm to RACF 37, 303

defining profiles 213

defining resource classes 273

maintaining the user access list 235

no protection 230

protected DFSMSrmm resources 213

RACF operand in EDGRMMxx 211

recording changes to vital record specifications 215

STGADMIN.ADR.DUMP.CNCURRNT 367

tape profiles, setting DFSMSrmm’s use of 195

tape protection 229

TAPEDSN 230

TAPEVOL 230

updating ICHRIN03 37

using profile processing 233

using tape profiles 13

RACF SETROPTS MLNAMES considerations 238

rack number
assigning a 429

estimating the number of 503

inserting into a message 174

rack pool
definition 10

designing 103

using 109

using VLPOOL to define in parmlib member 205

RACK, EDGRMMxx operand 174

RACROUTE calls 238

read-only mode
running during implementation 57

specifying 188

switching modes 59

REASSIGN 337

reclaiming volume from pending release 327

recovery
description 9

from control data set update failures 385

recovery (continued)
updating the DFSMSrmm control record during 376

using DITTO 141

refreshing DFSMSrmm installation exits 292, 299

reject processing 201

REJECT, command in EDGRMMxx
ANYUSE operand 202

OUTPUT operand 202

rejecting
a range of tape volumes 201

volumes 20

volumes on specific systems 201, 234

relabeling tapes 227

release action
confirming 356

erase 365

initialize 365

notify owner 356

pending 356

replace 358

return to owner 358

return to scratch 358

types 13

release notification messages 445

releasing
considerations for applications that manage

tape 246

volume from pending release status 327

volumes at the pool-level 99

REMOTE storage location 4

removable media library
definition 1

organizing 97

removing DFSMSrmm from the system 241

reorganizing the control data set 383, 384

replace volume release action 358

report
about owners sorted by name and department

number 500

about volumes 500

based on rack number prefixes 500

containing information about lost volumes 500

creating 16

customizing titles 444

data sets sorted by data set name 499

default lines per page, specifying 183

EDGAUD DFSMSrmm security and audit report 9

EDGRPTD DFSMSrmm movement and inventory

report 16

EDGRRPTE exec 9

Expiration Processing Report 358

extract data set 331

monthly archive from weekly audit report 499

Report Generator 16

sample JCL for 499

setting date format for 181

SMF records 500

types of SMF record found 500

Vital Records Retention Report 342

volumes currently in storage locations sorted by

volume serial number 500

540 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

report (continued)
volumes moving to storage locations 500

volumes recently returned to scratch status 500

volumes sorted by volume serial number 500

weekly archive from daily audit reports 499

report trailer lines, customizing 444

resetting the journal 366, 378

resource symbolic names 32

restoring the control data set 380

restoring the control data set at a recovery site 382

restoring the control data set with forward

recovery 381

retaining
ABARS accompany 315

based on catalog status 347

data set retention types 6

data sets 6

DFSMShsm backup tapes 310

DFSMShsm control data set backup tapes 316

DFSMShsm dump tapes 312

DFSMShsm migration tapes 309

DFSMShsm TAPECOPY tapes 311

DFSMShsm tapes 307

tapes written by ABARS 314, 317

types of retention 6

volumes 274

retaining volumes forever 276

retaining volumes in a multi-volume set 191

retention and movement policies 341

retention by job name 199

retention period
default, specifying 191

maximum, specifying 185

retention types 6

RETPD, EDGRMMxx operand 191

return codes
EDGBKUP 376

EDGHSKP 369

EDGINERS 435

EDGSPLCS 414

EDGUTIL 410

EDGUX100 297

EDGUX200 301

OAM 250

return to owner release action 358

return to scratch release action 358

returning volumes to scratch 152, 415

REUSEBIN(CONFIRMMOVE) 192

REUSEBIN(STARTMOVE) 192

reusing bins 192

RMM ADDVRS subcommand 215

RMM CHANGEVOLUME subcommand 215

RMM DELETEVOLUME subcommand 215

RMM DELETEVRS subcommand 215

RMM LISTCONTROL subcommand 215

RMM LISTVRS subcommand 215

RMM SEARCHVRS subcommand 215

RMMISPF exec 441

RMMISPF EXEC 47

RMMplex
authorizing users 47

RMMplex (continued)
creating the control data set 39

description 1

managing catalogs 66

sharing the control data set 41

RNAME 32

RPTEXT parameter 333

rules for tape mount validation 18

running mode
description 19

initial setting in parmlib member EDGRMMxx 57

manual 188

protect 189

record-only 188

set for full validation and recording 59

types 188

warning 188

S
SAF (System Authorization Facility)

authorization checking 238

description 17

processing to ignore a volume 272

using the interface 238

SAMPLIB members
EDG3UX29 installing a JES3 USERMOD 26

EDGCLIBQ 452

EDGCLMS 58

EDGDFRMM 34

EDGIVP1 IVP Job 1 initializing tape volumes 26

EDGIVP2 IVP Job 2 using tape volumes 26

EDGIVPPM installation verification procedure 26

EDGJBKUP 371

EDGJHKPA 329

EDGJHSKP 325

EDGJINER 417

EDGJMFAL 42

EDGJNLAL 46

EDGJUTIL 43

EDGJVME 452

EDGLABEL 34

EDGLIBQ 453

EDGPHKP 325

EDGPHKPA 329

EDGUX100 27

EDGUX200 27

EDGXPROC 34

list of 499

scheduling
back up 325

inventory management 9, 325

scratch management for BTLS 152

scratch mount management 144

scratch pool
definition 11

designing 103

managing with EDGUX100 installation exit 269

using VLPOOL to define in parmlib member 205

scratch pooling using storage groups 105

Index 541

scratch volumes, replenishing in an automated tape

library 453

SCRATCHPROC, EDGRMMxx operand 193

searches, limiting 184

SEARCHVRS subcommand 215

SECCLS, command in EDGRMMxx
DESCRIPTION operand 204

ERASE operand 204

MASK operand 204

MSG operand 205

NAME operand 205

NUMBER operand 205

SMF operand 205

secondary vital record specification 350

security
audit trails 228

considerations when running DFSMShsm and

DFSMSrmm 319

controlling RACF profile processing 229

controlling volume use in a system complex 234

DFSMSrmm resources 213

security classes — SECCLS 202

SMFAUD 228

special processing 229

using RACF profile processing 233

selecting a volume pool 210

selecting volumes for automatic processing 439

server systems
authorization 63

firewall 63

implementing 64

inventory management considerations 328, 372

setting up 63

using 65

utility considerations 328, 372

SETPARAM DSN option in JES3 322

setting
maximum retention period 13

message case 187

mode of operation 188

setting location priority 170

volume expiration date 12

shared user catalog 41

sharing
catalogs 328

the control data set 414

shelf location
defining during implementation 55

defining new locations 55

definition of 503

management 9

prefix, in pools 100

shelf management
built-in storage location 4

description 10

for storage locations 155

installation defined storage location 4

using LOCDEF MANAGEMENTTYPE operand to

specify 169

shortcut keys 509

SHUTDOWN resource symbolic name 32

SMF record number
collecting audit information 228

defining audit records 193

defining security records 194

SMF, EDGRMMxx operand 205

SMFAUD, EDGRMMxx operand 193

SMFPRMxx 30

SMFSEC, EDGRMMxx operand 194

SMP/E (System Modification Program Extended)
implementation, installing DFSMSrmm during 26

SMPSTS members
ARCTVEXT 27

CBRUXCUA 27

CBRUXEJC 27

CBRUXENT 27

CBRUXVNL 27

IGXMSGEX 27

list of 499

SMS tape storage groups 105

space requirement
calculating for control data set 40

calculating for journal 44

special expiration date 51

specifying ISO/ANSI label versions 428

specifying pool prefixes 100

specifying the ISO/ANSI volume accessibility code 427

specifying, EDGRMMxx operand 38

stacked volume
enabling support 402

stacked volume support 133, 137

START command 52

starting
DFSMSrmm 52

DFSMSrmm subsystem address space 34

STGADMIN.ADR.DUMP.CNCURRNT 367

STGADMIN.EDG.HOUSEKEEP
READ access 226

user 226

STGADMIN.EDG.IGNORE.TAPE.NORMM.volser
definition 214

setting access 218

STGADMIN.EDG.IGNORE.TAPE.RMM.volser
definition 214

setting access 217

STGADMIN.EDG.IGNORE.TAPE.volser
example 241

using 272

STGADMIN.EDG.LABEL.volser
controlling tape relabeling 227

STGADMIN.EDG.LISTCONTROL
CONTROL access 223

user functions 223

STGADMIN.EDG.MASTER
administrator functions 224

CONTROL access 224, 225, 226

librarian functions 226

operator functions 226

READ access 223

system programmer functions 225

user functions 223

542 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

STGADMIN.EDG.NOLABEL.volser
controlling tape relabeling 227

STGADMIN.EDG.OPERATOR
librarian functions 226

operator functions 227

READ access 226

system programmer functions 225

UPDATE access 225, 227

STGADMIN.EDG.OWNER
administrator functions 224

READ access 223

UPDATE access 224

user functions 223

STGADMIN.EDG.RELEASE
READ access 223

user functions 223

STGADMIN.EDG.VRS
administrator functions 224

librarian functions 226

READ access 223

system programmer functions 225

UPDATE access 224, 225

user functions 223

STGADMIN.IGG.LIBRARY 145

sticky label support 278

sticky labels
modifying label output using EDGUX100 281

stopping the DFSMSrmm subsystem interface 53

storage administrator
access to DFSMSrmm resources 223

tasks 22

storage group
name recorded in DFSMSrmm control data set 145

name validation 128

storage group, assigning 106, 111

storage groups for DFSMSrmm scratch pooling 105

storage location
assigning bin numbers 10

built-in 4, 155

changing 162

defining 156

definition 4

deleting 163

DISTANT 4

installation defined 4, 156

LOCAL 4

managing using DSTORE 353

more than one destination request 351

moving volumes to 159

priority of storage location names 351

REMOTE 4

segregating by media name 102

shelf-management 4, 155

storage location management
description 353

scheduling 325

storage requirements
control data set 40

extract data set 331, 332

journal 44

switching volumes to a system-managed tape

library 147

SYS1.PARMLIB
updating during implementation 27

SYSID, EDGRMMxx operand 102, 195, 211

SYSIN file
EDGHSKP utility 338

SYSPRINT data set 378

system
name, defining 195

options, defining 175

system catalogs, synchronizing with the DFSMSrmm

control data set 335, 401

system programmer
access to DFSMSrmm resources 223

tasks 22

system-managed tape library
adding duplicate volume 117

confirming volume movement to 125

defining existing volumes 126

defining volumes to DFSMSrmm 142

description 2

DFSMSrmm defining name of 120

DFSMSrmm support of 119

ejecting volumes from 121, 354

initializing volumes in 127

partitioning 145

pool selection 288

removing DFSMSrmm from 220

SYSZRMM 32

T
tape

erasing 423

initializing 423

labeling 417

processing tape labels 18

validating mounts 18

tape configuration database
definition 2

obtaining volume information from 57

rebuilding after system failure 127

updates performed by DFSMSrmm 126

verifying against the control data set 405

tape label
bypassing tape label processing 228

creating a VOL1 417

expiration date 208

processing 21

restriction 151

types supported 14

validation 21, 417

tape librarian
access to DFSMSrmm resources 223

tasks 22

tape mount validation rules 18

tape profile
creating a tape profile 234

processing 229

protection options 230

Index 543

TAPEDSN 195, 230

TAPEVOL 195, 230

tasks
application programmer 22

general user 21

operator 23

storage administrator 22

system programmer 22

tape librarian 22

TCP/IP
error, WTOR 63

identifying information 63

IP address 63

tracing IP communication 63

temporary read error
information recorded by DFSMSrmm 434

listed in the extract data set 333

TPRACF, EDGRMMxx operand 195, 319

tracing
IP communication 63

tracing errors 441

trial run
description 352

set based on EDGRMMxx VRSCHANGE

operand 198

validating vital record specifications without control

data set update 61

vital record specification before they are

processed 338

trial run processing 9

TYPE, EDGRMMxx operand 212

U
UNCATALOG, EDGRMMxx operand 197

uncataloging
controlling with UNCATALOG EDGRMMxx

operand 197

data sets 197

data sets during expiration processing 358

updating
GRSRNLxx 31

ICHRIN03 37

IFGPSEDI 30

SMFPRMxx 30

volume expiration date 191

upper case messages 187

user access list 235

user exits
planning 267

using 245

user group pooling 103

user status 10

user status volumes, controlling tape initialization 426

using
a shared user catalog 41

EDGUX100 installation exit 267

EDGUX200 installation exit 297

manual move control 161

media shape to segregate shelf locations 159

using SMS tape storage groups 105

using the sms pre-ACS interface 115

UTC
enabling support 403

utility
EDGAUD, security and audit 9

EDGBKUP, backing up control data set 9, 371

EDGHSKP, inventory management 8, 325

EDGINERS, initializing and erasing volumes 9, 417

EDGRESET utility 241

EDGRPTD, movement and inventory 16

EDGSPLCS 411

EDGUTIL, verifying control data set contents 9,

127, 371

multitasking 359, 397

V
validating

control data set integrity 403

magnetic tape mounts 18

owner information on a master volume 258

primary vital record specification 350

storage group name 128

vital record specification chains 349

vital record specifications without control data set

update 61

VERIFY parameter 333

verifying DFSMSrmm control data set contents 392

virtual tape server
completing export processing 135

confirming volume moves for exported volumes 138

creating a volume export list 134

creating a volume import list 139

creating an import list 500

creating export list of volumes 134, 137

creating import list of volumes 136, 139

DFSMSrmm support for 125

export processing 134, 137

import processing 135, 136, 138

logical volume cartridge entry processing 129

logical volume support 129

migrating to 129

partitioning a 145

stacked volume support 133, 137

volume-not-in-library processing 123

virtual tape server subsystem 2

vital record processing
description 348

identifying volumes to be retained 115, 276

scheduling 325

trial run set up VRSCHANGE EDGRMMxx

operand 198

Vital Records Retention Report 342

vital record specification
chaining 7

checking for 349

defining 114

for data sets closed during ABEND processing 351

for data sets still open during inventory

management 351

management values 275

544 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

vital record specification (continued)
matching order 351

minimum number 349

order of matching 351

planning 58

recording changes to 215

secondary vital record specification 350

testing vital record specification before they are

processed 338

validating vital record specification chains 349

vital record specification management value
assigned by DFSMSrmm EDGUX100 sample 6

defining 275

description 6

retaining volumes using 274

setting with DFSMSrmm EDGUX100 installation

exit 267

Vital Records Retention Report
customizing trailer lines 444

using 342

VLPOOL definitions 150

VLPOOL MASTEROVERWRITE, EDGRMMxx

operand 208

VLPOOL, command in EDGRMMxx
AUTOSCRATCH operand 207

DESCRIPTION operand 207

EXPDTCHECK operand 207, 307

MEDIANAME operand 209

PREFIX operand 210

RACF operand 211

RELEASEACTION operand 211

SYSID operand 211

TYPE operand 212

VLPOOL MASTEROVERWRITE operand 208

VM tape
getting rack number with LIBQ exec 453

managing 452

volume
adding details 56

automatic notification of release 187

changing ADD product volume dialog panel

defaults 443

confirming moves 364

defining 126, 142

defining details 56

defining existing 126

duplicate serial numbers 115

ejecting from system-managed libraries 121, 354

foreign volumes 118

ignoring 271

initializing volumes in system-managed libraries 127

input only 146

managing volumes with special expiration

dates 112

marking for replacement 358

master status 10

moving 125

preventing use on specific systems in a

complex 234

private 10

protecting 319

volume (continued)
reclaiming volume from pending release 327

rejecting 201

retaining
DFSMShsm tape volumes 307

using management class 113

using vital record specification 274

retention types 6

returning volumes to scratch status 357

scratch volume 10

segregating by media shape 159

support duplicate volumes 323

undefined serial numbers 118

updating expiration date 191

updating status 145

user status 10

using manual move control 161

validating mounts 18

VM tapes, managing 452

volume access 235

with duplicate volume serial numbers 116

with permanent errors 358

with special expiration date 51

volume DFSMSrmm ISPF dialog panel defaults 443

volume serial number
changing duplicate volume serial numbers 117

external 2

ignoring duplicates 271

labeling duplicate volume serial numbers 117

managing duplicate volume serial numbers 115

rules for matching shelf location 98

using EDGUX100 to manage duplicates 267

volume-not-in-library processing 123

VOLUME, EDGRMMxx operand 175

VRSBYJOBNAME
description 6

VRSCHANGE, EDGRMMxx operand 198

VRSEL parameter 333, 341

VRSEL, EDGRMMxx operand 199

VRSJOBNAME, EDGRMMxx operand 199

VRSMIN, EDGRMMxx operand 200

W
waiting requests, number of 55

warning mode
running during implementation 58

specifying 188

Web service
implementing 69

setting up 61, 69

using 69

Web service sample client
using 69

weekly archive from daily audit reports 499

WHILECATALOG
catalog date format, WHILECATLG 347

worm tape
segregating WORM tapes in separate scratch

pools 118

Index 545

writing
EBCDIC labels 435

ISO/ANSI labels 435

wrong label processing 426

546 z/OS V1R9.0 DFSMSrmm Implementation and Customization Guide

Readers’ Comments — We’d Like to Hear from You

z/OS

DFSMSrmm Implementation

and Customization Guide

 Publication No. SC26-7405-07

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC26-7405-07

SC26-7405-07

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation

Department 55JA, Mail Station P181

2455 South Road

Poughkeepsie, NY 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SC26-7405-07

	Contents
	Figures
	Tables
	About This Document
	How to Use this Document
	How to Find Samples in this Document
	Required product knowledge
	Referenced documents
	Accessing z/OS DFSMS information on the Internet
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS
	Notational conventions
	How to read syntax diagrams
	How to abbreviate commands and operands
	How to use continuation characters
	Delimiters
	Character sets

	Summary of Changes
	Summary of Changes for SC26-7405-07 z/OS Version 1 Release 9
	New Information
	Changed Information

	Summary of Changes for SC26-7405-06 z/OS Version 1 Release 8
	New Information
	Changed Information

	Summary of Changes for SC26-7405-05 z/OS Version 1 Release 7
	New Information
	Changed Information

	Summary of Changes for SC26-7405-04 z/OS Version 1 Release 6
	New Information
	Changed Information

	Summary of Changes for SC26-7405-03 z/OS Version 1 Release 5
	New Information
	Changed Information

	Summary of Changes for SC26-7405-02 z/OS Version 1 Release 3
	New Information
	Changed Information

	Summary of Changes for SC26-7405-01 z/OS Version 1 Release 3
	New Information
	Changed Information
	Moved Information

	Chapter 1. Introducing DFSMSrmm
	What is a RMMplex?
	What Libraries and Locations Can DFSMSrmm Manage?
	What Is in a Removable Media Library?
	What Is in a System-Managed Tape Library?
	Automated Tape Libraries
	Manual Tape Libraries

	What Is in a Non-System-Managed Tape Library?
	What Is in a Storage Location?

	How Does DFSMSrmm Manage These Libraries and Locations?
	Setting Up Your Installation Options
	Defining Retention and Movement Policies
	Defining Home Location and Target Destinations
	Defining Retention Policies
	Defining Vital Record Specification Chains

	Running DFSMSrmm Utilities

	What Resources Does DFSMSrmm Manage?
	Shelf Locations
	Volumes
	DFSMSrmm Tape Label Support

	Data Sets
	Year 2000 Support
	Software Products
	Owner Information

	How Does DFSMSrmm Help You Create Reports?
	Using DFSMSrmm Report Generator
	Using DFSMSrmm ISPF Dialog and RMM TSO Subcommands
	Using the EDGAUD and EDGRPTD Report Utilities
	Using the DFSMSrmm EDGRRPTE Exec
	Using the DFSORT ICETOOL Utility
	Using the DFSMSrmm Application Programming Interface

	How Does DFSMSrmm Authorization and Security Work?
	What Tape Usage Does DFSMSrmm Support?
	How Does DFSMSrmm Validate Tape Mounts?
	Why Does DFSMSrmm Reject Tape Volumes?
	Rejects Caused by Installation Controls
	Rejects Caused by Validation Failure
	Rejects Caused by DFSMSrmm Rules

	Who Can Use DFSMSrmm and How?
	General User
	Tape Librarian
	Storage Administrator
	Application Programmer
	System Programmer
	Operator
	Using DFSMSrmm

	Chapter 2. Implementing DFSMSrmm
	Step 1: Preparing to Implement DFSMSrmm
	Step 2: Running the Installation Verification Procedure (Optional)
	Step 3: Updating JES3 (Optional)
	Step 4: Updating Installation Exits
	Step 5: Updating SYS1.PARMLIB Members
	Updating IEFSSNxx
	Defining DFSMSrmm to z/OS
	Dynamically Adding the DFSMSrmm Subsystem
	Enabling DFSMSrmm and Tape Recording

	Updating IKJTSOxx to Authorize DFSMSrmm Commands
	Updating IFGPSEDI When the Enhanced Data Integrity Function is Activated
	Updating SMFPRMxx (Optional)
	Updating GRSRNLxx (Optional)
	Enabling DFSMSrmm

	Step 6: Using the Problem Determination Aid Facility (Optional)
	Step 7: Setting Up DFSMSrmm Disposition Processing (Optional)
	Step 8: Updating the Procedure Library
	Step 9: Assigning DFSMSrmm a RACF User ID
	Step 10: Defining Parmlib Member EDGRMMxx
	Step 11: Tailoring Parmlib Member EDGRMMxx
	Step 12: Creating the DFSMSrmm Control Data Set
	Roadmap for Creating the Control Data Set
	Defining the DFSMSrmm Control Data Set
	Calculating DASD Space for the DFSMSrmm Control Data Set
	Placing the DFSMSrmm Control Data Set
	Allocating Space for the Control Data Set
	Protecting the Control Data Set
	Initializing the Control Data Set
	Backing Up the Control Data Set

	Step 13: Creating the Journal
	Roadmap for Creating the Journal
	Calculating DASD Space for the Journal
	Placing the Journal
	Allocating Space for the Journal
	Protecting the Journal
	Backing Up the Journal

	Step 14: Authorizing Users
	Step 15: Making the DFSMSrmm ISPF Dialog Available to Users
	Adding DFSMSrmm to an ISPF Selection Panel
	Modifying an ISPF Selection Panel
	Enabling ISPF Data Set List (DSLIST) Support

	Step 16: Restarting z/OS with DFSMSrmm Implemented
	Step 17: Tailoring DFSMSrmm Set Up
	Step 18: Starting DFSMSrmm
	Stopping DFSMSrmm
	Quiescing DFSMSrmm
	Restarting DFSMSrmm
	Checking DFSMSrmm Status

	Step 19: Defining Resources
	Defining Shelf Locations
	Defining Owner Information to DFSMSrmm
	Defining Volumes
	Adding Volumes for a New Removable Media Library
	Adding Volumes from an Existing Removable Media Library
	Adding Known Volumes

	Defining Vital Record Specifications

	Step 20: Updating the Operational Procedures
	Step 21: Initializing the DFSMSrmm Subsystem and Tape Recording
	Enabling the DFSMSrmm Subsystem Interface
	Changing the DFSMSrmm Running Mode
	Activating the Tape Volume Interface
	Restarting the DFSMSrmm Subsystem

	Step 22: Setting Up DFSMSrmm Utilities
	Step 23: Setting Up DFSMSrmm Web Service (Optional)
	Step 24: Setting Up DFSMSrmm Common Information Model (CIM) Provider (Optional)
	Step 25: Installing PTFs and the SMP/E Maintenance to DFSMSrmm

	Chapter 3. Setting Up DFSMSrmm Client and Server Systems
	Implementing DFSMSrmm Client and Server Systems
	Using the DFSMSrmm Client and Server Systems
	Managing Catalogs in an RMMplex

	Chapter 4. Setting Up DFSMSrmm Web Service
	Implementing the DFSMSrmm Web Service
	Using the DFSMSrmm Web Service Sample Client
	Setting the Memory Limit for Returned XML Data
	Debugging the DFSMSrmm Web Service

	Chapter 5. Setting Up DFSMSrmm Common Information Model (CIM) Provider
	Implementing the DFSMSrmm CIM provider
	Pegasus CIM server prerequisites
	For LINUX:
	For z/OS:

	Installation of the Java 2 Standard Edition SDK
	For LINUX:
	For z/OS:

	DFSMSrmm CIM provider files
	For LINUX:
	For z/OS:

	Required Java libraries
	First Time Setup
	For LINUX:

	XML schema file adaptions
	For LINUX:
	For z/OS:

	DFSMSrmm specific environment variables
	Customer options
	Pretests
	Start and stop the CIM server
	Export of environmental variables
	Exports (demo) for LINUX
	Exports (demo) for z/OS

	DFSMSrmm CIM provider properties file: rmm.properties
	DFSMSrmm CIM provider properties file: rmmcust.properties
	Diagnostic log properties: rmmlog.properties
	WBEMCLI CIM command line client for Linux
	Installation
	Usage

	cimcli command line client for z/OS
	Set program control flag

	Java client for use with invokeMethod
	Using the DFSMSrmm CIM Provider with DFSMSrmm Web Service
	Common tasks for the DFSMSrmm CIM provider

	Chapter 6. Organizing the Removable Media Library
	Organizing the Library by Pools
	Pooling Overview
	Pooling Considerations
	Pool Types
	Tape Drive Availability
	Operator Messages and Tape Drive Displays

	Calculating Pool Size
	Defining Pools in Parmlib Member EDGRMMxx
	Changing Pool Definitions
	Designing Rack Pools
	Designing Scratch Pools

	Requesting and Using Scratch Pools
	Using SMS Tape Storage Groups for DFSMSrmm Scratch Pooling
	Making an ACS Storage Group Assignment
	A Pooling Example

	Managing Pools with Job Name and Data Set Name
	Assigning Policies
	Using SMS Management Class to Retain Non-System-Managed Volumes
	Making An ACS Management Class Assignment

	Managing Volumes with Special Dates
	Using Volumes with Special Expiration Dates
	Using Management Class to Retain System-Managed Volumes
	Step 1: Define Management Class Names
	Step 2: Update ACS Routine
	Step 3: Define Retention Policies for Management Class Names
	Step 4: Run DFSMSrmm Inventory Management Vital Record Processing

	Using the SMS Pre-ACS Interface

	Managing Volumes with Duplicate Volume Serial Numbers
	Using Volumes with Duplicate Volume Serial Numbers
	Changing Duplicate Volume Serial Numbers
	Adding a Duplicate Volume into a System-Managed Tape Library

	Managing Undefined Volume Serial Numbers
	Segregating WORM tapes in separate scratch pools

	Chapter 7. Running DFSMSrmm with System-Managed Tape Libraries
	Using DFSMSrmm with System-Managed Tape Libraries
	Associating Volumes and System-Managed Libraries
	Cartridge Entry Processing
	Manual Cartridge Entry Processing
	Managing Scratch Pools
	Ejecting Volumes from System-Managed Libraries
	Returning Volumes to the System-Managed Library
	Volume-Not-In-Library Processing
	Confirming Volume Movement for System Managed Libraries
	Defining System-Managed Volume Information
	Keeping System-Managed Volume Information Consistent

	Initializing Scratch Volumes in System-Managed Libraries
	Using Storage Group Names

	Using DFSMSrmm with the IBM TotalStorage Peer-to-Peer Virtual Tape Server (PtP VTS)
	Defining Logical Volumes in a Virtual Tape Server Library
	Logical Volume Cartridge Entry Processing
	Managing Stacked Volumes
	Defining Stacked Volumes to DFSMSrmm
	Changing Stacked Volume Information
	Assigning a Shelf Location for a Stacked Volume

	Deleting Stacked Volume Information
	DFSMSrmm Support for Stacked Volumes When Stacked Volume Support Is Enabled
	Resolving Movement Conflicts
	Confirming Stacked Volume Movement
	DFSMSrmm Support for Export Processing When Stacked Volume Support Is Enabled
	DFSMSrmm Support for Import Processing When Stacked Volume Support Is Enabled

	DFSMSrmm Support for Stacked Volumes When Stacked Volume Support Is Not Enabled
	DFSMSrmm Support for Export Processing When Stacked Volume Support Is Not Enabled
	DFSMSrmm Support for Import Processing When Stacked Volume Support Is Not Enabled

	Enabling Stacked Volume Support
	Performing a Virtual Export of Logical Volumes

	Recovering a Logical Volume from an Exported Stacked Volume
	Setting Up DFSMSrmm for the System-Managed Tape Library
	Using the System-Managed Tape Library With New Volumes
	Using the System-Managed Tape Library with Volumes Already Defined in DFSMSrmm
	Method 1
	Method 2

	Using the System-Managed Tape Library with Existing Volumes
	Using DFSMSrmm with an Existing Automated Tape Library

	Returning Volumes to Scratch Status
	Partitioning System-Managed Tape Libraries
	Sharing a System-Managed Library and a BTLS-Managed Library
	Moving from a Non-System-Managed to a System-Managed IBM Automated Tape Library

	Chapter 8. Running DFSMSrmm with BTLS
	Setting Up Scratch Pools for BTLS-Managed Volumes
	Running DFSMSrmm Inventory Management with BTLS
	Running EDGINERS for BTLS-managed Volumes
	Restrictions
	Defining Volume Information for BTLS-managed Volumes
	Returning BTLS-managed Volumes to Scratch

	Chapter 9. Managing Storage Locations
	Types of Storage Locations
	Defining Storage Locations
	Implementing Installation Defined Storage Locations
	Implementing Storage Locations As Home Locations
	Managing Shelf Space for Home Locations
	Reusing Bins in Storage Locations
	Moving Volumes to Storage Locations
	Moving Volumes by Location
	Moving Volumes by Media Shape
	Moving Volumes Manually
	Assigning Bins in Storage Locations

	Changing Storage Locations
	Deleting Storage Locations
	Switching Volumes to Installation Defined Storage Locations
	Converting from Built-In Storage Locations
	Going Back to Built-In Storage Locations

	Chapter 10. Using the Parmlib Member EDGRMMxx
	Defining Storage Locations: LOCDEF
	LOCDEF Command Syntax
	LOCDEF Command Operands

	Defining Mount and Fetch Messages: MNTMSG
	MNTMSG Command Syntax
	MNTMSG Command Operands

	Defining System Options: OPTION
	OPTION Command Syntax
	OPTION Command Operands

	Defining Tapes Not Available on Systems: REJECT
	REJECT Command Syntax
	REJECT Command Operands

	Defining Security Classes: SECCLS
	SECCLS Command Syntax
	SECCLS Command Operands

	Defining Pools: VLPOOL
	VLPOOL Command Syntax
	VLPOOL Command Operands

	Chapter 11. Authorizing DFSMSrmm Users and Ensuring Security
	Protecting DFSMSrmm Resources with RACF Profiles
	Creating Profiles
	Setting the Level of Access for the DFSMSrmm Resources
	Authorizing Resources
	General User Functions
	Storage Administrator Functions
	System Programmer Functions
	Librarian Functions
	Inventory Management Functions
	Operator Functions

	Using the Tape Relabeling Resources
	Creating Audit Trails
	Control Data Set Information
	SMF Audit Information
	RACF Audit Information

	Using Security Classification Processing
	Preventing the Use of IEHINITT
	Controlling RACF Tape Profile Processing
	Recommendations for Tape Security
	Recommendations for Using RACF Tape Profile Processing
	Rejecting Volumes on Specific Systems in a System Complex
	Maintaining the User Access List

	Using RACF With DFSMSrmm
	DFSMSrmm RACF Tape Security Support
	DFSMSrmm Automatic Tape Security Support Processing
	Data Set Profile Processing Implications
	RACF Installation Exit Conversion
	TAPEVOL class active. PROTECT=YES JCL option used
	TAPEVOL class active. Exit requested PROTECT=YES option used
	TAPEVOL active. RACF exits using DATASET not TAPEVOL profiles

	Using RACF Options for Authorizing RMM TSO Subcommands

	Using the SAF Interface
	SAF Calls for Authorization Checking
	Examples: Checking Authorization for Issuers of RMM TSO Subcommands
	Examples: Checking for Authorization when Additional Security is in Use
	Example: Checking Authorization to Ignore Volumes
	Example: Checking for Authorization to Create Label and No Label Volumes
	Example: Checking Authorization to Remove DFSMSrmm from the System

	SAF and RACF Calls for Creating, Updating and Deleting Security Profiles
	Example: Checking for DATASET Class Resource
	Example: Checking for TAPEVOL Class Resource
	Example: Defining a TAPEVOL Class
	Example: Defining a TAPEVOL Class Resource When TAPEDSN Is Active
	Example: Adding a Tape Volume
	Example: Deleting a TAPEVOL Profile
	Example: Deleting a DATASET Profile
	Example: Checking for Authorization

	Chapter 12. Using DFSMSrmm Programming Interfaces
	Releasing Tapes: EDGTVEXT
	Invocation
	Input
	Output
	Processing
	Environment

	Managing DFSMShsm Tapes: EDGDFHSM
	Invocation
	Input
	Output
	Processing
	Environment

	Managing System-Managed Tape Library Volumes: EDGLCSUX
	Input
	Output
	Processing
	DFSMSrmm Processing for OAM Support
	Change Use Attribute Specific Processing
	Cartridge Entry Specific Processing
	Cartridge Eject Specific Processing
	Volume-Not-In-Library Specific Processing

	Environment

	Processing Fetch and Mount Messages: EDGMSGEX
	Input
	Output
	Processing
	Environment

	Processing JES3 Messages: EDG3X71
	Input
	Output
	Processing
	Environment

	Setting Up Parallel Processing
	Setting Up Parallel Processing Using SMP/E
	Setting Up Parallel Processing Outside of SMP/E

	Chapter 13. Using DFSMSrmm Installation Exits
	Using the DFSMSrmm EDGUX100 Installation Exit
	Planning to Manage Scratch Pools with EDGUX100
	Selecting Pool Types
	Controlling Pool Selection
	Managing Tape Drive Availability
	Defining Operator Messages for Tape Drive Display

	Managing Scratch Pools
	Step 1: Define the Pools
	Step 2: Tailor the Sample EDGUX100 Installation Exit
	Step 3: Activate the EDGUX100 Installation Exit
	Step 4: Define MNTMSG Parmlib Options
	Step 5: Set Up Cartridge Loaders
	Step 6: Updating JES3 Code (Optional)
	Step 7: Activate MONITOR DSNAME

	Using EDGUX100 to Ignore Duplicate or Undefined Volume Serial Numbers
	Step 1: Tailor the DFSMSrmm EDGUX100 Installation Exit
	Step 2: Activate the EDGUX100 Installation Exit
	Step 3: Define a RACF FACILITY Class Entity to Check Authorization
	Step 4: Authorize Users

	Using Vital Record Specification Management Values to Retain Tape Volumes
	Step 1: Define Vital Record Specification Management Values
	Step 2: Tailor the Sample EDGUX100 Installation Exit
	Step 3: Activate the EDGUX100 Installation Exit
	Step 4: Run DFSMSrmm Inventory Management Vital Record Processing

	Using the EDGUX100 Installation Exit from Pre-ACS Processing
	Creating Sticky Labels
	Step 1: Tailor the DFSMSrmm EDGUX100 Installation Exit
	Step 2: Activate the EDGUX100 Installation Exit

	Modifying DFSMSrmm Label Output
	Controlling Tape Volume Data Set Recording
	Step 1: Tailor the DFSMSrmm EDGUX100 Installation Exit
	Step 2: Activate the EDGUX100 Installation Exit

	Changing Location Information with EDGUX100
	EDGUX100 Exit Routine Processing
	Assigning Expiration Dates
	Supplying a Scratch Pool Name
	Using the System Name to Select a Scratch Pool
	Using Storage Group for Manual Tape Library Pooling

	Setting Up the EDGUX100 Routine Environment
	Installing the EDGUX100 Routine
	Removing the EDGUX100 Routine
	Writing the EDGUX100 Routine
	Registers on Entry to the EDGUX100 Exit Routine
	EDGUX100 Parameter List
	Registers on Return from the EDGUX100 Exit Routine

	EDGUX100 Installation Exit Return Codes

	Using the DFSMSrmm EDGUX200 Installation Exit
	EDGUX200 Exit Routine Processing
	Setting Up the EDGUX200 Routine Environment
	Installing the EDGUX200 Exit Routine
	Removing the EDGUX200 Routine
	Writing the EDGUX200 Exit Routine
	Registers on Entry to the EDGUX200 Exit Routine
	EDGUX200 Parameter List
	Registers on Return from the EDGUX200 Exit Routine

	EDGUX200 Installation Exit Return Codes

	Chapter 14. Running DFSMSrmm with DFSMShsm
	Defining DFSMShsm to RACF
	Authorizing DFSMShsm to DFSMSrmm Resources
	Authorizing ABARS to DFSMSrmm Resources
	Setting DFSMSrmm Options When using DFSMShsm
	Setting DFSMShsm Options When using DFSMSrmm
	Setting DFSMShsm System Options
	Setting DFSMShsm Dump Definitions
	DFSMSrmm Support for DFSMShsm Naming Conventions
	DFSMSrmm Support for Retention and Pooling
	Retaining DFSMShsm Tapes using Expiration Dates

	Defining Vital Record Specifications to Manage DFSMShsm Tapes
	Retaining All DFSMShsm Tapes
	Retaining Open Data Sets
	Retaining Single File Format Migration Tapes
	Retaining Multifile Format Migration Tapes
	Retaining Single File Format Backup Tapes
	Retaining Multifile Format Backup Tapes
	Retaining and Moving TAPECOPY Tapes or DUPLEX Tapes
	Retaining and Moving Dump Tapes
	Retaining and Moving Tapes Written by ABARS
	Retaining and Moving ABARS Accompany Tapes
	Retaining DFSMShsm Control Data Set Backup Tapes
	Retaining Cycles of Dump Tapes
	Retaining ABARS Backup Tapes

	Retaining DFSMShsm Tapes Extra Days Retention

	Disaster Recovery Using DFSMShsm Alternate Tapes with DFSMSrmm
	Securing Tapes When Running DFSMShsm and DFSMSrmm
	Recommendations for Using DFSMSrmm and DFSMShsm

	Chapter 15. Running DFSMSrmm with JES3
	Preventing JES3 from Validating Volumes
	Updating JES3 Fetch and Mount Messages
	Steps for Using the EDG3UX71 USERMOD
	Using the EDG3IIP1 USERMOD
	Using the EDG3LVVR USERMOD

	Using the EDG3UX62 USERMOD to Create and Mount No Label Tapes

	Chapter 16. Performing Inventory Management
	Scheduling DFSMSrmm Utilities
	Running Inventory Management
	Inventory Management Considerations
	DFSMSrmm Inventory Management Considerations when Client/Server Support is Enabled
	Allocating Data Sets for Inventory Management
	Creating an Extract Data Set
	Calculating DASD Space and Placement for the Extract Data Set
	Placing the Extract Data Set
	JCL for Creating an Extract Data Set

	JCL for EDGHSKP
	EXEC Parameters for EDGHSKP
	SYSIN File for the EDGHSKP EXPROC Utility
	EDGSPLCS File for the EDGHSKP Utility

	Running Vital Record Processing
	JCL for Vital Record Processing
	Using the Vital Records Retention Report
	Using the Inventory Management ACTIVITY File
	How Vital Record Processing Works
	How DFSMSrmm Processes Vital Record Specification Chains
	How DFSMSrmm Processes Primary and Secondary Vital Record Specifications
	Combining Retention Types
	How DFSMSrmm Selects Retention and Movement Policies
	Considerations for Retaining Data Sets and Volumes
	Moving Volumes
	Inventory Management Trial Run

	Running Storage Location Management Processing
	JCL for Storage Location Management Processing
	How Storage Location Management Processing Works

	Running Expiration Processing
	JCL for Expiration Processing
	How Expiration Processing Works
	Returning Volumes to Scratch Status
	Tracking Volumes with Permanent Errors
	Managing Open Data Sets
	Running Multiple Copies of the EDGHSKP EXPROC Utility

	Running DFSMSrmm Catalog Synchronization
	DFSMSrmm Catalog Processing
	JCL for Catalog Synchronization
	Synchronizing the DFSMSrmm Control Data Set with User Catalogs in a Fully Shared Catalog Environment
	Synchronizing the DFSMSrmm Control Data Set with User Catalogs When Catalogs Are Not Fully Shared

	Confirming Global Volume Movement
	Confirming Global Release Actions
	Backing Up the Control Data Set
	JCL for Backing Up the Control Data Set and Journal
	Backing Up the Journal
	JCL for Backing Up the Journal

	Steps for Automating Control Data Set Backup and Journal Clearing
	Return Codes for EDGHSKP

	Chapter 17. Maintaining the Control Data Set
	DFSMSrmm Considerations when Client/Server Support is Enabled
	Using EDGBKUP
	JCL for EDGBKUP
	EXEC Parameters for EDGBKUP
	DD Statements for EDGBKUP
	Return Codes for EDGBKUP
	Additional EDGBKUP Return Code Information
	Customizing the DSSOPT DD Statement

	Backing Up the Control Data Set
	Backing Up the DFSMSrmm Control Data Set and Journal

	Restoring the Control Data Set
	Controlling the Control Data Set Recovery Point
	Restoring the Control Data Set with Forward Recovery
	Restoring the Control Data Set without Forward Recovery
	Forward Recovering the Control Data Set
	Restoring the Control Data Set at a Recovery Site
	Using Non-DFSMSrmm Utilities to Restore the Control Data Set

	Reorganizing the Control Data Set
	Monitoring the Space Used by the Control Data Set
	Changing the Size of the Control Data Set And Journal
	Recovering from Control Data Set Update Failures
	Recovery Processing
	Handling I/O Requests Following a Failure
	Automatic recovery
	Manual recovery

	Moving the Control Data Set and Journal to a Different Device
	Steps for Moving the Control Data Set and Journal Using the DFSMSrmm EDGHSKP Utility with the PARM='BACKUP' Parameter
	Steps for Moving the Control Data Set and Journal Using DFSMSrmm Utility EDGHSKP Utility with the PARM='BACKUP(DSS)' Parameter
	Moving the Journal using DFSMSrmm Utilities
	Steps for Moving the Control Data Set using Non-DFSMSrmm Utilities

	Using EDGUTIL for Tasks Such as Creating and Verifying the Control Data Set
	JCL for EDGUTIL
	JCL for Creating the Control Data Set
	JCL for Updating the Control Data Set
	JCL for Verifying the Contents of the Control Data Set
	JCL for Mending the Control Data Set

	EXEC Parameters for EDGUTIL
	SYSIN File for VERIFY and MEND Processing
	How EDGUTIL Performs VERIFY and MEND Processing for Volumes
	Creating or Updating the Control Data Set Control Record
	Verifying the Contents of the Control Data Set
	Verifying the Control Data Set and Tape Configuration Database
	Synchronizing the Contents of the Control Data Set
	Mending the Control Data Set
	Setting up DFSMSrmm Stacked Volume Support
	Setting up DFSMSrmm Common Time Support
	Daylight Savings Time Considerations

	Enabling Extended Bin Support
	EDGSPLCS File for the EDGUTIL Utility
	Return Codes for EDGUTIL

	Using EDGSPLCS to Issue Commands to OAM for System-Managed Volumes
	EXEC Parameters for EDGSPLCS
	INDD Input File
	OUTDD Output File
	Return Codes for EDGSPLCS

	Sharing the DFSMSrmm Control Data Set
	Running DFSMSrmm Inventory Management When Sharing the Control Data Set
	Running EDGINERS When Sharing the Control Data Set
	Defining Volume Information When Sharing the Control Data Set
	Confirming Volume Movement When Sharing the Control Data Set
	Returning Volumes to Scratch When Sharing the Control Data Set

	Chapter 18. Initializing and Erasing Tape Volumes
	Replacing IEHINITT with EDGINERS
	Using EDGINERS
	Initializing and Erasing Volumes Automatically
	Initializing and Erasing Volumes Manually
	Initializing and Erasing Volumes Using Multiple Tape Drives
	JCL for EDGINERS
	EXEC Parameters for EDGINERS
	SYSIN Commands for EDGINERS

	Using EDGINERS with System-Managed Tape Libraries
	Checking Volumes in System-Managed Tape Libraries
	Requesting Volume Mounts for System-Managed Tape Libraries
	Running EDGINERS on Multiple System Complexes
	Running EDGINERS on a 3494 in Manual Mode
	Mounting and Demounting Volumes
	Using DFSMSdfp Processing to Label Volumes
	Setting Status for a Volume in a System-Managed Tape Library
	Labeling New Tape Volumes with EDGINERS
	Using the Automatic Cartridge Loader with EDGINERS

	Controlling Access to EDGINERS
	How DFSMSrmm Selects an ISO/ANSI Label Version
	Producing Label Symmetry
	How EDGINERS Processing Works
	Return Codes for EDGINERS

	EDGINERS Examples
	Example 1: Write IBM Standard Labels on Three Tapes
	Example 2: Write an ISO/ANSI Label on a Tape
	Example 3: Place Two Groups of Serial Numbers on Six Tape Volumes
	Example 4: Place Serial Numbers on Eight Tape Volumes
	Example 5: Relabel a Volume
	Example 6: Automatically Initialize or Erase 3480 Volumes
	Example 7: Initialize and Erase Volumes in a System-Managed Library
	Example 8: Initialize 50 Scratch Enhanced Capacity Cartridges
	Example 9: Erase a Volume
	Example 10: Initialize Volumes Using Multiple Tape Drives
	Example 11: Labeling Duplicate Volumes Using EDGINERS
	Example 12: Selecting EHPCT Volumes for Processing Automatically

	Chapter 19. Customizing DFSMSrmm
	Changing the Initial Entry Point to the DFSMSrmm Dialog
	Adding Local Dialog Extensions
	Customizing the Local Dialog with 'U' Line Command

	Changing the ADD Product Volume Defaults
	Customizing DFSMSrmm Messages for Report Titles and User Notification
	Customizing DFSMSrmm Report Titles
	Customizing Notification Messages and Notes
	Modifying Text for Release Notification
	Modifying Text in Notes to Product Owners
	Modifying Notify Messages

	Managing VM Tape Volumes
	Replenishing Scratch Volumes in a System-Managed Library
	Automating Backup
	Using the LABEL Procedure
	Processing NL Label Tapes: EDG019VM
	Input
	Output
	Processing
	Environment

	Chapter 20. Using the Problem Determination Aid Facility
	Roadmap for Using the Problem Determination Aid
	Planning to Use the PDA Facility
	Determining How Long to Keep Trace Information
	Short-Term Trace History
	Long-Term Trace History

	Determining Problem Determination Aid (PDA) Log Data Set Size
	Enabling the Problem Determination Aid (PDA) Facility
	Allocating the Problem Determination Aid (PDA) Log Data Sets
	Archiving the Problem Determination Aid (PDA) Log Data Sets
	Copying the Problem Determination Aid (PDA) Log Data Sets to Tape
	Printing the Problem Determination Aid (PDA) Log Data Sets

	Chapter 21. Setting Up DFSMSrmm Disposition Processing
	Implementing DFSMSrmm Disposition Control File Processing
	Modifying the Contents of the Disposition Control File
	Selecting the Method Used for Label Processing
	Modifying Tape Labels

	Chapter 22. Running DFSMSrmm with the IBM Tivoli Workload Scheduler for z/OS
	Using a Tivoli Special Resource When Running DFSMSrmm with the IBM Tivoli Workload Scheduler for z/OS
	Setting Up DFSMSrmm to Use the IBM Tivoli Workload Scheduler for z/OS
	Descriptions of DFSMSrmm Jobs to Run with the IBM Tivoli Workload Scheduler for z/OS
	IBM Tivoli Workload Scheduler for z/OS Applications for DFSMSrmm
	Customizing the IBM Tivoli Workload Scheduler for z/OS Batch Loader Statements
	Setting Up IBM Tivoli Workload Scheduler for z/OS Workstations
	Event Triggered Tracking

	Appendix A. DFSMSrmm Installation Verification Procedures
	Preparing to Run the IVP
	Running the IVP

	Appendix B. DFSMSrmm Mapping Macros
	General-use Programming Interface Mapping Macros
	OAM Interface: EDGLCSUP
	EDGLCSUP Constants
	EDGLCSUP Cross Reference

	Product-sensitive Programming Interface Mapping Macros
	Installation Exit Mapping Macro: EDGPL100
	EDGPL100 Constants
	EDGPL100 Cross Reference

	Installation Exit Mapping Macro: EDGPL200
	EDGPL200 Constants
	EDGPL200 Cross Reference

	Sticky Label Data: EDGSLAB
	EDGSLAB Constants
	EDGSLAB Cross Reference

	Appendix C. Using DFSMSrmm Samples
	Appendix D. Evaluating Removable Media Management Needs
	Appendix E. Problem Determination Aid Log Data Set Size Work Sheet for Long-Term Trace History
	Appendix F. Problem Determination Aid Log Data Set Size Work Sheet for Short-Term Trace History
	Appendix G. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming interface information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

